L(s) = 1 | − 2·3-s + 5·4-s − 6·5-s + 6·7-s + 2·9-s − 10·12-s + 12·15-s + 12·16-s + 12·17-s − 30·20-s − 12·21-s + 5·25-s − 6·27-s + 30·28-s − 36·35-s + 10·36-s + 32·37-s + 8·41-s + 26·43-s − 12·45-s + 32·47-s − 24·48-s + 18·49-s − 24·51-s − 10·59-s + 60·60-s + 12·63-s + ⋯ |
L(s) = 1 | − 1.15·3-s + 5/2·4-s − 2.68·5-s + 2.26·7-s + 2/3·9-s − 2.88·12-s + 3.09·15-s + 3·16-s + 2.91·17-s − 6.70·20-s − 2.61·21-s + 25-s − 1.15·27-s + 5.66·28-s − 6.08·35-s + 5/3·36-s + 5.26·37-s + 1.24·41-s + 3.96·43-s − 1.78·45-s + 4.66·47-s − 3.46·48-s + 18/7·49-s − 3.36·51-s − 1.30·59-s + 7.74·60-s + 1.51·63-s + ⋯ |
Λ(s)=(=((34⋅74⋅234)s/2ΓC(s)4L(s)Λ(2−s)
Λ(s)=(=((34⋅74⋅234)s/2ΓC(s+1/2)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
34⋅74⋅234
|
Sign: |
1
|
Analytic conductor: |
221.256 |
Root analytic conductor: |
1.96386 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(8, 34⋅74⋅234, ( :1/2,1/2,1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
3.209996232 |
L(21) |
≈ |
3.209996232 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 3 | C22 | 1+2T+2T2+2pT3+p2T4 |
| 7 | C22 | 1−6T+18T2−6pT3+p2T4 |
| 23 | C2 | (1+T2)2 |
good | 2 | D4×C2 | 1−5T2+13T4−5p2T6+p4T8 |
| 5 | D4 | (1+3T+11T2+3pT3+p2T4)2 |
| 11 | C22 | (1−17T2+p2T4)2 |
| 13 | D4×C2 | 1−5T2−207T4−5p2T6+p4T8 |
| 17 | D4 | (1−6T+23T2−6pT3+p2T4)2 |
| 19 | D4×C2 | 1−34T2+49pT4−34p2T6+p4T8 |
| 29 | D4×C2 | 1−74T2+2731T4−74p2T6+p4T8 |
| 31 | D4×C2 | 1−34T2+211T4−34p2T6+p4T8 |
| 37 | D4 | (1−16T+133T2−16pT3+p2T4)2 |
| 41 | D4 | (1−4T+81T2−4pT3+p2T4)2 |
| 43 | D4 | (1−13T+127T2−13pT3+p2T4)2 |
| 47 | C2 | (1−8T+pT2)4 |
| 53 | D4×C2 | 1+15T2+713T4+15p2T6+p4T8 |
| 59 | D4 | (1+5T+23T2+5pT3+p2T4)2 |
| 61 | D4×C2 | 1−209T2+18081T4−209p2T6+p4T8 |
| 67 | D4 | (1+19T+223T2+19pT3+p2T4)2 |
| 71 | D4×C2 | 1−149T2+14101T4−149p2T6+p4T8 |
| 73 | D4×C2 | 1−210T2+20963T4−210p2T6+p4T8 |
| 79 | D4 | (1+20T+253T2+20pT3+p2T4)2 |
| 83 | D4 | (1−8T+137T2−8pT3+p2T4)2 |
| 89 | D4 | (1+5T+153T2+5pT3+p2T4)2 |
| 97 | D4×C2 | 1−130T2+7363T4−130p2T6+p4T8 |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.81184580704691757893158130539, −7.78810662816369486143713918226, −7.39312133864889674666895858711, −7.38960518737465808985714979799, −7.26074160231560375929796028441, −7.09300225927295986012089836964, −6.24950225500305866874104666780, −6.03698500824422165967690122463, −5.86613417956197558177144932963, −5.76675511588821245096844928521, −5.64323863464469169906565641734, −5.61698431371832350317012482678, −4.64404557229709651744000741985, −4.40040607583075241343838917013, −4.24542615017828239053790774945, −4.19718093654593616556289346795, −4.13164799423517797233267763376, −3.29935330698309202818785611910, −3.18407411443623148358256842240, −2.60044587185931908194168802920, −2.49494862096002136280773891981, −2.12642090823846021802669485036, −1.41308452259816050191723358517, −1.07632849649512588977219094797, −0.798829303941988403988768756800,
0.798829303941988403988768756800, 1.07632849649512588977219094797, 1.41308452259816050191723358517, 2.12642090823846021802669485036, 2.49494862096002136280773891981, 2.60044587185931908194168802920, 3.18407411443623148358256842240, 3.29935330698309202818785611910, 4.13164799423517797233267763376, 4.19718093654593616556289346795, 4.24542615017828239053790774945, 4.40040607583075241343838917013, 4.64404557229709651744000741985, 5.61698431371832350317012482678, 5.64323863464469169906565641734, 5.76675511588821245096844928521, 5.86613417956197558177144932963, 6.03698500824422165967690122463, 6.24950225500305866874104666780, 7.09300225927295986012089836964, 7.26074160231560375929796028441, 7.38960518737465808985714979799, 7.39312133864889674666895858711, 7.78810662816369486143713918226, 7.81184580704691757893158130539