Properties

Label 4842.2.a.p
Level $4842$
Weight $2$
Character orbit 4842.a
Self dual yes
Analytic conductor $38.664$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4842,2,Mod(1,4842)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4842, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4842.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4842 = 2 \cdot 3^{2} \cdot 269 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4842.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(38.6635646587\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{7} - 21x^{6} + 3x^{5} + 135x^{4} + 76x^{3} - 180x^{2} - 110x + 41 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1614)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - q^{2} + q^{4} + ( - \beta_{5} - 1) q^{5} + (\beta_1 + 1) q^{7} - q^{8} + (\beta_{5} + 1) q^{10} - \beta_{4} q^{11} + ( - \beta_{7} + 1) q^{13} + ( - \beta_1 - 1) q^{14} + q^{16} + (\beta_{6} + \beta_{3} - \beta_{2}) q^{17}+ \cdots + ( - \beta_{7} - \beta_{6} + \beta_{5} + \cdots + 1) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{2} + 8 q^{4} - 4 q^{5} + 9 q^{7} - 8 q^{8} + 4 q^{10} - 2 q^{11} + 9 q^{13} - 9 q^{14} + 8 q^{16} + 2 q^{17} + 12 q^{19} - 4 q^{20} + 2 q^{22} - 6 q^{23} + 10 q^{25} - 9 q^{26} + 9 q^{28} - q^{29}+ \cdots + 3 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{8} - x^{7} - 21x^{6} + 3x^{5} + 135x^{4} + 76x^{3} - 180x^{2} - 110x + 41 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -\nu^{7} + 2\nu^{6} + 17\nu^{5} - 22\nu^{4} - 87\nu^{3} + 49\nu^{2} + 91\nu - 31 ) / 2 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{7} - 2\nu^{6} - 19\nu^{5} + 24\nu^{4} + 109\nu^{3} - 55\nu^{2} - 121\nu + 43 ) / 2 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -\nu^{7} + 3\nu^{6} + 20\nu^{5} - 36\nu^{4} - 129\nu^{3} + 64\nu^{2} + 147\nu - 34 ) / 2 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -3\nu^{7} + 6\nu^{6} + 53\nu^{5} - 66\nu^{4} - 287\nu^{3} + 135\nu^{2} + 321\nu - 87 ) / 4 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( -3\nu^{7} + 8\nu^{6} + 55\nu^{5} - 94\nu^{4} - 323\nu^{3} + 197\nu^{2} + 365\nu - 125 ) / 4 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( -\nu^{7} + 2\nu^{6} + 18\nu^{5} - 22\nu^{4} - 99\nu^{3} + 42\nu^{2} + 107\nu - 28 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{7} + \beta_{6} - \beta_{5} - \beta_{4} - \beta_{2} + \beta _1 + 5 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 2\beta_{7} + \beta_{6} - 3\beta_{5} - \beta_{4} + 9\beta _1 + 5 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 13\beta_{7} + 11\beta_{6} - 13\beta_{5} - 11\beta_{4} + \beta_{3} - 11\beta_{2} + 18\beta _1 + 46 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 32\beta_{7} + 19\beta_{6} - 43\beta_{5} - 19\beta_{4} - 9\beta_{2} + 99\beta _1 + 92 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( 155\beta_{7} + 124\beta_{6} - 164\beta_{5} - 122\beta_{4} + 14\beta_{3} - 114\beta_{2} + 262\beta _1 + 506 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( 443\beta_{7} + 291\beta_{6} - 561\beta_{5} - 287\beta_{4} + 6\beta_{3} - 190\beta_{2} + 1168\beta _1 + 1343 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−2.66749
−1.27384
1.18495
0.272150
3.55820
−2.43206
3.56941
−1.21132
−1.00000 0 1.00000 −3.42609 0 −1.66749 −1.00000 0 3.42609
1.2 −1.00000 0 1.00000 −2.70217 0 −0.273844 −1.00000 0 2.70217
1.3 −1.00000 0 1.00000 −2.47011 0 2.18495 −1.00000 0 2.47011
1.4 −1.00000 0 1.00000 −2.07331 0 1.27215 −1.00000 0 2.07331
1.5 −1.00000 0 1.00000 −0.489622 0 4.55820 −1.00000 0 0.489622
1.6 −1.00000 0 1.00000 0.956644 0 −1.43206 −1.00000 0 −0.956644
1.7 −1.00000 0 1.00000 2.82271 0 4.56941 −1.00000 0 −2.82271
1.8 −1.00000 0 1.00000 3.38195 0 −0.211316 −1.00000 0 −3.38195
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.8
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( -1 \)
\(269\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 4842.2.a.p 8
3.b odd 2 1 1614.2.a.j 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1614.2.a.j 8 3.b odd 2 1
4842.2.a.p 8 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(4842))\):

\( T_{5}^{8} + 4T_{5}^{7} - 17T_{5}^{6} - 82T_{5}^{5} + 42T_{5}^{4} + 450T_{5}^{3} + 265T_{5}^{2} - 402T_{5} - 212 \) Copy content Toggle raw display
\( T_{7}^{8} - 9T_{7}^{7} + 14T_{7}^{6} + 52T_{7}^{5} - 90T_{7}^{4} - 105T_{7}^{3} + 106T_{7}^{2} + 64T_{7} + 8 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 1)^{8} \) Copy content Toggle raw display
$3$ \( T^{8} \) Copy content Toggle raw display
$5$ \( T^{8} + 4 T^{7} + \cdots - 212 \) Copy content Toggle raw display
$7$ \( T^{8} - 9 T^{7} + \cdots + 8 \) Copy content Toggle raw display
$11$ \( T^{8} + 2 T^{7} + \cdots + 4423 \) Copy content Toggle raw display
$13$ \( T^{8} - 9 T^{7} + \cdots + 32 \) Copy content Toggle raw display
$17$ \( T^{8} - 2 T^{7} + \cdots + 19628 \) Copy content Toggle raw display
$19$ \( T^{8} - 12 T^{7} + \cdots - 644 \) Copy content Toggle raw display
$23$ \( T^{8} + 6 T^{7} + \cdots - 11296 \) Copy content Toggle raw display
$29$ \( T^{8} + T^{7} + \cdots + 424 \) Copy content Toggle raw display
$31$ \( T^{8} - 8 T^{7} + \cdots + 1688 \) Copy content Toggle raw display
$37$ \( T^{8} - 10 T^{7} + \cdots - 44512 \) Copy content Toggle raw display
$41$ \( T^{8} - T^{7} + \cdots + 3832 \) Copy content Toggle raw display
$43$ \( T^{8} - 8 T^{7} + \cdots + 1288 \) Copy content Toggle raw display
$47$ \( T^{8} + 2 T^{7} + \cdots - 165728 \) Copy content Toggle raw display
$53$ \( T^{8} - 9 T^{7} + \cdots + 3392944 \) Copy content Toggle raw display
$59$ \( T^{8} - 3 T^{7} + \cdots - 570752 \) Copy content Toggle raw display
$61$ \( T^{8} - 397 T^{6} + \cdots - 2592512 \) Copy content Toggle raw display
$67$ \( T^{8} - 6 T^{7} + \cdots + 24929728 \) Copy content Toggle raw display
$71$ \( T^{8} - 17 T^{7} + \cdots - 61627 \) Copy content Toggle raw display
$73$ \( T^{8} + T^{7} + \cdots + 4667021 \) Copy content Toggle raw display
$79$ \( T^{8} - T^{7} + \cdots + 102452 \) Copy content Toggle raw display
$83$ \( T^{8} - 17 T^{7} + \cdots + 3780448 \) Copy content Toggle raw display
$89$ \( T^{8} - 4 T^{7} + \cdots + 119672 \) Copy content Toggle raw display
$97$ \( T^{8} - 13 T^{7} + \cdots - 20041 \) Copy content Toggle raw display
show more
show less