Properties

Label 2-483-21.20-c1-0-31
Degree $2$
Conductor $483$
Sign $0.872 - 0.487i$
Analytic cond. $3.85677$
Root an. cond. $1.96386$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.61i·2-s + (−0.618 − 1.61i)3-s − 0.618·4-s + 2.61·5-s + (2.61 − 1.00i)6-s + (2.61 − 0.381i)7-s + 2.23i·8-s + (−2.23 + 2.00i)9-s + 4.23i·10-s − 2.23i·11-s + (0.381 + 1.00i)12-s − 6.85i·13-s + (0.618 + 4.23i)14-s + (−1.61 − 4.23i)15-s − 4.85·16-s + 1.47·17-s + ⋯
L(s)  = 1  + 1.14i·2-s + (−0.356 − 0.934i)3-s − 0.309·4-s + 1.17·5-s + (1.06 − 0.408i)6-s + (0.989 − 0.144i)7-s + 0.790i·8-s + (−0.745 + 0.666i)9-s + 1.33i·10-s − 0.674i·11-s + (0.110 + 0.288i)12-s − 1.90i·13-s + (0.165 + 1.13i)14-s + (−0.417 − 1.09i)15-s − 1.21·16-s + 0.357·17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 483 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.872 - 0.487i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 483 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.872 - 0.487i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(483\)    =    \(3 \cdot 7 \cdot 23\)
Sign: $0.872 - 0.487i$
Analytic conductor: \(3.85677\)
Root analytic conductor: \(1.96386\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{483} (461, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 483,\ (\ :1/2),\ 0.872 - 0.487i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.70537 + 0.444310i\)
\(L(\frac12)\) \(\approx\) \(1.70537 + 0.444310i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (0.618 + 1.61i)T \)
7 \( 1 + (-2.61 + 0.381i)T \)
23 \( 1 + iT \)
good2 \( 1 - 1.61iT - 2T^{2} \)
5 \( 1 - 2.61T + 5T^{2} \)
11 \( 1 + 2.23iT - 11T^{2} \)
13 \( 1 + 6.85iT - 13T^{2} \)
17 \( 1 - 1.47T + 17T^{2} \)
19 \( 1 - 5.47iT - 19T^{2} \)
29 \( 1 - 1.76iT - 29T^{2} \)
31 \( 1 - 0.527iT - 31T^{2} \)
37 \( 1 - 5.76T + 37T^{2} \)
41 \( 1 - 0.236T + 41T^{2} \)
43 \( 1 - 7.61T + 43T^{2} \)
47 \( 1 + 8T + 47T^{2} \)
53 \( 1 - 13.5iT - 53T^{2} \)
59 \( 1 + 7.56T + 59T^{2} \)
61 \( 1 - 0.854iT - 61T^{2} \)
67 \( 1 + 10.6T + 67T^{2} \)
71 \( 1 + 5.32iT - 71T^{2} \)
73 \( 1 + 8.23iT - 73T^{2} \)
79 \( 1 + 7.76T + 79T^{2} \)
83 \( 1 + 10.7T + 83T^{2} \)
89 \( 1 - 8.09T + 89T^{2} \)
97 \( 1 + 1.94iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.93903319445090684067843995684, −10.35366135591398325780194589712, −8.832238057650210038898710223558, −7.86770920276614059470928369557, −7.62623249791977015386424505931, −6.06400760783670640779205496331, −5.88950177272823048780742314086, −5.04290162688712199285765151897, −2.74318620388158491255135281557, −1.39647026846428147050162044608, 1.63055850491832581965360534497, 2.57099904858599971441612436658, 4.17227825748126203774238747866, 4.84315322848213187018152379581, 6.07842113778678663209393091182, 7.07449734467936911617856714257, 8.813734204348968379490012841369, 9.572211962557621922894317229963, 9.952290143113457973230213222877, 11.17991332144646222900145771611

Graph of the $Z$-function along the critical line