L(s) = 1 | + 1.61i·2-s + (−0.618 − 1.61i)3-s − 0.618·4-s + 2.61·5-s + (2.61 − 1.00i)6-s + (2.61 − 0.381i)7-s + 2.23i·8-s + (−2.23 + 2.00i)9-s + 4.23i·10-s − 2.23i·11-s + (0.381 + 1.00i)12-s − 6.85i·13-s + (0.618 + 4.23i)14-s + (−1.61 − 4.23i)15-s − 4.85·16-s + 1.47·17-s + ⋯ |
L(s) = 1 | + 1.14i·2-s + (−0.356 − 0.934i)3-s − 0.309·4-s + 1.17·5-s + (1.06 − 0.408i)6-s + (0.989 − 0.144i)7-s + 0.790i·8-s + (−0.745 + 0.666i)9-s + 1.33i·10-s − 0.674i·11-s + (0.110 + 0.288i)12-s − 1.90i·13-s + (0.165 + 1.13i)14-s + (−0.417 − 1.09i)15-s − 1.21·16-s + 0.357·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 483 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.872 - 0.487i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 483 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.872 - 0.487i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.70537 + 0.444310i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.70537 + 0.444310i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (0.618 + 1.61i)T \) |
| 7 | \( 1 + (-2.61 + 0.381i)T \) |
| 23 | \( 1 + iT \) |
good | 2 | \( 1 - 1.61iT - 2T^{2} \) |
| 5 | \( 1 - 2.61T + 5T^{2} \) |
| 11 | \( 1 + 2.23iT - 11T^{2} \) |
| 13 | \( 1 + 6.85iT - 13T^{2} \) |
| 17 | \( 1 - 1.47T + 17T^{2} \) |
| 19 | \( 1 - 5.47iT - 19T^{2} \) |
| 29 | \( 1 - 1.76iT - 29T^{2} \) |
| 31 | \( 1 - 0.527iT - 31T^{2} \) |
| 37 | \( 1 - 5.76T + 37T^{2} \) |
| 41 | \( 1 - 0.236T + 41T^{2} \) |
| 43 | \( 1 - 7.61T + 43T^{2} \) |
| 47 | \( 1 + 8T + 47T^{2} \) |
| 53 | \( 1 - 13.5iT - 53T^{2} \) |
| 59 | \( 1 + 7.56T + 59T^{2} \) |
| 61 | \( 1 - 0.854iT - 61T^{2} \) |
| 67 | \( 1 + 10.6T + 67T^{2} \) |
| 71 | \( 1 + 5.32iT - 71T^{2} \) |
| 73 | \( 1 + 8.23iT - 73T^{2} \) |
| 79 | \( 1 + 7.76T + 79T^{2} \) |
| 83 | \( 1 + 10.7T + 83T^{2} \) |
| 89 | \( 1 - 8.09T + 89T^{2} \) |
| 97 | \( 1 + 1.94iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.93903319445090684067843995684, −10.35366135591398325780194589712, −8.832238057650210038898710223558, −7.86770920276614059470928369557, −7.62623249791977015386424505931, −6.06400760783670640779205496331, −5.88950177272823048780742314086, −5.04290162688712199285765151897, −2.74318620388158491255135281557, −1.39647026846428147050162044608,
1.63055850491832581965360534497, 2.57099904858599971441612436658, 4.17227825748126203774238747866, 4.84315322848213187018152379581, 6.07842113778678663209393091182, 7.07449734467936911617856714257, 8.813734204348968379490012841369, 9.572211962557621922894317229963, 9.952290143113457973230213222877, 11.17991332144646222900145771611