Properties

Label 2-4842-1.1-c1-0-11
Degree $2$
Conductor $4842$
Sign $1$
Analytic cond. $38.6635$
Root an. cond. $6.21800$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s + 1.28·5-s − 0.550·7-s − 8-s − 1.28·10-s − 5.68·11-s − 3.95·13-s + 0.550·14-s + 16-s − 0.585·17-s + 5.61·19-s + 1.28·20-s + 5.68·22-s − 0.934·23-s − 3.34·25-s + 3.95·26-s − 0.550·28-s − 5.91·29-s − 5.94·31-s − 32-s + 0.585·34-s − 0.706·35-s + 3.47·37-s − 5.61·38-s − 1.28·40-s + 10.2·41-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.5·4-s + 0.574·5-s − 0.207·7-s − 0.353·8-s − 0.406·10-s − 1.71·11-s − 1.09·13-s + 0.147·14-s + 0.250·16-s − 0.142·17-s + 1.28·19-s + 0.287·20-s + 1.21·22-s − 0.194·23-s − 0.669·25-s + 0.775·26-s − 0.103·28-s − 1.09·29-s − 1.06·31-s − 0.176·32-s + 0.100·34-s − 0.119·35-s + 0.571·37-s − 0.911·38-s − 0.203·40-s + 1.60·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4842 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4842 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4842\)    =    \(2 \cdot 3^{2} \cdot 269\)
Sign: $1$
Analytic conductor: \(38.6635\)
Root analytic conductor: \(6.21800\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 4842,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.9660460743\)
\(L(\frac12)\) \(\approx\) \(0.9660460743\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
3 \( 1 \)
269 \( 1 - T \)
good5 \( 1 - 1.28T + 5T^{2} \)
7 \( 1 + 0.550T + 7T^{2} \)
11 \( 1 + 5.68T + 11T^{2} \)
13 \( 1 + 3.95T + 13T^{2} \)
17 \( 1 + 0.585T + 17T^{2} \)
19 \( 1 - 5.61T + 19T^{2} \)
23 \( 1 + 0.934T + 23T^{2} \)
29 \( 1 + 5.91T + 29T^{2} \)
31 \( 1 + 5.94T + 31T^{2} \)
37 \( 1 - 3.47T + 37T^{2} \)
41 \( 1 - 10.2T + 41T^{2} \)
43 \( 1 - 12.2T + 43T^{2} \)
47 \( 1 + 5.18T + 47T^{2} \)
53 \( 1 + 0.451T + 53T^{2} \)
59 \( 1 - 9.17T + 59T^{2} \)
61 \( 1 - 9.23T + 61T^{2} \)
67 \( 1 - 7.02T + 67T^{2} \)
71 \( 1 + 5.44T + 71T^{2} \)
73 \( 1 + 3.07T + 73T^{2} \)
79 \( 1 - 9.84T + 79T^{2} \)
83 \( 1 + 8.36T + 83T^{2} \)
89 \( 1 - 10.9T + 89T^{2} \)
97 \( 1 - 8.15T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.144403116795018406331829432678, −7.48826677125577948056681412287, −7.24813858478891482456163023339, −5.93503825424259215735031631143, −5.56211749563877075084893876197, −4.76617818950983869225959525703, −3.52449313228998430977728777940, −2.54695041329718493544931333273, −2.05838815689128174348208464769, −0.56935703370778779945007646593, 0.56935703370778779945007646593, 2.05838815689128174348208464769, 2.54695041329718493544931333273, 3.52449313228998430977728777940, 4.76617818950983869225959525703, 5.56211749563877075084893876197, 5.93503825424259215735031631143, 7.24813858478891482456163023339, 7.48826677125577948056681412287, 8.144403116795018406331829432678

Graph of the $Z$-function along the critical line