Properties

Label 483.2.d.a.461.4
Level $483$
Weight $2$
Character 483.461
Analytic conductor $3.857$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [483,2,Mod(461,483)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(483, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("483.461");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 483 = 3 \cdot 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 483.d (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.85677441763\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{5})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 3x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 461.4
Root \(1.61803i\) of defining polynomial
Character \(\chi\) \(=\) 483.461
Dual form 483.2.d.a.461.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.61803i q^{2} +(0.618034 + 1.61803i) q^{3} -0.618034 q^{4} -2.61803 q^{5} +(-2.61803 + 1.00000i) q^{6} +(2.61803 + 0.381966i) q^{7} +2.23607i q^{8} +(-2.23607 + 2.00000i) q^{9} -4.23607i q^{10} -2.23607i q^{11} +(-0.381966 - 1.00000i) q^{12} +6.85410i q^{13} +(-0.618034 + 4.23607i) q^{14} +(-1.61803 - 4.23607i) q^{15} -4.85410 q^{16} -1.47214 q^{17} +(-3.23607 - 3.61803i) q^{18} -5.47214i q^{19} +1.61803 q^{20} +(1.00000 + 4.47214i) q^{21} +3.61803 q^{22} -1.00000i q^{23} +(-3.61803 + 1.38197i) q^{24} +1.85410 q^{25} -11.0902 q^{26} +(-4.61803 - 2.38197i) q^{27} +(-1.61803 - 0.236068i) q^{28} +1.76393i q^{29} +(6.85410 - 2.61803i) q^{30} -0.527864i q^{31} -3.38197i q^{32} +(3.61803 - 1.38197i) q^{33} -2.38197i q^{34} +(-6.85410 - 1.00000i) q^{35} +(1.38197 - 1.23607i) q^{36} +5.76393 q^{37} +8.85410 q^{38} +(-11.0902 + 4.23607i) q^{39} -5.85410i q^{40} -0.236068 q^{41} +(-7.23607 + 1.61803i) q^{42} +7.61803 q^{43} +1.38197i q^{44} +(5.85410 - 5.23607i) q^{45} +1.61803 q^{46} +8.00000 q^{47} +(-3.00000 - 7.85410i) q^{48} +(6.70820 + 2.00000i) q^{49} +3.00000i q^{50} +(-0.909830 - 2.38197i) q^{51} -4.23607i q^{52} +13.5623i q^{53} +(3.85410 - 7.47214i) q^{54} +5.85410i q^{55} +(-0.854102 + 5.85410i) q^{56} +(8.85410 - 3.38197i) q^{57} -2.85410 q^{58} +7.56231 q^{59} +(1.00000 + 2.61803i) q^{60} -0.854102i q^{61} +0.854102 q^{62} +(-6.61803 + 4.38197i) q^{63} -4.23607 q^{64} -17.9443i q^{65} +(2.23607 + 5.85410i) q^{66} -10.6180 q^{67} +0.909830 q^{68} +(1.61803 - 0.618034i) q^{69} +(1.61803 - 11.0902i) q^{70} -5.32624i q^{71} +(-4.47214 - 5.00000i) q^{72} +8.23607i q^{73} +9.32624i q^{74} +(1.14590 + 3.00000i) q^{75} +3.38197i q^{76} +(0.854102 - 5.85410i) q^{77} +(-6.85410 - 17.9443i) q^{78} -7.76393 q^{79} +12.7082 q^{80} +(1.00000 - 8.94427i) q^{81} -0.381966i q^{82} +10.7082 q^{83} +(-0.618034 - 2.76393i) q^{84} +3.85410 q^{85} +12.3262i q^{86} +(-2.85410 + 1.09017i) q^{87} +5.00000 q^{88} -8.09017 q^{89} +(8.47214 + 9.47214i) q^{90} +(-2.61803 + 17.9443i) q^{91} +0.618034i q^{92} +(0.854102 - 0.326238i) q^{93} +12.9443i q^{94} +14.3262i q^{95} +(5.47214 - 2.09017i) q^{96} +1.94427i q^{97} +(-3.23607 + 10.8541i) q^{98} +(4.47214 + 5.00000i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{3} + 2 q^{4} - 6 q^{5} - 6 q^{6} + 6 q^{7} - 6 q^{12} + 2 q^{14} - 2 q^{15} - 6 q^{16} + 12 q^{17} - 4 q^{18} + 2 q^{20} + 4 q^{21} + 10 q^{22} - 10 q^{24} - 6 q^{25} - 22 q^{26} - 14 q^{27}+ \cdots - 4 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/483\mathbb{Z}\right)^\times\).

\(n\) \(323\) \(346\) \(442\)
\(\chi(n)\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.61803i 1.14412i 0.820211 + 0.572061i \(0.193856\pi\)
−0.820211 + 0.572061i \(0.806144\pi\)
\(3\) 0.618034 + 1.61803i 0.356822 + 0.934172i
\(4\) −0.618034 −0.309017
\(5\) −2.61803 −1.17082 −0.585410 0.810737i \(-0.699067\pi\)
−0.585410 + 0.810737i \(0.699067\pi\)
\(6\) −2.61803 + 1.00000i −1.06881 + 0.408248i
\(7\) 2.61803 + 0.381966i 0.989524 + 0.144370i
\(8\) 2.23607i 0.790569i
\(9\) −2.23607 + 2.00000i −0.745356 + 0.666667i
\(10\) 4.23607i 1.33956i
\(11\) 2.23607i 0.674200i −0.941469 0.337100i \(-0.890554\pi\)
0.941469 0.337100i \(-0.109446\pi\)
\(12\) −0.381966 1.00000i −0.110264 0.288675i
\(13\) 6.85410i 1.90099i 0.310746 + 0.950493i \(0.399421\pi\)
−0.310746 + 0.950493i \(0.600579\pi\)
\(14\) −0.618034 + 4.23607i −0.165177 + 1.13214i
\(15\) −1.61803 4.23607i −0.417775 1.09375i
\(16\) −4.85410 −1.21353
\(17\) −1.47214 −0.357045 −0.178523 0.983936i \(-0.557132\pi\)
−0.178523 + 0.983936i \(0.557132\pi\)
\(18\) −3.23607 3.61803i −0.762749 0.852779i
\(19\) 5.47214i 1.25539i −0.778458 0.627697i \(-0.783998\pi\)
0.778458 0.627697i \(-0.216002\pi\)
\(20\) 1.61803 0.361803
\(21\) 1.00000 + 4.47214i 0.218218 + 0.975900i
\(22\) 3.61803 0.771367
\(23\) 1.00000i 0.208514i
\(24\) −3.61803 + 1.38197i −0.738528 + 0.282093i
\(25\) 1.85410 0.370820
\(26\) −11.0902 −2.17496
\(27\) −4.61803 2.38197i −0.888741 0.458410i
\(28\) −1.61803 0.236068i −0.305780 0.0446127i
\(29\) 1.76393i 0.327554i 0.986497 + 0.163777i \(0.0523677\pi\)
−0.986497 + 0.163777i \(0.947632\pi\)
\(30\) 6.85410 2.61803i 1.25138 0.477985i
\(31\) 0.527864i 0.0948072i −0.998876 0.0474036i \(-0.984905\pi\)
0.998876 0.0474036i \(-0.0150947\pi\)
\(32\) 3.38197i 0.597853i
\(33\) 3.61803 1.38197i 0.629819 0.240569i
\(34\) 2.38197i 0.408504i
\(35\) −6.85410 1.00000i −1.15855 0.169031i
\(36\) 1.38197 1.23607i 0.230328 0.206011i
\(37\) 5.76393 0.947585 0.473792 0.880637i \(-0.342885\pi\)
0.473792 + 0.880637i \(0.342885\pi\)
\(38\) 8.85410 1.43633
\(39\) −11.0902 + 4.23607i −1.77585 + 0.678314i
\(40\) 5.85410i 0.925615i
\(41\) −0.236068 −0.0368676 −0.0184338 0.999830i \(-0.505868\pi\)
−0.0184338 + 0.999830i \(0.505868\pi\)
\(42\) −7.23607 + 1.61803i −1.11655 + 0.249668i
\(43\) 7.61803 1.16174 0.580870 0.813997i \(-0.302713\pi\)
0.580870 + 0.813997i \(0.302713\pi\)
\(44\) 1.38197i 0.208339i
\(45\) 5.85410 5.23607i 0.872678 0.780547i
\(46\) 1.61803 0.238566
\(47\) 8.00000 1.16692 0.583460 0.812142i \(-0.301699\pi\)
0.583460 + 0.812142i \(0.301699\pi\)
\(48\) −3.00000 7.85410i −0.433013 1.13364i
\(49\) 6.70820 + 2.00000i 0.958315 + 0.285714i
\(50\) 3.00000i 0.424264i
\(51\) −0.909830 2.38197i −0.127402 0.333542i
\(52\) 4.23607i 0.587437i
\(53\) 13.5623i 1.86293i 0.363836 + 0.931463i \(0.381467\pi\)
−0.363836 + 0.931463i \(0.618533\pi\)
\(54\) 3.85410 7.47214i 0.524477 1.01683i
\(55\) 5.85410i 0.789367i
\(56\) −0.854102 + 5.85410i −0.114134 + 0.782287i
\(57\) 8.85410 3.38197i 1.17275 0.447952i
\(58\) −2.85410 −0.374762
\(59\) 7.56231 0.984528 0.492264 0.870446i \(-0.336169\pi\)
0.492264 + 0.870446i \(0.336169\pi\)
\(60\) 1.00000 + 2.61803i 0.129099 + 0.337987i
\(61\) 0.854102i 0.109357i −0.998504 0.0546783i \(-0.982587\pi\)
0.998504 0.0546783i \(-0.0174133\pi\)
\(62\) 0.854102 0.108471
\(63\) −6.61803 + 4.38197i −0.833794 + 0.552076i
\(64\) −4.23607 −0.529508
\(65\) 17.9443i 2.22571i
\(66\) 2.23607 + 5.85410i 0.275241 + 0.720590i
\(67\) −10.6180 −1.29720 −0.648600 0.761130i \(-0.724645\pi\)
−0.648600 + 0.761130i \(0.724645\pi\)
\(68\) 0.909830 0.110333
\(69\) 1.61803 0.618034i 0.194788 0.0744025i
\(70\) 1.61803 11.0902i 0.193392 1.32553i
\(71\) 5.32624i 0.632108i −0.948741 0.316054i \(-0.897642\pi\)
0.948741 0.316054i \(-0.102358\pi\)
\(72\) −4.47214 5.00000i −0.527046 0.589256i
\(73\) 8.23607i 0.963959i 0.876183 + 0.481979i \(0.160082\pi\)
−0.876183 + 0.481979i \(0.839918\pi\)
\(74\) 9.32624i 1.08415i
\(75\) 1.14590 + 3.00000i 0.132317 + 0.346410i
\(76\) 3.38197i 0.387938i
\(77\) 0.854102 5.85410i 0.0973340 0.667137i
\(78\) −6.85410 17.9443i −0.776074 2.03179i
\(79\) −7.76393 −0.873511 −0.436755 0.899580i \(-0.643872\pi\)
−0.436755 + 0.899580i \(0.643872\pi\)
\(80\) 12.7082 1.42082
\(81\) 1.00000 8.94427i 0.111111 0.993808i
\(82\) 0.381966i 0.0421811i
\(83\) 10.7082 1.17538 0.587689 0.809087i \(-0.300038\pi\)
0.587689 + 0.809087i \(0.300038\pi\)
\(84\) −0.618034 2.76393i −0.0674330 0.301570i
\(85\) 3.85410 0.418036
\(86\) 12.3262i 1.32917i
\(87\) −2.85410 + 1.09017i −0.305992 + 0.116878i
\(88\) 5.00000 0.533002
\(89\) −8.09017 −0.857556 −0.428778 0.903410i \(-0.641056\pi\)
−0.428778 + 0.903410i \(0.641056\pi\)
\(90\) 8.47214 + 9.47214i 0.893042 + 0.998451i
\(91\) −2.61803 + 17.9443i −0.274445 + 1.88107i
\(92\) 0.618034i 0.0644345i
\(93\) 0.854102 0.326238i 0.0885662 0.0338293i
\(94\) 12.9443i 1.33510i
\(95\) 14.3262i 1.46984i
\(96\) 5.47214 2.09017i 0.558498 0.213327i
\(97\) 1.94427i 0.197411i 0.995117 + 0.0987055i \(0.0314702\pi\)
−0.995117 + 0.0987055i \(0.968530\pi\)
\(98\) −3.23607 + 10.8541i −0.326892 + 1.09643i
\(99\) 4.47214 + 5.00000i 0.449467 + 0.502519i
\(100\) −1.14590 −0.114590
\(101\) 5.09017 0.506491 0.253245 0.967402i \(-0.418502\pi\)
0.253245 + 0.967402i \(0.418502\pi\)
\(102\) 3.85410 1.47214i 0.381613 0.145763i
\(103\) 10.1803i 1.00310i −0.865129 0.501549i \(-0.832764\pi\)
0.865129 0.501549i \(-0.167236\pi\)
\(104\) −15.3262 −1.50286
\(105\) −2.61803 11.7082i −0.255494 1.14260i
\(106\) −21.9443 −2.13142
\(107\) 11.6180i 1.12316i 0.827423 + 0.561579i \(0.189806\pi\)
−0.827423 + 0.561579i \(0.810194\pi\)
\(108\) 2.85410 + 1.47214i 0.274636 + 0.141656i
\(109\) 3.09017 0.295985 0.147992 0.988989i \(-0.452719\pi\)
0.147992 + 0.988989i \(0.452719\pi\)
\(110\) −9.47214 −0.903133
\(111\) 3.56231 + 9.32624i 0.338119 + 0.885207i
\(112\) −12.7082 1.85410i −1.20081 0.175196i
\(113\) 10.7984i 1.01583i 0.861409 + 0.507913i \(0.169583\pi\)
−0.861409 + 0.507913i \(0.830417\pi\)
\(114\) 5.47214 + 14.3262i 0.512512 + 1.34178i
\(115\) 2.61803i 0.244133i
\(116\) 1.09017i 0.101220i
\(117\) −13.7082 15.3262i −1.26732 1.41691i
\(118\) 12.2361i 1.12642i
\(119\) −3.85410 0.562306i −0.353305 0.0515465i
\(120\) 9.47214 3.61803i 0.864684 0.330280i
\(121\) 6.00000 0.545455
\(122\) 1.38197 0.125117
\(123\) −0.145898 0.381966i −0.0131552 0.0344407i
\(124\) 0.326238i 0.0292970i
\(125\) 8.23607 0.736656
\(126\) −7.09017 10.7082i −0.631643 0.953963i
\(127\) 7.79837 0.691994 0.345997 0.938236i \(-0.387541\pi\)
0.345997 + 0.938236i \(0.387541\pi\)
\(128\) 13.6180i 1.20368i
\(129\) 4.70820 + 12.3262i 0.414534 + 1.08526i
\(130\) 29.0344 2.54649
\(131\) 18.7082 1.63454 0.817272 0.576253i \(-0.195486\pi\)
0.817272 + 0.576253i \(0.195486\pi\)
\(132\) −2.23607 + 0.854102i −0.194625 + 0.0743400i
\(133\) 2.09017 14.3262i 0.181241 1.24224i
\(134\) 17.1803i 1.48416i
\(135\) 12.0902 + 6.23607i 1.04056 + 0.536715i
\(136\) 3.29180i 0.282269i
\(137\) 14.2361i 1.21627i −0.793834 0.608135i \(-0.791918\pi\)
0.793834 0.608135i \(-0.208082\pi\)
\(138\) 1.00000 + 2.61803i 0.0851257 + 0.222862i
\(139\) 0.909830i 0.0771708i 0.999255 + 0.0385854i \(0.0122852\pi\)
−0.999255 + 0.0385854i \(0.987715\pi\)
\(140\) 4.23607 + 0.618034i 0.358013 + 0.0522334i
\(141\) 4.94427 + 12.9443i 0.416383 + 1.09010i
\(142\) 8.61803 0.723209
\(143\) 15.3262 1.28164
\(144\) 10.8541 9.70820i 0.904508 0.809017i
\(145\) 4.61803i 0.383507i
\(146\) −13.3262 −1.10289
\(147\) 0.909830 + 12.0902i 0.0750415 + 0.997180i
\(148\) −3.56231 −0.292820
\(149\) 7.70820i 0.631481i −0.948846 0.315740i \(-0.897747\pi\)
0.948846 0.315740i \(-0.102253\pi\)
\(150\) −4.85410 + 1.85410i −0.396336 + 0.151387i
\(151\) −2.47214 −0.201180 −0.100590 0.994928i \(-0.532073\pi\)
−0.100590 + 0.994928i \(0.532073\pi\)
\(152\) 12.2361 0.992476
\(153\) 3.29180 2.94427i 0.266126 0.238030i
\(154\) 9.47214 + 1.38197i 0.763286 + 0.111362i
\(155\) 1.38197i 0.111002i
\(156\) 6.85410 2.61803i 0.548767 0.209610i
\(157\) 7.52786i 0.600789i −0.953815 0.300394i \(-0.902882\pi\)
0.953815 0.300394i \(-0.0971183\pi\)
\(158\) 12.5623i 0.999403i
\(159\) −21.9443 + 8.38197i −1.74029 + 0.664733i
\(160\) 8.85410i 0.699978i
\(161\) 0.381966 2.61803i 0.0301031 0.206330i
\(162\) 14.4721 + 1.61803i 1.13704 + 0.127125i
\(163\) −19.0902 −1.49526 −0.747629 0.664117i \(-0.768808\pi\)
−0.747629 + 0.664117i \(0.768808\pi\)
\(164\) 0.145898 0.0113927
\(165\) −9.47214 + 3.61803i −0.737405 + 0.281664i
\(166\) 17.3262i 1.34478i
\(167\) 19.1803 1.48422 0.742110 0.670279i \(-0.233825\pi\)
0.742110 + 0.670279i \(0.233825\pi\)
\(168\) −10.0000 + 2.23607i −0.771517 + 0.172516i
\(169\) −33.9787 −2.61375
\(170\) 6.23607i 0.478285i
\(171\) 10.9443 + 12.2361i 0.836929 + 0.935716i
\(172\) −4.70820 −0.358997
\(173\) 3.47214 0.263982 0.131991 0.991251i \(-0.457863\pi\)
0.131991 + 0.991251i \(0.457863\pi\)
\(174\) −1.76393 4.61803i −0.133723 0.350092i
\(175\) 4.85410 + 0.708204i 0.366936 + 0.0535352i
\(176\) 10.8541i 0.818159i
\(177\) 4.67376 + 12.2361i 0.351301 + 0.919719i
\(178\) 13.0902i 0.981150i
\(179\) 5.67376i 0.424077i −0.977261 0.212038i \(-0.931990\pi\)
0.977261 0.212038i \(-0.0680102\pi\)
\(180\) −3.61803 + 3.23607i −0.269672 + 0.241202i
\(181\) 6.70820i 0.498617i 0.968424 + 0.249308i \(0.0802033\pi\)
−0.968424 + 0.249308i \(0.919797\pi\)
\(182\) −29.0344 4.23607i −2.15218 0.313998i
\(183\) 1.38197 0.527864i 0.102158 0.0390208i
\(184\) 2.23607 0.164845
\(185\) −15.0902 −1.10945
\(186\) 0.527864 + 1.38197i 0.0387049 + 0.101331i
\(187\) 3.29180i 0.240720i
\(188\) −4.94427 −0.360598
\(189\) −11.1803 8.00000i −0.813250 0.581914i
\(190\) −23.1803 −1.68168
\(191\) 21.7082i 1.57075i −0.619020 0.785375i \(-0.712470\pi\)
0.619020 0.785375i \(-0.287530\pi\)
\(192\) −2.61803 6.85410i −0.188940 0.494652i
\(193\) 15.7082 1.13070 0.565351 0.824851i \(-0.308741\pi\)
0.565351 + 0.824851i \(0.308741\pi\)
\(194\) −3.14590 −0.225862
\(195\) 29.0344 11.0902i 2.07920 0.794184i
\(196\) −4.14590 1.23607i −0.296136 0.0882906i
\(197\) 26.0902i 1.85885i 0.369014 + 0.929424i \(0.379695\pi\)
−0.369014 + 0.929424i \(0.620305\pi\)
\(198\) −8.09017 + 7.23607i −0.574943 + 0.514245i
\(199\) 14.6180i 1.03624i −0.855306 0.518122i \(-0.826631\pi\)
0.855306 0.518122i \(-0.173369\pi\)
\(200\) 4.14590i 0.293159i
\(201\) −6.56231 17.1803i −0.462869 1.21181i
\(202\) 8.23607i 0.579488i
\(203\) −0.673762 + 4.61803i −0.0472888 + 0.324122i
\(204\) 0.562306 + 1.47214i 0.0393693 + 0.103070i
\(205\) 0.618034 0.0431654
\(206\) 16.4721 1.14767
\(207\) 2.00000 + 2.23607i 0.139010 + 0.155417i
\(208\) 33.2705i 2.30689i
\(209\) −12.2361 −0.846387
\(210\) 18.9443 4.23607i 1.30728 0.292316i
\(211\) −3.00000 −0.206529 −0.103264 0.994654i \(-0.532929\pi\)
−0.103264 + 0.994654i \(0.532929\pi\)
\(212\) 8.38197i 0.575676i
\(213\) 8.61803 3.29180i 0.590498 0.225550i
\(214\) −18.7984 −1.28503
\(215\) −19.9443 −1.36019
\(216\) 5.32624 10.3262i 0.362405 0.702611i
\(217\) 0.201626 1.38197i 0.0136873 0.0938140i
\(218\) 5.00000i 0.338643i
\(219\) −13.3262 + 5.09017i −0.900504 + 0.343962i
\(220\) 3.61803i 0.243928i
\(221\) 10.0902i 0.678738i
\(222\) −15.0902 + 5.76393i −1.01279 + 0.386850i
\(223\) 17.0902i 1.14444i −0.820099 0.572221i \(-0.806082\pi\)
0.820099 0.572221i \(-0.193918\pi\)
\(224\) 1.29180 8.85410i 0.0863118 0.591590i
\(225\) −4.14590 + 3.70820i −0.276393 + 0.247214i
\(226\) −17.4721 −1.16223
\(227\) −22.3262 −1.48184 −0.740922 0.671591i \(-0.765611\pi\)
−0.740922 + 0.671591i \(0.765611\pi\)
\(228\) −5.47214 + 2.09017i −0.362401 + 0.138425i
\(229\) 10.9098i 0.720942i 0.932770 + 0.360471i \(0.117384\pi\)
−0.932770 + 0.360471i \(0.882616\pi\)
\(230\) −4.23607 −0.279318
\(231\) 10.0000 2.23607i 0.657952 0.147122i
\(232\) −3.94427 −0.258954
\(233\) 13.6738i 0.895798i −0.894084 0.447899i \(-0.852172\pi\)
0.894084 0.447899i \(-0.147828\pi\)
\(234\) 24.7984 22.1803i 1.62112 1.44997i
\(235\) −20.9443 −1.36625
\(236\) −4.67376 −0.304236
\(237\) −4.79837 12.5623i −0.311688 0.816009i
\(238\) 0.909830 6.23607i 0.0589755 0.404224i
\(239\) 5.67376i 0.367005i −0.983019 0.183503i \(-0.941256\pi\)
0.983019 0.183503i \(-0.0587436\pi\)
\(240\) 7.85410 + 20.5623i 0.506980 + 1.32729i
\(241\) 0.527864i 0.0340027i −0.999855 0.0170014i \(-0.994588\pi\)
0.999855 0.0170014i \(-0.00541196\pi\)
\(242\) 9.70820i 0.624067i
\(243\) 15.0902 3.90983i 0.968035 0.250816i
\(244\) 0.527864i 0.0337930i
\(245\) −17.5623 5.23607i −1.12201 0.334520i
\(246\) 0.618034 0.236068i 0.0394044 0.0150511i
\(247\) 37.5066 2.38649
\(248\) 1.18034 0.0749517
\(249\) 6.61803 + 17.3262i 0.419401 + 1.09801i
\(250\) 13.3262i 0.842825i
\(251\) 6.47214 0.408518 0.204259 0.978917i \(-0.434522\pi\)
0.204259 + 0.978917i \(0.434522\pi\)
\(252\) 4.09017 2.70820i 0.257656 0.170601i
\(253\) −2.23607 −0.140580
\(254\) 12.6180i 0.791726i
\(255\) 2.38197 + 6.23607i 0.149164 + 0.390518i
\(256\) 13.5623 0.847644
\(257\) −30.9443 −1.93025 −0.965125 0.261788i \(-0.915688\pi\)
−0.965125 + 0.261788i \(0.915688\pi\)
\(258\) −19.9443 + 7.61803i −1.24168 + 0.474278i
\(259\) 15.0902 + 2.20163i 0.937658 + 0.136802i
\(260\) 11.0902i 0.687783i
\(261\) −3.52786 3.94427i −0.218369 0.244144i
\(262\) 30.2705i 1.87012i
\(263\) 17.9443i 1.10649i −0.833018 0.553246i \(-0.813389\pi\)
0.833018 0.553246i \(-0.186611\pi\)
\(264\) 3.09017 + 8.09017i 0.190187 + 0.497916i
\(265\) 35.5066i 2.18115i
\(266\) 23.1803 + 3.38197i 1.42128 + 0.207362i
\(267\) −5.00000 13.0902i −0.305995 0.801105i
\(268\) 6.56231 0.400857
\(269\) 10.8541 0.661786 0.330893 0.943668i \(-0.392650\pi\)
0.330893 + 0.943668i \(0.392650\pi\)
\(270\) −10.0902 + 19.5623i −0.614068 + 1.19052i
\(271\) 2.23607i 0.135831i 0.997691 + 0.0679157i \(0.0216349\pi\)
−0.997691 + 0.0679157i \(0.978365\pi\)
\(272\) 7.14590 0.433284
\(273\) −30.6525 + 6.85410i −1.85517 + 0.414829i
\(274\) 23.0344 1.39156
\(275\) 4.14590i 0.250007i
\(276\) −1.00000 + 0.381966i −0.0601929 + 0.0229917i
\(277\) 7.14590 0.429355 0.214678 0.976685i \(-0.431130\pi\)
0.214678 + 0.976685i \(0.431130\pi\)
\(278\) −1.47214 −0.0882928
\(279\) 1.05573 + 1.18034i 0.0632048 + 0.0706651i
\(280\) 2.23607 15.3262i 0.133631 0.915918i
\(281\) 1.05573i 0.0629795i −0.999504 0.0314897i \(-0.989975\pi\)
0.999504 0.0314897i \(-0.0100251\pi\)
\(282\) −20.9443 + 8.00000i −1.24721 + 0.476393i
\(283\) 8.79837i 0.523009i −0.965202 0.261505i \(-0.915781\pi\)
0.965202 0.261505i \(-0.0842186\pi\)
\(284\) 3.29180i 0.195332i
\(285\) −23.1803 + 8.85410i −1.37308 + 0.524472i
\(286\) 24.7984i 1.46636i
\(287\) −0.618034 0.0901699i −0.0364814 0.00532256i
\(288\) 6.76393 + 7.56231i 0.398569 + 0.445613i
\(289\) −14.8328 −0.872519
\(290\) 7.47214 0.438779
\(291\) −3.14590 + 1.20163i −0.184416 + 0.0704406i
\(292\) 5.09017i 0.297880i
\(293\) −14.2918 −0.834936 −0.417468 0.908692i \(-0.637082\pi\)
−0.417468 + 0.908692i \(0.637082\pi\)
\(294\) −19.5623 + 1.47214i −1.14090 + 0.0858567i
\(295\) −19.7984 −1.15271
\(296\) 12.8885i 0.749131i
\(297\) −5.32624 + 10.3262i −0.309060 + 0.599189i
\(298\) 12.4721 0.722491
\(299\) 6.85410 0.396383
\(300\) −0.708204 1.85410i −0.0408882 0.107047i
\(301\) 19.9443 + 2.90983i 1.14957 + 0.167720i
\(302\) 4.00000i 0.230174i
\(303\) 3.14590 + 8.23607i 0.180727 + 0.473150i
\(304\) 26.5623i 1.52345i
\(305\) 2.23607i 0.128037i
\(306\) 4.76393 + 5.32624i 0.272336 + 0.304481i
\(307\) 21.4721i 1.22548i −0.790285 0.612740i \(-0.790067\pi\)
0.790285 0.612740i \(-0.209933\pi\)
\(308\) −0.527864 + 3.61803i −0.0300778 + 0.206157i
\(309\) 16.4721 6.29180i 0.937067 0.357928i
\(310\) −2.23607 −0.127000
\(311\) −23.3262 −1.32271 −0.661355 0.750073i \(-0.730018\pi\)
−0.661355 + 0.750073i \(0.730018\pi\)
\(312\) −9.47214 24.7984i −0.536254 1.40393i
\(313\) 10.1803i 0.575427i −0.957717 0.287713i \(-0.907105\pi\)
0.957717 0.287713i \(-0.0928951\pi\)
\(314\) 12.1803 0.687376
\(315\) 17.3262 11.4721i 0.976223 0.646382i
\(316\) 4.79837 0.269930
\(317\) 0.618034i 0.0347122i −0.999849 0.0173561i \(-0.994475\pi\)
0.999849 0.0173561i \(-0.00552490\pi\)
\(318\) −13.5623 35.5066i −0.760536 1.99111i
\(319\) 3.94427 0.220837
\(320\) 11.0902 0.619959
\(321\) −18.7984 + 7.18034i −1.04922 + 0.400767i
\(322\) 4.23607 + 0.618034i 0.236067 + 0.0344417i
\(323\) 8.05573i 0.448233i
\(324\) −0.618034 + 5.52786i −0.0343352 + 0.307104i
\(325\) 12.7082i 0.704924i
\(326\) 30.8885i 1.71076i
\(327\) 1.90983 + 5.00000i 0.105614 + 0.276501i
\(328\) 0.527864i 0.0291464i
\(329\) 20.9443 + 3.05573i 1.15470 + 0.168468i
\(330\) −5.85410 15.3262i −0.322258 0.843682i
\(331\) 36.0689 1.98253 0.991263 0.131903i \(-0.0421089\pi\)
0.991263 + 0.131903i \(0.0421089\pi\)
\(332\) −6.61803 −0.363212
\(333\) −12.8885 + 11.5279i −0.706288 + 0.631723i
\(334\) 31.0344i 1.69813i
\(335\) 27.7984 1.51879
\(336\) −4.85410 21.7082i −0.264813 1.18428i
\(337\) −32.4508 −1.76771 −0.883855 0.467761i \(-0.845061\pi\)
−0.883855 + 0.467761i \(0.845061\pi\)
\(338\) 54.9787i 2.99045i
\(339\) −17.4721 + 6.67376i −0.948956 + 0.362469i
\(340\) −2.38197 −0.129180
\(341\) −1.18034 −0.0639190
\(342\) −19.7984 + 17.7082i −1.07057 + 0.957550i
\(343\) 16.7984 + 7.79837i 0.907027 + 0.421073i
\(344\) 17.0344i 0.918436i
\(345\) −4.23607 + 1.61803i −0.228062 + 0.0871120i
\(346\) 5.61803i 0.302027i
\(347\) 23.1803i 1.24439i −0.782864 0.622193i \(-0.786242\pi\)
0.782864 0.622193i \(-0.213758\pi\)
\(348\) 1.76393 0.673762i 0.0945567 0.0361174i
\(349\) 31.8541i 1.70511i −0.522637 0.852555i \(-0.675052\pi\)
0.522637 0.852555i \(-0.324948\pi\)
\(350\) −1.14590 + 7.85410i −0.0612508 + 0.419819i
\(351\) 16.3262 31.6525i 0.871430 1.68948i
\(352\) −7.56231 −0.403072
\(353\) −26.5279 −1.41194 −0.705968 0.708244i \(-0.749488\pi\)
−0.705968 + 0.708244i \(0.749488\pi\)
\(354\) −19.7984 + 7.56231i −1.05227 + 0.401932i
\(355\) 13.9443i 0.740085i
\(356\) 5.00000 0.264999
\(357\) −1.47214 6.58359i −0.0779137 0.348441i
\(358\) 9.18034 0.485196
\(359\) 2.90983i 0.153575i −0.997047 0.0767875i \(-0.975534\pi\)
0.997047 0.0767875i \(-0.0244663\pi\)
\(360\) 11.7082 + 13.0902i 0.617077 + 0.689913i
\(361\) −10.9443 −0.576014
\(362\) −10.8541 −0.570479
\(363\) 3.70820 + 9.70820i 0.194630 + 0.509549i
\(364\) 1.61803 11.0902i 0.0848080 0.581283i
\(365\) 21.5623i 1.12862i
\(366\) 0.854102 + 2.23607i 0.0446446 + 0.116881i
\(367\) 22.2705i 1.16251i 0.813721 + 0.581256i \(0.197438\pi\)
−0.813721 + 0.581256i \(0.802562\pi\)
\(368\) 4.85410i 0.253038i
\(369\) 0.527864 0.472136i 0.0274795 0.0245784i
\(370\) 24.4164i 1.26935i
\(371\) −5.18034 + 35.5066i −0.268950 + 1.84341i
\(372\) −0.527864 + 0.201626i −0.0273685 + 0.0104538i
\(373\) −1.00000 −0.0517780 −0.0258890 0.999665i \(-0.508242\pi\)
−0.0258890 + 0.999665i \(0.508242\pi\)
\(374\) −5.32624 −0.275413
\(375\) 5.09017 + 13.3262i 0.262855 + 0.688164i
\(376\) 17.8885i 0.922531i
\(377\) −12.0902 −0.622675
\(378\) 12.9443 18.0902i 0.665782 0.930458i
\(379\) 24.4721 1.25705 0.628525 0.777790i \(-0.283659\pi\)
0.628525 + 0.777790i \(0.283659\pi\)
\(380\) 8.85410i 0.454206i
\(381\) 4.81966 + 12.6180i 0.246919 + 0.646441i
\(382\) 35.1246 1.79713
\(383\) −8.23607 −0.420843 −0.210422 0.977611i \(-0.567484\pi\)
−0.210422 + 0.977611i \(0.567484\pi\)
\(384\) 22.0344 8.41641i 1.12444 0.429498i
\(385\) −2.23607 + 15.3262i −0.113961 + 0.781097i
\(386\) 25.4164i 1.29366i
\(387\) −17.0344 + 15.2361i −0.865909 + 0.774493i
\(388\) 1.20163i 0.0610033i
\(389\) 32.7082i 1.65837i −0.558973 0.829186i \(-0.688804\pi\)
0.558973 0.829186i \(-0.311196\pi\)
\(390\) 17.9443 + 46.9787i 0.908644 + 2.37886i
\(391\) 1.47214i 0.0744491i
\(392\) −4.47214 + 15.0000i −0.225877 + 0.757614i
\(393\) 11.5623 + 30.2705i 0.583241 + 1.52695i
\(394\) −42.2148 −2.12675
\(395\) 20.3262 1.02272
\(396\) −2.76393 3.09017i −0.138893 0.155287i
\(397\) 15.2361i 0.764676i 0.924022 + 0.382338i \(0.124881\pi\)
−0.924022 + 0.382338i \(0.875119\pi\)
\(398\) 23.6525 1.18559
\(399\) 24.4721 5.47214i 1.22514 0.273949i
\(400\) −9.00000 −0.450000
\(401\) 8.41641i 0.420295i −0.977670 0.210148i \(-0.932606\pi\)
0.977670 0.210148i \(-0.0673945\pi\)
\(402\) 27.7984 10.6180i 1.38646 0.529579i
\(403\) 3.61803 0.180227
\(404\) −3.14590 −0.156514
\(405\) −2.61803 + 23.4164i −0.130091 + 1.16357i
\(406\) −7.47214 1.09017i −0.370836 0.0541042i
\(407\) 12.8885i 0.638861i
\(408\) 5.32624 2.03444i 0.263688 0.100720i
\(409\) 33.4721i 1.65509i 0.561399 + 0.827545i \(0.310263\pi\)
−0.561399 + 0.827545i \(0.689737\pi\)
\(410\) 1.00000i 0.0493865i
\(411\) 23.0344 8.79837i 1.13621 0.433992i
\(412\) 6.29180i 0.309975i
\(413\) 19.7984 + 2.88854i 0.974214 + 0.142136i
\(414\) −3.61803 + 3.23607i −0.177817 + 0.159044i
\(415\) −28.0344 −1.37616
\(416\) 23.1803 1.13651
\(417\) −1.47214 + 0.562306i −0.0720908 + 0.0275362i
\(418\) 19.7984i 0.968370i
\(419\) −24.7984 −1.21148 −0.605740 0.795663i \(-0.707123\pi\)
−0.605740 + 0.795663i \(0.707123\pi\)
\(420\) 1.61803 + 7.23607i 0.0789520 + 0.353084i
\(421\) 39.6869 1.93422 0.967111 0.254355i \(-0.0818631\pi\)
0.967111 + 0.254355i \(0.0818631\pi\)
\(422\) 4.85410i 0.236294i
\(423\) −17.8885 + 16.0000i −0.869771 + 0.777947i
\(424\) −30.3262 −1.47277
\(425\) −2.72949 −0.132400
\(426\) 5.32624 + 13.9443i 0.258057 + 0.675602i
\(427\) 0.326238 2.23607i 0.0157878 0.108211i
\(428\) 7.18034i 0.347075i
\(429\) 9.47214 + 24.7984i 0.457319 + 1.19728i
\(430\) 32.2705i 1.55622i
\(431\) 21.9098i 1.05536i 0.849443 + 0.527680i \(0.176938\pi\)
−0.849443 + 0.527680i \(0.823062\pi\)
\(432\) 22.4164 + 11.5623i 1.07851 + 0.556292i
\(433\) 1.52786i 0.0734245i 0.999326 + 0.0367122i \(0.0116885\pi\)
−0.999326 + 0.0367122i \(0.988312\pi\)
\(434\) 2.23607 + 0.326238i 0.107335 + 0.0156599i
\(435\) 7.47214 2.85410i 0.358261 0.136844i
\(436\) −1.90983 −0.0914643
\(437\) −5.47214 −0.261768
\(438\) −8.23607 21.5623i −0.393535 1.03029i
\(439\) 25.4721i 1.21572i −0.794045 0.607859i \(-0.792028\pi\)
0.794045 0.607859i \(-0.207972\pi\)
\(440\) −13.0902 −0.624049
\(441\) −19.0000 + 8.94427i −0.904762 + 0.425918i
\(442\) 16.3262 0.776560
\(443\) 22.1803i 1.05382i 0.849921 + 0.526910i \(0.176649\pi\)
−0.849921 + 0.526910i \(0.823351\pi\)
\(444\) −2.20163 5.76393i −0.104485 0.273544i
\(445\) 21.1803 1.00404
\(446\) 27.6525 1.30938
\(447\) 12.4721 4.76393i 0.589912 0.225326i
\(448\) −11.0902 1.61803i −0.523961 0.0764449i
\(449\) 10.9098i 0.514867i 0.966296 + 0.257433i \(0.0828768\pi\)
−0.966296 + 0.257433i \(0.917123\pi\)
\(450\) −6.00000 6.70820i −0.282843 0.316228i
\(451\) 0.527864i 0.0248561i
\(452\) 6.67376i 0.313907i
\(453\) −1.52786 4.00000i −0.0717853 0.187936i
\(454\) 36.1246i 1.69541i
\(455\) 6.85410 46.9787i 0.321325 2.20240i
\(456\) 7.56231 + 19.7984i 0.354137 + 0.927144i
\(457\) 15.5623 0.727974 0.363987 0.931404i \(-0.381415\pi\)
0.363987 + 0.931404i \(0.381415\pi\)
\(458\) −17.6525 −0.824846
\(459\) 6.79837 + 3.50658i 0.317321 + 0.163673i
\(460\) 1.61803i 0.0754412i
\(461\) 24.6869 1.14978 0.574892 0.818229i \(-0.305044\pi\)
0.574892 + 0.818229i \(0.305044\pi\)
\(462\) 3.61803 + 16.1803i 0.168326 + 0.752778i
\(463\) −16.5279 −0.768115 −0.384057 0.923309i \(-0.625474\pi\)
−0.384057 + 0.923309i \(0.625474\pi\)
\(464\) 8.56231i 0.397495i
\(465\) −2.23607 + 0.854102i −0.103695 + 0.0396080i
\(466\) 22.1246 1.02490
\(467\) −33.8328 −1.56560 −0.782798 0.622276i \(-0.786208\pi\)
−0.782798 + 0.622276i \(0.786208\pi\)
\(468\) 8.47214 + 9.47214i 0.391625 + 0.437850i
\(469\) −27.7984 4.05573i −1.28361 0.187276i
\(470\) 33.8885i 1.56316i
\(471\) 12.1803 4.65248i 0.561240 0.214375i
\(472\) 16.9098i 0.778338i
\(473\) 17.0344i 0.783244i
\(474\) 20.3262 7.76393i 0.933615 0.356609i
\(475\) 10.1459i 0.465526i
\(476\) 2.38197 + 0.347524i 0.109177 + 0.0159287i
\(477\) −27.1246 30.3262i −1.24195 1.38854i
\(478\) 9.18034 0.419899
\(479\) 25.6525 1.17209 0.586046 0.810278i \(-0.300684\pi\)
0.586046 + 0.810278i \(0.300684\pi\)
\(480\) −14.3262 + 5.47214i −0.653900 + 0.249768i
\(481\) 39.5066i 1.80134i
\(482\) 0.854102 0.0389033
\(483\) 4.47214 1.00000i 0.203489 0.0455016i
\(484\) −3.70820 −0.168555
\(485\) 5.09017i 0.231133i
\(486\) 6.32624 + 24.4164i 0.286964 + 1.10755i
\(487\) 14.7082 0.666492 0.333246 0.942840i \(-0.391856\pi\)
0.333246 + 0.942840i \(0.391856\pi\)
\(488\) 1.90983 0.0864539
\(489\) −11.7984 30.8885i −0.533541 1.39683i
\(490\) 8.47214 28.4164i 0.382732 1.28372i
\(491\) 21.9098i 0.988777i 0.869241 + 0.494388i \(0.164608\pi\)
−0.869241 + 0.494388i \(0.835392\pi\)
\(492\) 0.0901699 + 0.236068i 0.00406518 + 0.0106428i
\(493\) 2.59675i 0.116952i
\(494\) 60.6869i 2.73043i
\(495\) −11.7082 13.0902i −0.526245 0.588359i
\(496\) 2.56231i 0.115051i
\(497\) 2.03444 13.9443i 0.0912572 0.625486i
\(498\) −28.0344 + 10.7082i −1.25625 + 0.479846i
\(499\) −17.5623 −0.786197 −0.393098 0.919496i \(-0.628597\pi\)
−0.393098 + 0.919496i \(0.628597\pi\)
\(500\) −5.09017 −0.227639
\(501\) 11.8541 + 31.0344i 0.529602 + 1.38652i
\(502\) 10.4721i 0.467394i
\(503\) 0.257354 0.0114749 0.00573743 0.999984i \(-0.498174\pi\)
0.00573743 + 0.999984i \(0.498174\pi\)
\(504\) −9.79837 14.7984i −0.436454 0.659172i
\(505\) −13.3262 −0.593010
\(506\) 3.61803i 0.160841i
\(507\) −21.0000 54.9787i −0.932643 2.44169i
\(508\) −4.81966 −0.213838
\(509\) −20.0000 −0.886484 −0.443242 0.896402i \(-0.646172\pi\)
−0.443242 + 0.896402i \(0.646172\pi\)
\(510\) −10.0902 + 3.85410i −0.446800 + 0.170663i
\(511\) −3.14590 + 21.5623i −0.139166 + 0.953860i
\(512\) 5.29180i 0.233867i
\(513\) −13.0344 + 25.2705i −0.575485 + 1.11572i
\(514\) 50.0689i 2.20844i
\(515\) 26.6525i 1.17445i
\(516\) −2.90983 7.61803i −0.128098 0.335365i
\(517\) 17.8885i 0.786737i
\(518\) −3.56231 + 24.4164i −0.156519 + 1.07280i
\(519\) 2.14590 + 5.61803i 0.0941945 + 0.246604i
\(520\) 40.1246 1.75958
\(521\) 36.4721 1.59787 0.798937 0.601415i \(-0.205396\pi\)
0.798937 + 0.601415i \(0.205396\pi\)
\(522\) 6.38197 5.70820i 0.279331 0.249841i
\(523\) 25.5967i 1.11927i 0.828740 + 0.559634i \(0.189058\pi\)
−0.828740 + 0.559634i \(0.810942\pi\)
\(524\) −11.5623 −0.505102
\(525\) 1.85410 + 8.29180i 0.0809196 + 0.361884i
\(526\) 29.0344 1.26596
\(527\) 0.777088i 0.0338505i
\(528\) −17.5623 + 6.70820i −0.764301 + 0.291937i
\(529\) −1.00000 −0.0434783
\(530\) 57.4508 2.49551
\(531\) −16.9098 + 15.1246i −0.733824 + 0.656352i
\(532\) −1.29180 + 8.85410i −0.0560065 + 0.383874i
\(533\) 1.61803i 0.0700848i
\(534\) 21.1803 8.09017i 0.916563 0.350096i
\(535\) 30.4164i 1.31502i
\(536\) 23.7426i 1.02553i
\(537\) 9.18034 3.50658i 0.396161 0.151320i
\(538\) 17.5623i 0.757165i
\(539\) 4.47214 15.0000i 0.192629 0.646096i
\(540\) −7.47214 3.85410i −0.321550 0.165854i
\(541\) −25.2361 −1.08498 −0.542492 0.840061i \(-0.682519\pi\)
−0.542492 + 0.840061i \(0.682519\pi\)
\(542\) −3.61803 −0.155408
\(543\) −10.8541 + 4.14590i −0.465794 + 0.177918i
\(544\) 4.97871i 0.213461i
\(545\) −8.09017 −0.346545
\(546\) −11.0902 49.5967i −0.474615 2.12254i
\(547\) −20.2148 −0.864322 −0.432161 0.901797i \(-0.642249\pi\)
−0.432161 + 0.901797i \(0.642249\pi\)
\(548\) 8.79837i 0.375848i
\(549\) 1.70820 + 1.90983i 0.0729044 + 0.0815096i
\(550\) 6.70820 0.286039
\(551\) 9.65248 0.411209
\(552\) 1.38197 + 3.61803i 0.0588204 + 0.153994i
\(553\) −20.3262 2.96556i −0.864360 0.126108i
\(554\) 11.5623i 0.491235i
\(555\) −9.32624 24.4164i −0.395877 1.03642i
\(556\) 0.562306i 0.0238471i
\(557\) 32.0689i 1.35880i 0.733767 + 0.679401i \(0.237760\pi\)
−0.733767 + 0.679401i \(0.762240\pi\)
\(558\) −1.90983 + 1.70820i −0.0808496 + 0.0723140i
\(559\) 52.2148i 2.20845i
\(560\) 33.2705 + 4.85410i 1.40594 + 0.205123i
\(561\) −5.32624 + 2.03444i −0.224874 + 0.0858942i
\(562\) 1.70820 0.0720562
\(563\) 24.8541 1.04748 0.523738 0.851880i \(-0.324537\pi\)
0.523738 + 0.851880i \(0.324537\pi\)
\(564\) −3.05573 8.00000i −0.128669 0.336861i
\(565\) 28.2705i 1.18935i
\(566\) 14.2361 0.598387
\(567\) 6.03444 23.0344i 0.253423 0.967356i
\(568\) 11.9098 0.499725
\(569\) 35.5967i 1.49229i −0.665782 0.746147i \(-0.731902\pi\)
0.665782 0.746147i \(-0.268098\pi\)
\(570\) −14.3262 37.5066i −0.600060 1.57098i
\(571\) −16.4164 −0.687005 −0.343503 0.939152i \(-0.611613\pi\)
−0.343503 + 0.939152i \(0.611613\pi\)
\(572\) −9.47214 −0.396050
\(573\) 35.1246 13.4164i 1.46735 0.560478i
\(574\) 0.145898 1.00000i 0.00608967 0.0417392i
\(575\) 1.85410i 0.0773214i
\(576\) 9.47214 8.47214i 0.394672 0.353006i
\(577\) 33.3050i 1.38650i −0.720696 0.693252i \(-0.756177\pi\)
0.720696 0.693252i \(-0.243823\pi\)
\(578\) 24.0000i 0.998268i
\(579\) 9.70820 + 25.4164i 0.403459 + 1.05627i
\(580\) 2.85410i 0.118510i
\(581\) 28.0344 + 4.09017i 1.16306 + 0.169689i
\(582\) −1.94427 5.09017i −0.0805927 0.210994i
\(583\) 30.3262 1.25598
\(584\) −18.4164 −0.762076
\(585\) 35.8885 + 40.1246i 1.48381 + 1.65895i
\(586\) 23.1246i 0.955269i
\(587\) 13.3262 0.550033 0.275016 0.961440i \(-0.411317\pi\)
0.275016 + 0.961440i \(0.411317\pi\)
\(588\) −0.562306 7.47214i −0.0231891 0.308146i
\(589\) −2.88854 −0.119020
\(590\) 32.0344i 1.31884i
\(591\) −42.2148 + 16.1246i −1.73648 + 0.663278i
\(592\) −27.9787 −1.14992
\(593\) −31.1246 −1.27813 −0.639067 0.769151i \(-0.720679\pi\)
−0.639067 + 0.769151i \(0.720679\pi\)
\(594\) −16.7082 8.61803i −0.685546 0.353602i
\(595\) 10.0902 + 1.47214i 0.413657 + 0.0603517i
\(596\) 4.76393i 0.195138i
\(597\) 23.6525 9.03444i 0.968031 0.369755i
\(598\) 11.0902i 0.453511i
\(599\) 3.14590i 0.128538i 0.997933 + 0.0642690i \(0.0204716\pi\)
−0.997933 + 0.0642690i \(0.979528\pi\)
\(600\) −6.70820 + 2.56231i −0.273861 + 0.104606i
\(601\) 9.67376i 0.394601i 0.980343 + 0.197300i \(0.0632175\pi\)
−0.980343 + 0.197300i \(0.936783\pi\)
\(602\) −4.70820 + 32.2705i −0.191892 + 1.31525i
\(603\) 23.7426 21.2361i 0.966875 0.864800i
\(604\) 1.52786 0.0621679
\(605\) −15.7082 −0.638629
\(606\) −13.3262 + 5.09017i −0.541341 + 0.206774i
\(607\) 34.5623i 1.40284i −0.712748 0.701420i \(-0.752550\pi\)
0.712748 0.701420i \(-0.247450\pi\)
\(608\) −18.5066 −0.750541
\(609\) −7.88854 + 1.76393i −0.319660 + 0.0714781i
\(610\) −3.61803 −0.146490
\(611\) 54.8328i 2.21830i
\(612\) −2.03444 + 1.81966i −0.0822374 + 0.0735554i
\(613\) −5.47214 −0.221017 −0.110509 0.993875i \(-0.535248\pi\)
−0.110509 + 0.993875i \(0.535248\pi\)
\(614\) 34.7426 1.40210
\(615\) 0.381966 + 1.00000i 0.0154024 + 0.0403239i
\(616\) 13.0902 + 1.90983i 0.527418 + 0.0769492i
\(617\) 9.90983i 0.398955i 0.979902 + 0.199477i \(0.0639244\pi\)
−0.979902 + 0.199477i \(0.936076\pi\)
\(618\) 10.1803 + 26.6525i 0.409513 + 1.07212i
\(619\) 39.9787i 1.60688i 0.595386 + 0.803440i \(0.296999\pi\)
−0.595386 + 0.803440i \(0.703001\pi\)
\(620\) 0.854102i 0.0343016i
\(621\) −2.38197 + 4.61803i −0.0955850 + 0.185315i
\(622\) 37.7426i 1.51334i
\(623\) −21.1803 3.09017i −0.848572 0.123805i
\(624\) 53.8328 20.5623i 2.15504 0.823151i
\(625\) −30.8328 −1.23331
\(626\) 16.4721 0.658359
\(627\) −7.56231 19.7984i −0.302009 0.790671i
\(628\) 4.65248i 0.185654i
\(629\) −8.48529 −0.338331
\(630\) 18.5623 + 28.0344i 0.739540 + 1.11692i
\(631\) −6.81966 −0.271486 −0.135743 0.990744i \(-0.543342\pi\)
−0.135743 + 0.990744i \(0.543342\pi\)
\(632\) 17.3607i 0.690571i
\(633\) −1.85410 4.85410i −0.0736939 0.192933i
\(634\) 1.00000 0.0397151
\(635\) −20.4164 −0.810200
\(636\) 13.5623 5.18034i 0.537780 0.205414i
\(637\) −13.7082 + 45.9787i −0.543139 + 1.82174i
\(638\) 6.38197i 0.252664i
\(639\) 10.6525 + 11.9098i 0.421405 + 0.471146i
\(640\) 35.6525i 1.40929i
\(641\) 7.43769i 0.293771i −0.989153 0.146886i \(-0.953075\pi\)
0.989153 0.146886i \(-0.0469249\pi\)
\(642\) −11.6180 30.4164i −0.458527 1.20044i
\(643\) 5.79837i 0.228666i 0.993443 + 0.114333i \(0.0364730\pi\)
−0.993443 + 0.114333i \(0.963527\pi\)
\(644\) −0.236068 + 1.61803i −0.00930238 + 0.0637595i
\(645\) −12.3262 32.2705i −0.485345 1.27065i
\(646\) −13.0344 −0.512833
\(647\) −34.0344 −1.33803 −0.669016 0.743248i \(-0.733284\pi\)
−0.669016 + 0.743248i \(0.733284\pi\)
\(648\) 20.0000 + 2.23607i 0.785674 + 0.0878410i
\(649\) 16.9098i 0.663769i
\(650\) −20.5623 −0.806520
\(651\) 2.36068 0.527864i 0.0925223 0.0206886i
\(652\) 11.7984 0.462060
\(653\) 2.50658i 0.0980900i 0.998797 + 0.0490450i \(0.0156178\pi\)
−0.998797 + 0.0490450i \(0.984382\pi\)
\(654\) −8.09017 + 3.09017i −0.316351 + 0.120835i
\(655\) −48.9787 −1.91376
\(656\) 1.14590 0.0447398
\(657\) −16.4721 18.4164i −0.642639 0.718493i
\(658\) −4.94427 + 33.8885i −0.192748 + 1.32111i
\(659\) 4.41641i 0.172039i −0.996293 0.0860194i \(-0.972585\pi\)
0.996293 0.0860194i \(-0.0274147\pi\)
\(660\) 5.85410 2.23607i 0.227871 0.0870388i
\(661\) 16.0557i 0.624495i −0.950001 0.312248i \(-0.898918\pi\)
0.950001 0.312248i \(-0.101082\pi\)
\(662\) 58.3607i 2.26825i
\(663\) 16.3262 6.23607i 0.634059 0.242189i
\(664\) 23.9443i 0.929218i
\(665\) −5.47214 + 37.5066i −0.212200 + 1.45444i
\(666\) −18.6525 20.8541i −0.722769 0.808080i
\(667\) 1.76393 0.0682997
\(668\) −11.8541 −0.458649
\(669\) 27.6525 10.5623i 1.06911 0.408362i
\(670\) 44.9787i 1.73768i
\(671\) −1.90983 −0.0737282
\(672\) 15.1246 3.38197i 0.583445 0.130462i
\(673\) 6.23607 0.240383 0.120191 0.992751i \(-0.461649\pi\)
0.120191 + 0.992751i \(0.461649\pi\)
\(674\) 52.5066i 2.02248i
\(675\) −8.56231 4.41641i −0.329563 0.169988i
\(676\) 21.0000 0.807692
\(677\) −13.5066 −0.519100 −0.259550 0.965730i \(-0.583574\pi\)
−0.259550 + 0.965730i \(0.583574\pi\)
\(678\) −10.7984 28.2705i −0.414709 1.08572i
\(679\) −0.742646 + 5.09017i −0.0285001 + 0.195343i
\(680\) 8.61803i 0.330487i
\(681\) −13.7984 36.1246i −0.528755 1.38430i
\(682\) 1.90983i 0.0731312i
\(683\) 28.5967i 1.09422i −0.837059 0.547112i \(-0.815727\pi\)
0.837059 0.547112i \(-0.184273\pi\)
\(684\) −6.76393 7.56231i −0.258625 0.289152i
\(685\) 37.2705i 1.42403i
\(686\) −12.6180 + 27.1803i −0.481759 + 1.03775i
\(687\) −17.6525 + 6.74265i −0.673484 + 0.257248i
\(688\) −36.9787 −1.40980
\(689\) −92.9574 −3.54140
\(690\) −2.61803 6.85410i −0.0996669 0.260931i
\(691\) 8.09017i 0.307765i 0.988089 + 0.153882i \(0.0491777\pi\)
−0.988089 + 0.153882i \(0.950822\pi\)
\(692\) −2.14590 −0.0815748
\(693\) 9.79837 + 14.7984i 0.372209 + 0.562144i
\(694\) 37.5066 1.42373
\(695\) 2.38197i 0.0903531i
\(696\) −2.43769 6.38197i −0.0924006 0.241908i
\(697\) 0.347524 0.0131634
\(698\) 51.5410 1.95086
\(699\) 22.1246 8.45085i 0.836830 0.319640i
\(700\) −3.00000 0.437694i −0.113389 0.0165433i
\(701\) 31.6312i 1.19469i −0.801983 0.597347i \(-0.796222\pi\)
0.801983 0.597347i \(-0.203778\pi\)
\(702\) 51.2148 + 26.4164i 1.93298 + 0.997023i
\(703\) 31.5410i 1.18959i
\(704\) 9.47214i 0.356995i
\(705\) −12.9443 33.8885i −0.487509 1.27632i
\(706\) 42.9230i 1.61543i
\(707\) 13.3262 + 1.94427i 0.501185 + 0.0731219i
\(708\) −2.88854 7.56231i −0.108558 0.284209i
\(709\) 32.5623 1.22290 0.611452 0.791282i \(-0.290586\pi\)
0.611452 + 0.791282i \(0.290586\pi\)
\(710\) −22.5623 −0.846748
\(711\) 17.3607 15.5279i 0.651076 0.582340i
\(712\) 18.0902i 0.677958i
\(713\) −0.527864 −0.0197687
\(714\) 10.6525 2.38197i 0.398659 0.0891428i
\(715\) −40.1246 −1.50058
\(716\) 3.50658i 0.131047i
\(717\) 9.18034 3.50658i 0.342846 0.130956i
\(718\) 4.70820 0.175709
\(719\) 17.7639 0.662483 0.331241 0.943546i \(-0.392533\pi\)
0.331241 + 0.943546i \(0.392533\pi\)
\(720\) −28.4164 + 25.4164i −1.05902 + 0.947214i
\(721\) 3.88854 26.6525i 0.144817 0.992590i
\(722\) 17.7082i 0.659031i
\(723\) 0.854102 0.326238i 0.0317644 0.0121329i
\(724\) 4.14590i 0.154081i
\(725\) 3.27051i 0.121464i
\(726\) −15.7082 + 6.00000i −0.582986 + 0.222681i
\(727\) 2.52786i 0.0937533i −0.998901 0.0468766i \(-0.985073\pi\)
0.998901 0.0468766i \(-0.0149268\pi\)
\(728\) −40.1246 5.85410i −1.48712 0.216967i
\(729\) 15.6525 + 22.0000i 0.579721 + 0.814815i
\(730\) 34.8885 1.29128
\(731\) −11.2148 −0.414794
\(732\) −0.854102 + 0.326238i −0.0315685 + 0.0120581i
\(733\) 38.3607i 1.41688i 0.705769 + 0.708442i \(0.250602\pi\)
−0.705769 + 0.708442i \(0.749398\pi\)
\(734\) −36.0344 −1.33006
\(735\) −2.38197 31.6525i −0.0878601 1.16752i
\(736\) −3.38197 −0.124661
\(737\) 23.7426i 0.874572i
\(738\) 0.763932 + 0.854102i 0.0281207 + 0.0314399i
\(739\) −28.4164 −1.04531 −0.522657 0.852543i \(-0.675059\pi\)
−0.522657 + 0.852543i \(0.675059\pi\)
\(740\) 9.32624 0.342839
\(741\) 23.1803 + 60.6869i 0.851551 + 2.22939i
\(742\) −57.4508 8.38197i −2.10909 0.307712i
\(743\) 11.8541i 0.434885i 0.976073 + 0.217442i \(0.0697714\pi\)
−0.976073 + 0.217442i \(0.930229\pi\)
\(744\) 0.729490 + 1.90983i 0.0267444 + 0.0700178i
\(745\) 20.1803i 0.739350i
\(746\) 1.61803i 0.0592404i
\(747\) −23.9443 + 21.4164i −0.876075 + 0.783585i
\(748\) 2.03444i 0.0743866i
\(749\) −4.43769 + 30.4164i −0.162150 + 1.11139i
\(750\) −21.5623 + 8.23607i −0.787344 + 0.300739i
\(751\) 44.0344 1.60684 0.803420 0.595413i \(-0.203012\pi\)
0.803420 + 0.595413i \(0.203012\pi\)
\(752\) −38.8328 −1.41609
\(753\) 4.00000 + 10.4721i 0.145768 + 0.381626i
\(754\) 19.5623i 0.712417i
\(755\) 6.47214 0.235545
\(756\) 6.90983 + 4.94427i 0.251308 + 0.179821i
\(757\) −17.0000 −0.617876 −0.308938 0.951082i \(-0.599973\pi\)
−0.308938 + 0.951082i \(0.599973\pi\)
\(758\) 39.5967i 1.43822i
\(759\) −1.38197 3.61803i −0.0501622 0.131326i
\(760\) −32.0344 −1.16201
\(761\) 22.0000 0.797499 0.398750 0.917060i \(-0.369444\pi\)
0.398750 + 0.917060i \(0.369444\pi\)
\(762\) −20.4164 + 7.79837i −0.739608 + 0.282505i
\(763\) 8.09017 + 1.18034i 0.292884 + 0.0427312i
\(764\) 13.4164i 0.485389i
\(765\) −8.61803 + 7.70820i −0.311586 + 0.278691i
\(766\) 13.3262i 0.481497i
\(767\) 51.8328i 1.87157i
\(768\) 8.38197 + 21.9443i 0.302458 + 0.791846i
\(769\) 22.1803i 0.799844i −0.916549 0.399922i \(-0.869037\pi\)
0.916549 0.399922i \(-0.130963\pi\)
\(770\) −24.7984 3.61803i −0.893671 0.130385i
\(771\) −19.1246 50.0689i −0.688756 1.80319i
\(772\) −9.70820 −0.349406
\(773\) 0.708204 0.0254723 0.0127362 0.999919i \(-0.495946\pi\)
0.0127362 + 0.999919i \(0.495946\pi\)
\(774\) −24.6525 27.5623i −0.886115 0.990707i
\(775\) 0.978714i 0.0351564i
\(776\) −4.34752 −0.156067
\(777\) 5.76393 + 25.7771i 0.206780 + 0.924748i
\(778\) 52.9230 1.89738
\(779\) 1.29180i 0.0462834i
\(780\) −17.9443 + 6.85410i −0.642508 + 0.245416i
\(781\) −11.9098 −0.426167
\(782\) −2.38197 −0.0851789
\(783\) 4.20163 8.14590i 0.150154 0.291111i
\(784\) −32.5623 9.70820i −1.16294 0.346722i
\(785\) 19.7082i 0.703416i
\(786\) −48.9787 + 18.7082i −1.74701 + 0.667300i
\(787\) 18.5066i 0.659688i −0.944035 0.329844i \(-0.893004\pi\)
0.944035 0.329844i \(-0.106996\pi\)
\(788\) 16.1246i 0.574416i
\(789\) 29.0344 11.0902i 1.03365 0.394821i
\(790\) 32.8885i 1.17012i
\(791\) −4.12461 + 28.2705i −0.146654 + 1.00518i
\(792\) −11.1803 + 10.0000i −0.397276 + 0.355335i
\(793\) 5.85410 0.207885
\(794\) −24.6525 −0.874884
\(795\) 57.4508 21.9443i 2.03757 0.778283i
\(796\) 9.03444i 0.320217i
\(797\) 26.5410 0.940131 0.470066 0.882631i \(-0.344230\pi\)
0.470066 + 0.882631i \(0.344230\pi\)
\(798\) 8.85410 + 39.5967i 0.313432 + 1.40171i
\(799\) −11.7771 −0.416643
\(800\) 6.27051i 0.221696i
\(801\) 18.0902 16.1803i 0.639185 0.571704i
\(802\) 13.6180 0.480869
\(803\) 18.4164 0.649901
\(804\) 4.05573 + 10.6180i 0.143035 + 0.374469i
\(805\) −1.00000 + 6.85410i −0.0352454 + 0.241575i
\(806\) 5.85410i 0.206202i
\(807\) 6.70820 + 17.5623i 0.236140 + 0.618222i
\(808\) 11.3820i 0.400416i
\(809\) 23.0344i 0.809848i −0.914350 0.404924i \(-0.867298\pi\)
0.914350 0.404924i \(-0.132702\pi\)
\(810\) −37.8885 4.23607i −1.33127 0.148840i
\(811\) 49.0689i 1.72304i 0.507722 + 0.861521i \(0.330488\pi\)
−0.507722 + 0.861521i \(0.669512\pi\)
\(812\) 0.416408 2.85410i 0.0146131 0.100159i
\(813\) −3.61803 + 1.38197i −0.126890 + 0.0484677i
\(814\) 20.8541 0.730936
\(815\) 49.9787 1.75068
\(816\) 4.41641 + 11.5623i 0.154605 + 0.404762i
\(817\) 41.6869i 1.45844i
\(818\) −54.1591 −1.89363
\(819\) −30.0344 45.3607i −1.04949 1.58503i
\(820\) −0.381966 −0.0133388
\(821\) 26.1803i 0.913700i 0.889544 + 0.456850i \(0.151022\pi\)
−0.889544 + 0.456850i \(0.848978\pi\)
\(822\) 14.2361 + 37.2705i 0.496540 + 1.29996i
\(823\) 11.5623 0.403037 0.201518 0.979485i \(-0.435412\pi\)
0.201518 + 0.979485i \(0.435412\pi\)
\(824\) 22.7639 0.793019
\(825\) 6.70820 2.56231i 0.233550 0.0892080i
\(826\) −4.67376 + 32.0344i −0.162621 + 1.11462i
\(827\) 26.2148i 0.911577i 0.890088 + 0.455789i \(0.150643\pi\)
−0.890088 + 0.455789i \(0.849357\pi\)
\(828\) −1.23607 1.38197i −0.0429563 0.0480266i
\(829\) 1.00000i 0.0347314i −0.999849 0.0173657i \(-0.994472\pi\)
0.999849 0.0173657i \(-0.00552796\pi\)
\(830\) 45.3607i 1.57449i
\(831\) 4.41641 + 11.5623i 0.153203 + 0.401092i
\(832\) 29.0344i 1.00659i
\(833\) −9.87539 2.94427i −0.342162 0.102013i
\(834\) −0.909830 2.38197i −0.0315048 0.0824807i
\(835\) −50.2148 −1.73775
\(836\) 7.56231 0.261548
\(837\) −1.25735 + 2.43769i −0.0434605 + 0.0842590i
\(838\) 40.1246i 1.38608i
\(839\) 10.8541 0.374725 0.187363 0.982291i \(-0.440006\pi\)
0.187363 + 0.982291i \(0.440006\pi\)
\(840\) 26.1803 5.85410i 0.903308 0.201986i
\(841\) 25.8885 0.892708
\(842\) 64.2148i 2.21299i
\(843\) 1.70820 0.652476i 0.0588337 0.0224725i
\(844\) 1.85410 0.0638208
\(845\) 88.9574 3.06023
\(846\) −25.8885 28.9443i −0.890066 0.995125i
\(847\) 15.7082 + 2.29180i 0.539740 + 0.0787470i
\(848\) 65.8328i 2.26071i
\(849\) 14.2361 5.43769i 0.488581 0.186621i
\(850\) 4.41641i 0.151482i
\(851\) 5.76393i 0.197585i
\(852\) −5.32624 + 2.03444i −0.182474 + 0.0696988i
\(853\) 5.34752i 0.183096i 0.995801 + 0.0915479i \(0.0291815\pi\)
−0.995801 + 0.0915479i \(0.970819\pi\)
\(854\) 3.61803 + 0.527864i 0.123807 + 0.0180631i
\(855\) −28.6525 32.0344i −0.979894 1.09555i
\(856\) −25.9787 −0.887934
\(857\) −26.4721 −0.904271 −0.452135 0.891949i \(-0.649338\pi\)
−0.452135 + 0.891949i \(0.649338\pi\)
\(858\) −40.1246 + 15.3262i −1.36983 + 0.523229i
\(859\) 38.4721i 1.31265i 0.754477 + 0.656326i \(0.227890\pi\)
−0.754477 + 0.656326i \(0.772110\pi\)
\(860\) 12.3262 0.420321
\(861\) −0.236068 1.05573i −0.00804518 0.0359791i
\(862\) −35.4508 −1.20746
\(863\) 16.3607i 0.556924i −0.960447 0.278462i \(-0.910175\pi\)
0.960447 0.278462i \(-0.0898246\pi\)
\(864\) −8.05573 + 15.6180i −0.274061 + 0.531336i
\(865\) −9.09017 −0.309075
\(866\) −2.47214 −0.0840066
\(867\) −9.16718 24.0000i −0.311334 0.815083i
\(868\) −0.124612 + 0.854102i −0.00422960 + 0.0289901i
\(869\) 17.3607i 0.588921i
\(870\) 4.61803 + 12.0902i 0.156566 + 0.409895i
\(871\) 72.7771i 2.46596i
\(872\) 6.90983i 0.233996i
\(873\) −3.88854 4.34752i −0.131607 0.147141i
\(874\) 8.85410i 0.299494i
\(875\) 21.5623 + 3.14590i 0.728939 + 0.106351i
\(876\) 8.23607 3.14590i 0.278271 0.106290i
\(877\) 9.70820 0.327823 0.163911 0.986475i \(-0.447589\pi\)
0.163911 + 0.986475i \(0.447589\pi\)
\(878\) 41.2148 1.39093
\(879\) −8.83282 23.1246i −0.297923 0.779974i
\(880\) 28.4164i 0.957917i
\(881\) −25.8885 −0.872207 −0.436104 0.899896i \(-0.643642\pi\)
−0.436104 + 0.899896i \(0.643642\pi\)
\(882\) −14.4721 30.7426i −0.487302 1.03516i
\(883\) 56.1591 1.88990 0.944951 0.327211i \(-0.106109\pi\)
0.944951 + 0.327211i \(0.106109\pi\)
\(884\) 6.23607i 0.209742i
\(885\) −12.2361 32.0344i −0.411311 1.07683i
\(886\) −35.8885 −1.20570
\(887\) 19.9098 0.668507 0.334253 0.942483i \(-0.391516\pi\)
0.334253 + 0.942483i \(0.391516\pi\)
\(888\) −20.8541 + 7.96556i −0.699818 + 0.267307i
\(889\) 20.4164 + 2.97871i 0.684744 + 0.0999029i
\(890\) 34.2705i 1.14875i
\(891\) −20.0000 2.23607i −0.670025 0.0749111i
\(892\) 10.5623i 0.353652i
\(893\) 43.7771i 1.46494i
\(894\) 7.70820 + 20.1803i 0.257801 + 0.674932i
\(895\) 14.8541i 0.496518i
\(896\) 5.20163 35.6525i 0.173774 1.19107i
\(897\) 4.23607 + 11.0902i 0.141438 + 0.370290i
\(898\) −17.6525 −0.589071
\(899\) 0.931116 0.0310545
\(900\) 2.56231 2.29180i 0.0854102 0.0763932i
\(901\) 19.9656i 0.665149i
\(902\) −0.854102 −0.0284385
\(903\) 7.61803 + 34.0689i 0.253512 + 1.13374i
\(904\) −24.1459 −0.803081
\(905\) 17.5623i 0.583791i
\(906\) 6.47214 2.47214i 0.215022 0.0821312i
\(907\) −4.03444 −0.133961 −0.0669807 0.997754i \(-0.521337\pi\)
−0.0669807 + 0.997754i \(0.521337\pi\)
\(908\) 13.7984 0.457915
\(909\) −11.3820 + 10.1803i −0.377516 + 0.337661i
\(910\) 76.0132 + 11.0902i 2.51981 + 0.367636i
\(911\) 15.1246i 0.501101i 0.968104 + 0.250550i \(0.0806116\pi\)
−0.968104 + 0.250550i \(0.919388\pi\)
\(912\) −42.9787 + 16.4164i −1.42317 + 0.543602i
\(913\) 23.9443i 0.792440i
\(914\) 25.1803i 0.832892i
\(915\) −3.61803 + 1.38197i −0.119609 + 0.0456864i
\(916\) 6.74265i 0.222783i
\(917\) 48.9787 + 7.14590i 1.61742 + 0.235978i
\(918\) −5.67376 + 11.0000i −0.187262 + 0.363054i
\(919\) −14.3475 −0.473281 −0.236641 0.971597i \(-0.576046\pi\)
−0.236641 + 0.971597i \(0.576046\pi\)
\(920\) −5.85410 −0.193004
\(921\) 34.7426 13.2705i 1.14481 0.437278i
\(922\) 39.9443i 1.31549i
\(923\) 36.5066 1.20163
\(924\) −6.18034 + 1.38197i −0.203318 + 0.0454633i
\(925\) 10.6869 0.351384
\(926\) 26.7426i 0.878818i
\(927\) 20.3607 + 22.7639i 0.668732 + 0.747666i
\(928\) 5.96556 0.195829
\(929\) −34.3951 −1.12847 −0.564234 0.825615i \(-0.690828\pi\)
−0.564234 + 0.825615i \(0.690828\pi\)
\(930\) −1.38197 3.61803i −0.0453165 0.118640i
\(931\) 10.9443 36.7082i 0.358684 1.20306i
\(932\) 8.45085i 0.276817i
\(933\) −14.4164 37.7426i −0.471972 1.23564i
\(934\) 54.7426i 1.79123i
\(935\) 8.61803i 0.281840i
\(936\) 34.2705 30.6525i 1.12017 1.00191i
\(937\) 38.7082i 1.26454i −0.774747 0.632271i \(-0.782123\pi\)
0.774747 0.632271i \(-0.217877\pi\)
\(938\) 6.56231 44.9787i 0.214267 1.46861i
\(939\) 16.4721 6.29180i 0.537548 0.205325i
\(940\) 12.9443 0.422196
\(941\) 26.4721 0.862967 0.431483 0.902121i \(-0.357990\pi\)
0.431483 + 0.902121i \(0.357990\pi\)
\(942\) 7.52786 + 19.7082i 0.245271 + 0.642128i
\(943\) 0.236068i 0.00768743i
\(944\) −36.7082 −1.19475
\(945\) 29.2705 + 20.9443i 0.952170 + 0.681317i
\(946\) 27.5623 0.896128
\(947\) 4.83282i 0.157045i 0.996912 + 0.0785227i \(0.0250203\pi\)
−0.996912 + 0.0785227i \(0.974980\pi\)
\(948\) 2.96556 + 7.76393i 0.0963169 + 0.252161i
\(949\) −56.4508 −1.83247
\(950\) 16.4164 0.532619
\(951\) 1.00000 0.381966i 0.0324272 0.0123861i
\(952\) 1.25735 8.61803i 0.0407511 0.279312i
\(953\) 3.03444i 0.0982952i 0.998792 + 0.0491476i \(0.0156505\pi\)
−0.998792 + 0.0491476i \(0.984350\pi\)
\(954\) 49.0689 43.8885i 1.58866 1.42094i
\(955\) 56.8328i 1.83907i
\(956\) 3.50658i 0.113411i
\(957\) 2.43769 + 6.38197i 0.0787995 + 0.206300i
\(958\) 41.5066i 1.34102i
\(959\) 5.43769 37.2705i 0.175592 1.20353i
\(960\) 6.85410 + 17.9443i 0.221215 + 0.579149i
\(961\) 30.7214 0.991012
\(962\) −63.9230 −2.06096
\(963\) −23.2361 25.9787i −0.748772 0.837152i
\(964\) 0.326238i 0.0105074i
\(965\) −41.1246 −1.32385
\(966\) 1.61803 + 7.23607i 0.0520594 + 0.232817i
\(967\) 15.8885 0.510941 0.255471 0.966817i \(-0.417770\pi\)
0.255471 + 0.966817i \(0.417770\pi\)
\(968\) 13.4164i 0.431220i
\(969\) −13.0344 + 4.97871i −0.418727 + 0.159939i
\(970\) 8.23607 0.264444
\(971\) −6.74265 −0.216382 −0.108191 0.994130i \(-0.534506\pi\)
−0.108191 + 0.994130i \(0.534506\pi\)
\(972\) −9.32624 + 2.41641i −0.299139 + 0.0775063i
\(973\) −0.347524 + 2.38197i −0.0111411 + 0.0763623i
\(974\) 23.7984i 0.762549i
\(975\) −20.5623 + 7.85410i −0.658521 + 0.251533i
\(976\) 4.14590i 0.132707i
\(977\) 7.97871i 0.255262i −0.991822 0.127631i \(-0.959263\pi\)
0.991822 0.127631i \(-0.0407373\pi\)
\(978\) 49.9787 19.0902i 1.59814 0.610436i
\(979\) 18.0902i 0.578164i
\(980\) 10.8541 + 3.23607i 0.346722 + 0.103372i
\(981\) −6.90983 + 6.18034i −0.220614 + 0.197323i
\(982\) −35.4508 −1.13128
\(983\) 2.81966 0.0899332 0.0449666 0.998988i \(-0.485682\pi\)
0.0449666 + 0.998988i \(0.485682\pi\)
\(984\) 0.854102 0.326238i 0.0272278 0.0104001i
\(985\) 68.3050i 2.17638i
\(986\) 4.20163 0.133807
\(987\) 8.00000 + 35.7771i 0.254643 + 1.13880i
\(988\) −23.1803 −0.737465
\(989\) 7.61803i 0.242239i
\(990\) 21.1803 18.9443i 0.673155 0.602088i
\(991\) 2.20163 0.0699370 0.0349685 0.999388i \(-0.488867\pi\)
0.0349685 + 0.999388i \(0.488867\pi\)
\(992\) −1.78522 −0.0566807
\(993\) 22.2918 + 58.3607i 0.707409 + 1.85202i
\(994\) 22.5623 + 3.29180i 0.715633 + 0.104409i
\(995\) 38.2705i 1.21326i
\(996\) −4.09017 10.7082i −0.129602 0.339302i
\(997\) 18.0557i 0.571831i −0.958255 0.285915i \(-0.907702\pi\)
0.958255 0.285915i \(-0.0922976\pi\)
\(998\) 28.4164i 0.899506i
\(999\) −26.6180 13.7295i −0.842157 0.434382i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 483.2.d.a.461.4 yes 4
3.2 odd 2 483.2.d.b.461.1 yes 4
7.6 odd 2 483.2.d.b.461.4 yes 4
21.20 even 2 inner 483.2.d.a.461.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
483.2.d.a.461.1 4 21.20 even 2 inner
483.2.d.a.461.4 yes 4 1.1 even 1 trivial
483.2.d.b.461.1 yes 4 3.2 odd 2
483.2.d.b.461.4 yes 4 7.6 odd 2