Properties

Label 2-483-21.20-c1-0-32
Degree 22
Conductor 483483
Sign 0.698+0.715i0.698 + 0.715i
Analytic cond. 3.856773.85677
Root an. cond. 1.963861.96386
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.549i·2-s + (−1.68 − 0.420i)3-s + 1.69·4-s + 3.60·5-s + (−0.230 + 0.922i)6-s + (1.38 − 2.25i)7-s − 2.03i·8-s + (2.64 + 1.41i)9-s − 1.98i·10-s + 5.41i·11-s + (−2.85 − 0.714i)12-s − 1.72i·13-s + (−1.23 − 0.761i)14-s + (−6.06 − 1.51i)15-s + 2.28·16-s − 4.50·17-s + ⋯
L(s)  = 1  − 0.388i·2-s + (−0.970 − 0.242i)3-s + 0.849·4-s + 1.61·5-s + (−0.0942 + 0.376i)6-s + (0.524 − 0.851i)7-s − 0.717i·8-s + (0.882 + 0.471i)9-s − 0.626i·10-s + 1.63i·11-s + (−0.823 − 0.206i)12-s − 0.479i·13-s + (−0.330 − 0.203i)14-s + (−1.56 − 0.391i)15-s + 0.570·16-s − 1.09·17-s + ⋯

Functional equation

Λ(s)=(483s/2ΓC(s)L(s)=((0.698+0.715i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 483 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.698 + 0.715i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(483s/2ΓC(s+1/2)L(s)=((0.698+0.715i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 483 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.698 + 0.715i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 483483    =    37233 \cdot 7 \cdot 23
Sign: 0.698+0.715i0.698 + 0.715i
Analytic conductor: 3.856773.85677
Root analytic conductor: 1.963861.96386
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ483(461,)\chi_{483} (461, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 483, ( :1/2), 0.698+0.715i)(2,\ 483,\ (\ :1/2),\ 0.698 + 0.715i)

Particular Values

L(1)L(1) \approx 1.616010.680581i1.61601 - 0.680581i
L(12)L(\frac12) \approx 1.616010.680581i1.61601 - 0.680581i
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad3 1+(1.68+0.420i)T 1 + (1.68 + 0.420i)T
7 1+(1.38+2.25i)T 1 + (-1.38 + 2.25i)T
23 1iT 1 - iT
good2 1+0.549iT2T2 1 + 0.549iT - 2T^{2}
5 13.60T+5T2 1 - 3.60T + 5T^{2}
11 15.41iT11T2 1 - 5.41iT - 11T^{2}
13 1+1.72iT13T2 1 + 1.72iT - 13T^{2}
17 1+4.50T+17T2 1 + 4.50T + 17T^{2}
19 16.73iT19T2 1 - 6.73iT - 19T^{2}
29 1+9.24iT29T2 1 + 9.24iT - 29T^{2}
31 10.592iT31T2 1 - 0.592iT - 31T^{2}
37 1+8.23T+37T2 1 + 8.23T + 37T^{2}
41 16.44T+41T2 1 - 6.44T + 41T^{2}
43 1+5.11T+43T2 1 + 5.11T + 43T^{2}
47 1+2.58T+47T2 1 + 2.58T + 47T^{2}
53 11.00iT53T2 1 - 1.00iT - 53T^{2}
59 1+0.599T+59T2 1 + 0.599T + 59T^{2}
61 1+6.29iT61T2 1 + 6.29iT - 61T^{2}
67 1+0.526T+67T2 1 + 0.526T + 67T^{2}
71 1+1.86iT71T2 1 + 1.86iT - 71T^{2}
73 19.34iT73T2 1 - 9.34iT - 73T^{2}
79 11.25T+79T2 1 - 1.25T + 79T^{2}
83 1+11.0T+83T2 1 + 11.0T + 83T^{2}
89 1+3.79T+89T2 1 + 3.79T + 89T^{2}
97 1+2.14iT97T2 1 + 2.14iT - 97T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−10.73043192207660263130910269829, −10.11668044621392011721694380150, −9.744646979446037706933236367828, −7.85129628469602358437362851160, −6.96381681932576988818126219352, −6.27554956802020706666691415411, −5.33896641934297270985873842075, −4.20367892848128214176888641841, −2.14026669410574435975753370052, −1.54526339670181378802748391092, 1.63745797618162007873238832418, 2.82383610713710024731591953522, 4.97711383365327071270585020302, 5.59349208696769222275683787405, 6.35430491568380921826973145294, 6.92807928478217261991598769746, 8.675347529029794600985510146112, 9.165947636251288286736931909305, 10.52896569646446892798003414729, 11.05562974514670455376249964693

Graph of the ZZ-function along the critical line