L(s) = 1 | + (0.766 − 0.642i)2-s + (0.173 − 0.984i)4-s + (−2.97 + 1.08i)5-s + (0.640 + 3.62i)7-s + (−0.500 − 0.866i)8-s + (−1.58 + 2.74i)10-s + (2.14 + 0.781i)11-s + (2.37 + 1.99i)13-s + (2.82 + 2.36i)14-s + (−0.939 − 0.342i)16-s + (−0.862 + 1.49i)17-s + (1.69 + 2.93i)19-s + (0.550 + 3.11i)20-s + (2.14 − 0.781i)22-s + (−0.582 + 3.30i)23-s + ⋯ |
L(s) = 1 | + (0.541 − 0.454i)2-s + (0.0868 − 0.492i)4-s + (−1.33 + 0.484i)5-s + (0.241 + 1.37i)7-s + (−0.176 − 0.306i)8-s + (−0.500 + 0.867i)10-s + (0.647 + 0.235i)11-s + (0.658 + 0.552i)13-s + (0.754 + 0.633i)14-s + (−0.234 − 0.0855i)16-s + (−0.209 + 0.362i)17-s + (0.389 + 0.674i)19-s + (0.123 + 0.697i)20-s + (0.457 − 0.166i)22-s + (−0.121 + 0.688i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 486 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.660 - 0.751i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 486 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.660 - 0.751i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.32462 + 0.599235i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.32462 + 0.599235i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.766 + 0.642i)T \) |
| 3 | \( 1 \) |
good | 5 | \( 1 + (2.97 - 1.08i)T + (3.83 - 3.21i)T^{2} \) |
| 7 | \( 1 + (-0.640 - 3.62i)T + (-6.57 + 2.39i)T^{2} \) |
| 11 | \( 1 + (-2.14 - 0.781i)T + (8.42 + 7.07i)T^{2} \) |
| 13 | \( 1 + (-2.37 - 1.99i)T + (2.25 + 12.8i)T^{2} \) |
| 17 | \( 1 + (0.862 - 1.49i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-1.69 - 2.93i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (0.582 - 3.30i)T + (-21.6 - 7.86i)T^{2} \) |
| 29 | \( 1 + (0.448 - 0.376i)T + (5.03 - 28.5i)T^{2} \) |
| 31 | \( 1 + (0.805 - 4.56i)T + (-29.1 - 10.6i)T^{2} \) |
| 37 | \( 1 + (-3.65 + 6.32i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (5.42 + 4.55i)T + (7.11 + 40.3i)T^{2} \) |
| 43 | \( 1 + (1.55 + 0.567i)T + (32.9 + 27.6i)T^{2} \) |
| 47 | \( 1 + (0.668 + 3.79i)T + (-44.1 + 16.0i)T^{2} \) |
| 53 | \( 1 + 2.58T + 53T^{2} \) |
| 59 | \( 1 + (-9.08 + 3.30i)T + (45.1 - 37.9i)T^{2} \) |
| 61 | \( 1 + (-2.27 - 12.8i)T + (-57.3 + 20.8i)T^{2} \) |
| 67 | \( 1 + (6.59 + 5.53i)T + (11.6 + 65.9i)T^{2} \) |
| 71 | \( 1 + (0.993 - 1.72i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + (5.32 + 9.22i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (-10.7 + 9.05i)T + (13.7 - 77.7i)T^{2} \) |
| 83 | \( 1 + (2.37 - 1.99i)T + (14.4 - 81.7i)T^{2} \) |
| 89 | \( 1 + (-8.67 - 15.0i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (8.63 + 3.14i)T + (74.3 + 62.3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.44944943484427709641563202784, −10.50355353152457175032667780496, −9.230071888598257404886858974621, −8.504815087349088431851338236389, −7.41375410141246244265582696323, −6.35830985035246254267110320025, −5.34973697778308917276230467192, −4.07771006931638911594929911236, −3.33919118712362210474060812204, −1.87265417972722959685767657143,
0.791841045048874283143138436927, 3.31785788122000719532085920832, 4.16291068253147656393727524307, 4.83442915973555680437701271915, 6.33706491222367243947835996051, 7.26363476554919407065428094576, 7.974907996648087821962344928217, 8.706032420460223997313125751778, 10.04471338621537046395935485812, 11.32697945364584684666313171656