Properties

Label 2-4842-1.1-c1-0-46
Degree $2$
Conductor $4842$
Sign $1$
Analytic cond. $38.6635$
Root an. cond. $6.21800$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s + 2.82·5-s + 4.56·7-s − 8-s − 2.82·10-s − 3.18·11-s + 1.77·13-s − 4.56·14-s + 16-s + 4.40·17-s + 0.0741·19-s + 2.82·20-s + 3.18·22-s + 1.08·23-s + 2.96·25-s − 1.77·26-s + 4.56·28-s − 0.601·29-s + 1.68·31-s − 32-s − 4.40·34-s + 12.8·35-s − 4.33·37-s − 0.0741·38-s − 2.82·40-s − 9.64·41-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.5·4-s + 1.26·5-s + 1.72·7-s − 0.353·8-s − 0.892·10-s − 0.961·11-s + 0.491·13-s − 1.22·14-s + 0.250·16-s + 1.06·17-s + 0.0169·19-s + 0.631·20-s + 0.680·22-s + 0.227·23-s + 0.593·25-s − 0.347·26-s + 0.863·28-s − 0.111·29-s + 0.301·31-s − 0.176·32-s − 0.755·34-s + 2.18·35-s − 0.712·37-s − 0.0120·38-s − 0.446·40-s − 1.50·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4842 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4842 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4842\)    =    \(2 \cdot 3^{2} \cdot 269\)
Sign: $1$
Analytic conductor: \(38.6635\)
Root analytic conductor: \(6.21800\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 4842,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.367862027\)
\(L(\frac12)\) \(\approx\) \(2.367862027\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
3 \( 1 \)
269 \( 1 + T \)
good5 \( 1 - 2.82T + 5T^{2} \)
7 \( 1 - 4.56T + 7T^{2} \)
11 \( 1 + 3.18T + 11T^{2} \)
13 \( 1 - 1.77T + 13T^{2} \)
17 \( 1 - 4.40T + 17T^{2} \)
19 \( 1 - 0.0741T + 19T^{2} \)
23 \( 1 - 1.08T + 23T^{2} \)
29 \( 1 + 0.601T + 29T^{2} \)
31 \( 1 - 1.68T + 31T^{2} \)
37 \( 1 + 4.33T + 37T^{2} \)
41 \( 1 + 9.64T + 41T^{2} \)
43 \( 1 - 3.25T + 43T^{2} \)
47 \( 1 + 3.24T + 47T^{2} \)
53 \( 1 - 4.39T + 53T^{2} \)
59 \( 1 - 3.57T + 59T^{2} \)
61 \( 1 - 15.1T + 61T^{2} \)
67 \( 1 - 5.10T + 67T^{2} \)
71 \( 1 - 14.9T + 71T^{2} \)
73 \( 1 + 11.6T + 73T^{2} \)
79 \( 1 - 2.38T + 79T^{2} \)
83 \( 1 + 1.53T + 83T^{2} \)
89 \( 1 + 3.61T + 89T^{2} \)
97 \( 1 - 6.40T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.415764203858847382314777751937, −7.70196492072986438318824043104, −7.00854608408775571590688006181, −6.00917134663444916037171979053, −5.33363253552634405264011547835, −4.95730997329266574617656117772, −3.61429808159170046385790302333, −2.45096753613703823240786191438, −1.81743832117265610324458096705, −1.01674262567008595707802289384, 1.01674262567008595707802289384, 1.81743832117265610324458096705, 2.45096753613703823240786191438, 3.61429808159170046385790302333, 4.95730997329266574617656117772, 5.33363253552634405264011547835, 6.00917134663444916037171979053, 7.00854608408775571590688006181, 7.70196492072986438318824043104, 8.415764203858847382314777751937

Graph of the $Z$-function along the critical line