L(s) = 1 | + (0.766 − 0.642i)2-s + (0.173 − 0.984i)4-s + (−2.97 + 1.08i)5-s + (0.640 + 3.62i)7-s + (−0.500 − 0.866i)8-s + (−1.58 + 2.74i)10-s + (2.14 + 0.781i)11-s + (2.37 + 1.99i)13-s + (2.82 + 2.36i)14-s + (−0.939 − 0.342i)16-s + (−0.862 + 1.49i)17-s + (1.69 + 2.93i)19-s + (0.550 + 3.11i)20-s + (2.14 − 0.781i)22-s + (−0.582 + 3.30i)23-s + ⋯ |
L(s) = 1 | + (0.541 − 0.454i)2-s + (0.0868 − 0.492i)4-s + (−1.33 + 0.484i)5-s + (0.241 + 1.37i)7-s + (−0.176 − 0.306i)8-s + (−0.500 + 0.867i)10-s + (0.647 + 0.235i)11-s + (0.658 + 0.552i)13-s + (0.754 + 0.633i)14-s + (−0.234 − 0.0855i)16-s + (−0.209 + 0.362i)17-s + (0.389 + 0.674i)19-s + (0.123 + 0.697i)20-s + (0.457 − 0.166i)22-s + (−0.121 + 0.688i)23-s + ⋯ |
Λ(s)=(=(486s/2ΓC(s)L(s)(0.660−0.751i)Λ(2−s)
Λ(s)=(=(486s/2ΓC(s+1/2)L(s)(0.660−0.751i)Λ(1−s)
Degree: |
2 |
Conductor: |
486
= 2⋅35
|
Sign: |
0.660−0.751i
|
Analytic conductor: |
3.88072 |
Root analytic conductor: |
1.96995 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ486(109,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 486, ( :1/2), 0.660−0.751i)
|
Particular Values
L(1) |
≈ |
1.32462+0.599235i |
L(21) |
≈ |
1.32462+0.599235i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.766+0.642i)T |
| 3 | 1 |
good | 5 | 1+(2.97−1.08i)T+(3.83−3.21i)T2 |
| 7 | 1+(−0.640−3.62i)T+(−6.57+2.39i)T2 |
| 11 | 1+(−2.14−0.781i)T+(8.42+7.07i)T2 |
| 13 | 1+(−2.37−1.99i)T+(2.25+12.8i)T2 |
| 17 | 1+(0.862−1.49i)T+(−8.5−14.7i)T2 |
| 19 | 1+(−1.69−2.93i)T+(−9.5+16.4i)T2 |
| 23 | 1+(0.582−3.30i)T+(−21.6−7.86i)T2 |
| 29 | 1+(0.448−0.376i)T+(5.03−28.5i)T2 |
| 31 | 1+(0.805−4.56i)T+(−29.1−10.6i)T2 |
| 37 | 1+(−3.65+6.32i)T+(−18.5−32.0i)T2 |
| 41 | 1+(5.42+4.55i)T+(7.11+40.3i)T2 |
| 43 | 1+(1.55+0.567i)T+(32.9+27.6i)T2 |
| 47 | 1+(0.668+3.79i)T+(−44.1+16.0i)T2 |
| 53 | 1+2.58T+53T2 |
| 59 | 1+(−9.08+3.30i)T+(45.1−37.9i)T2 |
| 61 | 1+(−2.27−12.8i)T+(−57.3+20.8i)T2 |
| 67 | 1+(6.59+5.53i)T+(11.6+65.9i)T2 |
| 71 | 1+(0.993−1.72i)T+(−35.5−61.4i)T2 |
| 73 | 1+(5.32+9.22i)T+(−36.5+63.2i)T2 |
| 79 | 1+(−10.7+9.05i)T+(13.7−77.7i)T2 |
| 83 | 1+(2.37−1.99i)T+(14.4−81.7i)T2 |
| 89 | 1+(−8.67−15.0i)T+(−44.5+77.0i)T2 |
| 97 | 1+(8.63+3.14i)T+(74.3+62.3i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.44944943484427709641563202784, −10.50355353152457175032667780496, −9.230071888598257404886858974621, −8.504815087349088431851338236389, −7.41375410141246244265582696323, −6.35830985035246254267110320025, −5.34973697778308917276230467192, −4.07771006931638911594929911236, −3.33919118712362210474060812204, −1.87265417972722959685767657143,
0.791841045048874283143138436927, 3.31785788122000719532085920832, 4.16291068253147656393727524307, 4.83442915973555680437701271915, 6.33706491222367243947835996051, 7.26363476554919407065428094576, 7.974907996648087821962344928217, 8.706032420460223997313125751778, 10.04471338621537046395935485812, 11.32697945364584684666313171656