Properties

Label 4842.2.a.t
Level $4842$
Weight $2$
Character orbit 4842.a
Self dual yes
Analytic conductor $38.664$
Analytic rank $0$
Dimension $13$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4842,2,Mod(1,4842)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4842, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4842.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4842 = 2 \cdot 3^{2} \cdot 269 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4842.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(38.6635646587\)
Analytic rank: \(0\)
Dimension: \(13\)
Coefficient field: \(\mathbb{Q}[x]/(x^{13} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{13} - 5 x^{12} - 33 x^{11} + 200 x^{10} + 236 x^{9} - 2569 x^{8} + 1311 x^{7} + 11583 x^{6} + \cdots + 2160 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{12}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - q^{2} + q^{4} - \beta_1 q^{5} - \beta_{3} q^{7} - q^{8} + \beta_1 q^{10} - \beta_{10} q^{11} + (\beta_{2} + 1) q^{13} + \beta_{3} q^{14} + q^{16} + ( - \beta_{8} - 1) q^{17} + (\beta_{11} - \beta_{10} - \beta_{9} + \cdots + 2) q^{19}+ \cdots + (\beta_{12} + 2 \beta_{10} - \beta_{9} + \cdots - 4) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 13 q - 13 q^{2} + 13 q^{4} - 5 q^{5} + 6 q^{7} - 13 q^{8} + 5 q^{10} - 5 q^{11} + 8 q^{13} - 6 q^{14} + 13 q^{16} - 7 q^{17} + 13 q^{19} - 5 q^{20} + 5 q^{22} + 4 q^{23} + 26 q^{25} - 8 q^{26} + 6 q^{28}+ \cdots - 39 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{13} - 5 x^{12} - 33 x^{11} + 200 x^{10} + 236 x^{9} - 2569 x^{8} + 1311 x^{7} + 11583 x^{6} + \cdots + 2160 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 48024874805 \nu^{12} - 112287409573 \nu^{11} - 1941343452888 \nu^{10} + \cdots - 283838423867382 ) / 124747362130182 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 852354528985 \nu^{12} - 5565998476235 \nu^{11} - 24931795402263 \nu^{10} + \cdots - 71\!\cdots\!68 ) / 498989448520728 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( - 1462385429459 \nu^{12} + 5438514414121 \nu^{11} + 55460849135577 \nu^{10} + \cdots + 726463997646072 ) / 498989448520728 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( - 868230374567 \nu^{12} + 4292066532829 \nu^{11} + 29608543880865 \nu^{10} + \cdots + 45\!\cdots\!64 ) / 249494724260364 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( - 630139679479 \nu^{12} + 2701324988981 \nu^{11} + 22362606192965 \nu^{10} + \cdots + 36\!\cdots\!24 ) / 166329816173576 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( - 2000957877725 \nu^{12} + 7635503796289 \nu^{11} + 71656431054273 \nu^{10} + \cdots + 84\!\cdots\!24 ) / 498989448520728 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( 647904046508 \nu^{12} - 2958462557782 \nu^{11} - 22330056820125 \nu^{10} + \cdots - 31\!\cdots\!74 ) / 124747362130182 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( 4401723597281 \nu^{12} - 18847913017729 \nu^{11} - 158350218453045 \nu^{10} + \cdots - 10\!\cdots\!12 ) / 498989448520728 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( 6609202784399 \nu^{12} - 27174425518447 \nu^{11} - 241966416215319 \nu^{10} + \cdots - 18\!\cdots\!48 ) / 498989448520728 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( 2233298029201 \nu^{12} - 9837337220151 \nu^{11} - 80661040634447 \nu^{10} + \cdots - 70\!\cdots\!48 ) / 166329816173576 \) Copy content Toggle raw display
\(\beta_{12}\)\(=\) \( ( 3800284887937 \nu^{12} - 16435280248754 \nu^{11} - 136514077675176 \nu^{10} + \cdots - 12\!\cdots\!04 ) / 249494724260364 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{12} - \beta_{9} + \beta_{5} + \beta_{4} + 7 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{12} + \beta_{11} - \beta_{10} - 3 \beta_{9} + 2 \beta_{8} - \beta_{7} + 3 \beta_{6} + \cdots + 12 \beta_1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 16 \beta_{12} + \beta_{11} + \beta_{10} - 14 \beta_{9} - 3 \beta_{8} - 3 \beta_{7} + 4 \beta_{6} + \cdots + 88 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 23 \beta_{12} + 27 \beta_{11} - 34 \beta_{10} - 64 \beta_{9} + 41 \beta_{8} - 27 \beta_{7} + 67 \beta_{6} + \cdots + 12 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( 248 \beta_{12} + 35 \beta_{11} + 30 \beta_{10} - 196 \beta_{9} - 82 \beta_{8} - 84 \beta_{7} + \cdots + 1293 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( 459 \beta_{12} + 587 \beta_{11} - 828 \beta_{10} - 1208 \beta_{9} + 733 \beta_{8} - 601 \beta_{7} + \cdots + 306 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( 3971 \beta_{12} + 827 \beta_{11} + 690 \beta_{10} - 2813 \beta_{9} - 1728 \beta_{8} - 1770 \beta_{7} + \cdots + 20654 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( 8680 \beta_{12} + 11760 \beta_{11} - 17751 \beta_{10} - 22241 \beta_{9} + 12943 \beta_{8} - 12250 \beta_{7} + \cdots + 5438 \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( 65619 \beta_{12} + 16566 \beta_{11} + 15253 \beta_{10} - 41161 \beta_{9} - 33879 \beta_{8} + \cdots + 347744 \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( 159165 \beta_{12} + 225687 \beta_{11} - 357471 \beta_{10} - 406499 \beta_{9} + 231564 \beta_{8} + \cdots + 76578 \) Copy content Toggle raw display
\(\nu^{12}\)\(=\) \( 1110603 \beta_{12} + 302889 \beta_{11} + 336235 \beta_{10} - 607559 \beta_{9} - 651855 \beta_{8} + \cdots + 6052913 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
4.19382
3.33953
3.18568
2.58186
1.70551
1.17142
0.681990
0.502643
−0.515478
−1.28478
−2.75362
−3.42451
−4.38407
−1.00000 0 1.00000 −4.19382 0 0.923616 −1.00000 0 4.19382
1.2 −1.00000 0 1.00000 −3.33953 0 −2.30049 −1.00000 0 3.33953
1.3 −1.00000 0 1.00000 −3.18568 0 2.09569 −1.00000 0 3.18568
1.4 −1.00000 0 1.00000 −2.58186 0 4.73956 −1.00000 0 2.58186
1.5 −1.00000 0 1.00000 −1.70551 0 3.49407 −1.00000 0 1.70551
1.6 −1.00000 0 1.00000 −1.17142 0 −4.65932 −1.00000 0 1.17142
1.7 −1.00000 0 1.00000 −0.681990 0 −1.45298 −1.00000 0 0.681990
1.8 −1.00000 0 1.00000 −0.502643 0 3.57806 −1.00000 0 0.502643
1.9 −1.00000 0 1.00000 0.515478 0 −4.54762 −1.00000 0 −0.515478
1.10 −1.00000 0 1.00000 1.28478 0 −0.550024 −1.00000 0 −1.28478
1.11 −1.00000 0 1.00000 2.75362 0 4.94283 −1.00000 0 −2.75362
1.12 −1.00000 0 1.00000 3.42451 0 1.03411 −1.00000 0 −3.42451
1.13 −1.00000 0 1.00000 4.38407 0 −1.29752 −1.00000 0 −4.38407
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.13
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( +1 \)
\(269\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 4842.2.a.t 13
3.b odd 2 1 4842.2.a.u yes 13
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
4842.2.a.t 13 1.a even 1 1 trivial
4842.2.a.u yes 13 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(4842))\):

\( T_{5}^{13} + 5 T_{5}^{12} - 33 T_{5}^{11} - 200 T_{5}^{10} + 236 T_{5}^{9} + 2569 T_{5}^{8} + \cdots - 2160 \) Copy content Toggle raw display
\( T_{7}^{13} - 6 T_{7}^{12} - 47 T_{7}^{11} + 316 T_{7}^{10} + 632 T_{7}^{9} - 5514 T_{7}^{8} + \cdots - 29632 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 1)^{13} \) Copy content Toggle raw display
$3$ \( T^{13} \) Copy content Toggle raw display
$5$ \( T^{13} + 5 T^{12} + \cdots - 2160 \) Copy content Toggle raw display
$7$ \( T^{13} - 6 T^{12} + \cdots - 29632 \) Copy content Toggle raw display
$11$ \( T^{13} + 5 T^{12} + \cdots + 927 \) Copy content Toggle raw display
$13$ \( T^{13} - 8 T^{12} + \cdots - 5982080 \) Copy content Toggle raw display
$17$ \( T^{13} + 7 T^{12} + \cdots - 48 \) Copy content Toggle raw display
$19$ \( T^{13} - 13 T^{12} + \cdots + 57304240 \) Copy content Toggle raw display
$23$ \( T^{13} - 4 T^{12} + \cdots + 4992 \) Copy content Toggle raw display
$29$ \( T^{13} + 22 T^{12} + \cdots + 22591272 \) Copy content Toggle raw display
$31$ \( T^{13} - 8 T^{12} + \cdots - 6792584 \) Copy content Toggle raw display
$37$ \( T^{13} - 36 T^{12} + \cdots + 61649536 \) Copy content Toggle raw display
$41$ \( T^{13} + \cdots + 509491560 \) Copy content Toggle raw display
$43$ \( T^{13} + \cdots + 455294232 \) Copy content Toggle raw display
$47$ \( T^{13} + \cdots - 324618624 \) Copy content Toggle raw display
$53$ \( T^{13} + 21 T^{12} + \cdots + 117504 \) Copy content Toggle raw display
$59$ \( T^{13} - 4 T^{12} + \cdots + 9122304 \) Copy content Toggle raw display
$61$ \( T^{13} + \cdots - 1266383872 \) Copy content Toggle raw display
$67$ \( T^{13} - 40 T^{12} + \cdots + 136808 \) Copy content Toggle raw display
$71$ \( T^{13} + \cdots + 12272931297 \) Copy content Toggle raw display
$73$ \( T^{13} + \cdots - 967485841 \) Copy content Toggle raw display
$79$ \( T^{13} + \cdots - 8777596642736 \) Copy content Toggle raw display
$83$ \( T^{13} + \cdots - 47304380544 \) Copy content Toggle raw display
$89$ \( T^{13} + \cdots - 947117568 \) Copy content Toggle raw display
$97$ \( T^{13} + \cdots - 305719279329 \) Copy content Toggle raw display
show more
show less