L(s) = 1 | + 0.123i·2-s + (1.33 + 1.09i)3-s + 1.98·4-s + 0.867·5-s + (−0.135 + 0.165i)6-s + (−2.64 − 0.0997i)7-s + 0.491i·8-s + (0.590 + 2.94i)9-s + 0.107i·10-s − 3.54i·11-s + (2.65 + 2.17i)12-s + 5.96i·13-s + (0.0123 − 0.326i)14-s + (1.16 + 0.951i)15-s + 3.90·16-s + 4.76·17-s + ⋯ |
L(s) = 1 | + 0.0872i·2-s + (0.773 + 0.633i)3-s + 0.992·4-s + 0.387·5-s + (−0.0553 + 0.0675i)6-s + (−0.999 − 0.0377i)7-s + 0.173i·8-s + (0.196 + 0.980i)9-s + 0.0338i·10-s − 1.07i·11-s + (0.767 + 0.628i)12-s + 1.65i·13-s + (0.00329 − 0.0872i)14-s + (0.299 + 0.245i)15-s + 0.977·16-s + 1.15·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 483 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.662 - 0.749i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 483 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.662 - 0.749i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.00431 + 0.903121i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.00431 + 0.903121i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-1.33 - 1.09i)T \) |
| 7 | \( 1 + (2.64 + 0.0997i)T \) |
| 23 | \( 1 + iT \) |
good | 2 | \( 1 - 0.123iT - 2T^{2} \) |
| 5 | \( 1 - 0.867T + 5T^{2} \) |
| 11 | \( 1 + 3.54iT - 11T^{2} \) |
| 13 | \( 1 - 5.96iT - 13T^{2} \) |
| 17 | \( 1 - 4.76T + 17T^{2} \) |
| 19 | \( 1 - 0.890iT - 19T^{2} \) |
| 29 | \( 1 + 7.97iT - 29T^{2} \) |
| 31 | \( 1 + 5.07iT - 31T^{2} \) |
| 37 | \( 1 + 7.17T + 37T^{2} \) |
| 41 | \( 1 - 9.57T + 41T^{2} \) |
| 43 | \( 1 - 1.82T + 43T^{2} \) |
| 47 | \( 1 + 12.0T + 47T^{2} \) |
| 53 | \( 1 + 8.39iT - 53T^{2} \) |
| 59 | \( 1 + 7.95T + 59T^{2} \) |
| 61 | \( 1 + 5.38iT - 61T^{2} \) |
| 67 | \( 1 + 3.03T + 67T^{2} \) |
| 71 | \( 1 - 3.17iT - 71T^{2} \) |
| 73 | \( 1 - 9.86iT - 73T^{2} \) |
| 79 | \( 1 - 3.97T + 79T^{2} \) |
| 83 | \( 1 + 1.40T + 83T^{2} \) |
| 89 | \( 1 + 9.80T + 89T^{2} \) |
| 97 | \( 1 + 12.7iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.08308825343362478535655495646, −9.924105751565373935333801136161, −9.591268228803492918213581993811, −8.429854044363331841364123649454, −7.51047003343886276897543866442, −6.40608970490427444782622142675, −5.69839659711224474409497011712, −4.02624939365630349473202236292, −3.11806389448548128571118386462, −1.99662701512959831924472491482,
1.45970608384783667698042817853, 2.80380859832759550549705653560, 3.42926084528796805027780531207, 5.47237001086774653495016474758, 6.39233687221323089789589237267, 7.30754119328450489361098869332, 7.85549971918272669572453728350, 9.184704371224389326167726204748, 10.02291281754907214010740608634, 10.60888051339957613769486382115