Properties

Label 8-483e4-1.1-c1e4-0-2
Degree $8$
Conductor $54423757521$
Sign $1$
Analytic cond. $221.256$
Root an. cond. $1.96386$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s + 5·4-s − 6·5-s + 6·7-s + 2·9-s − 10·12-s + 12·15-s + 12·16-s + 12·17-s − 30·20-s − 12·21-s + 5·25-s − 6·27-s + 30·28-s − 36·35-s + 10·36-s + 32·37-s + 8·41-s + 26·43-s − 12·45-s + 32·47-s − 24·48-s + 18·49-s − 24·51-s − 10·59-s + 60·60-s + 12·63-s + ⋯
L(s)  = 1  − 1.15·3-s + 5/2·4-s − 2.68·5-s + 2.26·7-s + 2/3·9-s − 2.88·12-s + 3.09·15-s + 3·16-s + 2.91·17-s − 6.70·20-s − 2.61·21-s + 25-s − 1.15·27-s + 5.66·28-s − 6.08·35-s + 5/3·36-s + 5.26·37-s + 1.24·41-s + 3.96·43-s − 1.78·45-s + 4.66·47-s − 3.46·48-s + 18/7·49-s − 3.36·51-s − 1.30·59-s + 7.74·60-s + 1.51·63-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{4} \cdot 7^{4} \cdot 23^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{4} \cdot 7^{4} \cdot 23^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(3^{4} \cdot 7^{4} \cdot 23^{4}\)
Sign: $1$
Analytic conductor: \(221.256\)
Root analytic conductor: \(1.96386\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 3^{4} \cdot 7^{4} \cdot 23^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(3.209996232\)
\(L(\frac12)\) \(\approx\) \(3.209996232\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3$C_2^2$ \( 1 + 2 T + 2 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
7$C_2^2$ \( 1 - 6 T + 18 T^{2} - 6 p T^{3} + p^{2} T^{4} \)
23$C_2$ \( ( 1 + T^{2} )^{2} \)
good2$D_4\times C_2$ \( 1 - 5 T^{2} + 13 T^{4} - 5 p^{2} T^{6} + p^{4} T^{8} \)
5$D_{4}$ \( ( 1 + 3 T + 11 T^{2} + 3 p T^{3} + p^{2} T^{4} )^{2} \)
11$C_2^2$ \( ( 1 - 17 T^{2} + p^{2} T^{4} )^{2} \)
13$D_4\times C_2$ \( 1 - 5 T^{2} - 207 T^{4} - 5 p^{2} T^{6} + p^{4} T^{8} \)
17$D_{4}$ \( ( 1 - 6 T + 23 T^{2} - 6 p T^{3} + p^{2} T^{4} )^{2} \)
19$D_4\times C_2$ \( 1 - 34 T^{2} + 49 p T^{4} - 34 p^{2} T^{6} + p^{4} T^{8} \)
29$D_4\times C_2$ \( 1 - 74 T^{2} + 2731 T^{4} - 74 p^{2} T^{6} + p^{4} T^{8} \)
31$D_4\times C_2$ \( 1 - 34 T^{2} + 211 T^{4} - 34 p^{2} T^{6} + p^{4} T^{8} \)
37$D_{4}$ \( ( 1 - 16 T + 133 T^{2} - 16 p T^{3} + p^{2} T^{4} )^{2} \)
41$D_{4}$ \( ( 1 - 4 T + 81 T^{2} - 4 p T^{3} + p^{2} T^{4} )^{2} \)
43$D_{4}$ \( ( 1 - 13 T + 127 T^{2} - 13 p T^{3} + p^{2} T^{4} )^{2} \)
47$C_2$ \( ( 1 - 8 T + p T^{2} )^{4} \)
53$D_4\times C_2$ \( 1 + 15 T^{2} + 713 T^{4} + 15 p^{2} T^{6} + p^{4} T^{8} \)
59$D_{4}$ \( ( 1 + 5 T + 23 T^{2} + 5 p T^{3} + p^{2} T^{4} )^{2} \)
61$D_4\times C_2$ \( 1 - 209 T^{2} + 18081 T^{4} - 209 p^{2} T^{6} + p^{4} T^{8} \)
67$D_{4}$ \( ( 1 + 19 T + 223 T^{2} + 19 p T^{3} + p^{2} T^{4} )^{2} \)
71$D_4\times C_2$ \( 1 - 149 T^{2} + 14101 T^{4} - 149 p^{2} T^{6} + p^{4} T^{8} \)
73$D_4\times C_2$ \( 1 - 210 T^{2} + 20963 T^{4} - 210 p^{2} T^{6} + p^{4} T^{8} \)
79$D_{4}$ \( ( 1 + 20 T + 253 T^{2} + 20 p T^{3} + p^{2} T^{4} )^{2} \)
83$D_{4}$ \( ( 1 - 8 T + 137 T^{2} - 8 p T^{3} + p^{2} T^{4} )^{2} \)
89$D_{4}$ \( ( 1 + 5 T + 153 T^{2} + 5 p T^{3} + p^{2} T^{4} )^{2} \)
97$D_4\times C_2$ \( 1 - 130 T^{2} + 7363 T^{4} - 130 p^{2} T^{6} + p^{4} T^{8} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.81184580704691757893158130539, −7.78810662816369486143713918226, −7.39312133864889674666895858711, −7.38960518737465808985714979799, −7.26074160231560375929796028441, −7.09300225927295986012089836964, −6.24950225500305866874104666780, −6.03698500824422165967690122463, −5.86613417956197558177144932963, −5.76675511588821245096844928521, −5.64323863464469169906565641734, −5.61698431371832350317012482678, −4.64404557229709651744000741985, −4.40040607583075241343838917013, −4.24542615017828239053790774945, −4.19718093654593616556289346795, −4.13164799423517797233267763376, −3.29935330698309202818785611910, −3.18407411443623148358256842240, −2.60044587185931908194168802920, −2.49494862096002136280773891981, −2.12642090823846021802669485036, −1.41308452259816050191723358517, −1.07632849649512588977219094797, −0.798829303941988403988768756800, 0.798829303941988403988768756800, 1.07632849649512588977219094797, 1.41308452259816050191723358517, 2.12642090823846021802669485036, 2.49494862096002136280773891981, 2.60044587185931908194168802920, 3.18407411443623148358256842240, 3.29935330698309202818785611910, 4.13164799423517797233267763376, 4.19718093654593616556289346795, 4.24542615017828239053790774945, 4.40040607583075241343838917013, 4.64404557229709651744000741985, 5.61698431371832350317012482678, 5.64323863464469169906565641734, 5.76675511588821245096844928521, 5.86613417956197558177144932963, 6.03698500824422165967690122463, 6.24950225500305866874104666780, 7.09300225927295986012089836964, 7.26074160231560375929796028441, 7.38960518737465808985714979799, 7.39312133864889674666895858711, 7.78810662816369486143713918226, 7.81184580704691757893158130539

Graph of the $Z$-function along the critical line