L(s) = 1 | + 0.123i·2-s + (1.33 + 1.09i)3-s + 1.98·4-s + 0.867·5-s + (−0.135 + 0.165i)6-s + (−2.64 − 0.0997i)7-s + 0.491i·8-s + (0.590 + 2.94i)9-s + 0.107i·10-s − 3.54i·11-s + (2.65 + 2.17i)12-s + 5.96i·13-s + (0.0123 − 0.326i)14-s + (1.16 + 0.951i)15-s + 3.90·16-s + 4.76·17-s + ⋯ |
L(s) = 1 | + 0.0872i·2-s + (0.773 + 0.633i)3-s + 0.992·4-s + 0.387·5-s + (−0.0553 + 0.0675i)6-s + (−0.999 − 0.0377i)7-s + 0.173i·8-s + (0.196 + 0.980i)9-s + 0.0338i·10-s − 1.07i·11-s + (0.767 + 0.628i)12-s + 1.65i·13-s + (0.00329 − 0.0872i)14-s + (0.299 + 0.245i)15-s + 0.977·16-s + 1.15·17-s + ⋯ |
Λ(s)=(=(483s/2ΓC(s)L(s)(0.662−0.749i)Λ(2−s)
Λ(s)=(=(483s/2ΓC(s+1/2)L(s)(0.662−0.749i)Λ(1−s)
Degree: |
2 |
Conductor: |
483
= 3⋅7⋅23
|
Sign: |
0.662−0.749i
|
Analytic conductor: |
3.85677 |
Root analytic conductor: |
1.96386 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ483(461,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 483, ( :1/2), 0.662−0.749i)
|
Particular Values
L(1) |
≈ |
2.00431+0.903121i |
L(21) |
≈ |
2.00431+0.903121i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−1.33−1.09i)T |
| 7 | 1+(2.64+0.0997i)T |
| 23 | 1+iT |
good | 2 | 1−0.123iT−2T2 |
| 5 | 1−0.867T+5T2 |
| 11 | 1+3.54iT−11T2 |
| 13 | 1−5.96iT−13T2 |
| 17 | 1−4.76T+17T2 |
| 19 | 1−0.890iT−19T2 |
| 29 | 1+7.97iT−29T2 |
| 31 | 1+5.07iT−31T2 |
| 37 | 1+7.17T+37T2 |
| 41 | 1−9.57T+41T2 |
| 43 | 1−1.82T+43T2 |
| 47 | 1+12.0T+47T2 |
| 53 | 1+8.39iT−53T2 |
| 59 | 1+7.95T+59T2 |
| 61 | 1+5.38iT−61T2 |
| 67 | 1+3.03T+67T2 |
| 71 | 1−3.17iT−71T2 |
| 73 | 1−9.86iT−73T2 |
| 79 | 1−3.97T+79T2 |
| 83 | 1+1.40T+83T2 |
| 89 | 1+9.80T+89T2 |
| 97 | 1+12.7iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.08308825343362478535655495646, −9.924105751565373935333801136161, −9.591268228803492918213581993811, −8.429854044363331841364123649454, −7.51047003343886276897543866442, −6.40608970490427444782622142675, −5.69839659711224474409497011712, −4.02624939365630349473202236292, −3.11806389448548128571118386462, −1.99662701512959831924472491482,
1.45970608384783667698042817853, 2.80380859832759550549705653560, 3.42926084528796805027780531207, 5.47237001086774653495016474758, 6.39233687221323089789589237267, 7.30754119328450489361098869332, 7.85549971918272669572453728350, 9.184704371224389326167726204748, 10.02291281754907214010740608634, 10.60888051339957613769486382115