Properties

Label 486.2.e.h.109.1
Level $486$
Weight $2$
Character 486.109
Analytic conductor $3.881$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [486,2,Mod(55,486)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(486, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([16]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("486.55");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 486 = 2 \cdot 3^{5} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 486.e (of order \(9\), degree \(6\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.88072953823\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(2\) over \(\Q(\zeta_{9})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 6 x^{11} + 33 x^{10} - 110 x^{9} + 318 x^{8} - 678 x^{7} + 1225 x^{6} - 1698 x^{5} + 1905 x^{4} + \cdots + 57 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 3^{3} \)
Twist minimal: no (minimal twist has level 54)
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 109.1
Root \(0.500000 - 1.74095i\) of defining polynomial
Character \(\chi\) \(=\) 486.109
Dual form 486.2.e.h.379.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.766044 - 0.642788i) q^{2} +(0.173648 - 0.984808i) q^{4} +(-2.97705 + 1.08356i) q^{5} +(0.640018 + 3.62972i) q^{7} +(-0.500000 - 0.866025i) q^{8} +(-1.58406 + 2.74367i) q^{10} +(2.14726 + 0.781539i) q^{11} +(2.37495 + 1.99282i) q^{13} +(2.82342 + 2.36913i) q^{14} +(-0.939693 - 0.342020i) q^{16} +(-0.862878 + 1.49455i) q^{17} +(1.69740 + 2.93998i) q^{19} +(0.550137 + 3.11998i) q^{20} +(2.14726 - 0.781539i) q^{22} +(-0.582258 + 3.30215i) q^{23} +(3.85853 - 3.23769i) q^{25} +3.10027 q^{26} +3.68572 q^{28} +(-0.448476 + 0.376316i) q^{29} +(-0.805376 + 4.56751i) q^{31} +(-0.939693 + 0.342020i) q^{32} +(0.299674 + 1.69954i) q^{34} +(-5.83839 - 10.1124i) q^{35} +(3.65360 - 6.32822i) q^{37} +(3.19007 + 1.16109i) q^{38} +(2.42692 + 2.03643i) q^{40} +(-5.42399 - 4.55127i) q^{41} +(-1.55793 - 0.567040i) q^{43} +(1.14253 - 1.97893i) q^{44} +(1.67654 + 2.90386i) q^{46} +(-0.668890 - 3.79346i) q^{47} +(-6.18743 + 2.25204i) q^{49} +(0.874658 - 4.96043i) q^{50} +(2.37495 - 1.99282i) q^{52} -2.58267 q^{53} -7.23936 q^{55} +(2.82342 - 2.36913i) q^{56} +(-0.101661 + 0.576550i) q^{58} +(9.08043 - 3.30500i) q^{59} +(2.27329 + 12.8925i) q^{61} +(2.31899 + 4.01660i) q^{62} +(-0.500000 + 0.866025i) q^{64} +(-9.22969 - 3.35933i) q^{65} +(-6.59469 - 5.53361i) q^{67} +(1.32201 + 1.10929i) q^{68} +(-10.9726 - 3.99369i) q^{70} +(-0.993732 + 1.72119i) q^{71} +(-5.32371 - 9.22094i) q^{73} +(-1.26888 - 7.19618i) q^{74} +(3.19007 - 1.16109i) q^{76} +(-1.46249 + 8.29417i) q^{77} +(10.7960 - 9.05893i) q^{79} +3.16812 q^{80} -7.08052 q^{82} +(-2.37353 + 1.99163i) q^{83} +(0.949403 - 5.38433i) q^{85} +(-1.55793 + 0.567040i) q^{86} +(-0.396798 - 2.25035i) q^{88} +(8.67300 + 15.0221i) q^{89} +(-5.71337 + 9.89585i) q^{91} +(3.15087 + 1.14682i) q^{92} +(-2.95079 - 2.47601i) q^{94} +(-8.23889 - 6.91325i) q^{95} +(-8.63687 - 3.14356i) q^{97} +(-3.29226 + 5.70237i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 6 q^{5} - 3 q^{7} - 6 q^{8} - 3 q^{10} + 6 q^{11} - 6 q^{13} + 6 q^{14} - 6 q^{17} - 9 q^{19} - 3 q^{20} + 6 q^{22} - 24 q^{23} + 36 q^{25} + 18 q^{26} + 12 q^{28} - 12 q^{29} + 27 q^{31} + 3 q^{34}+ \cdots - 12 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/486\mathbb{Z}\right)^\times\).

\(n\) \(245\)
\(\chi(n)\) \(e\left(\frac{7}{9}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.766044 0.642788i 0.541675 0.454519i
\(3\) 0 0
\(4\) 0.173648 0.984808i 0.0868241 0.492404i
\(5\) −2.97705 + 1.08356i −1.33138 + 0.484582i −0.907087 0.420943i \(-0.861699\pi\)
−0.424292 + 0.905525i \(0.639477\pi\)
\(6\) 0 0
\(7\) 0.640018 + 3.62972i 0.241904 + 1.37191i 0.827574 + 0.561357i \(0.189721\pi\)
−0.585670 + 0.810550i \(0.699168\pi\)
\(8\) −0.500000 0.866025i −0.176777 0.306186i
\(9\) 0 0
\(10\) −1.58406 + 2.74367i −0.500923 + 0.867624i
\(11\) 2.14726 + 0.781539i 0.647424 + 0.235643i 0.644797 0.764354i \(-0.276942\pi\)
0.00262630 + 0.999997i \(0.499164\pi\)
\(12\) 0 0
\(13\) 2.37495 + 1.99282i 0.658692 + 0.552708i 0.909694 0.415278i \(-0.136316\pi\)
−0.251002 + 0.967986i \(0.580760\pi\)
\(14\) 2.82342 + 2.36913i 0.754592 + 0.633178i
\(15\) 0 0
\(16\) −0.939693 0.342020i −0.234923 0.0855050i
\(17\) −0.862878 + 1.49455i −0.209279 + 0.362481i −0.951487 0.307687i \(-0.900445\pi\)
0.742209 + 0.670169i \(0.233778\pi\)
\(18\) 0 0
\(19\) 1.69740 + 2.93998i 0.389410 + 0.674478i 0.992370 0.123293i \(-0.0393456\pi\)
−0.602960 + 0.797771i \(0.706012\pi\)
\(20\) 0.550137 + 3.11998i 0.123014 + 0.697650i
\(21\) 0 0
\(22\) 2.14726 0.781539i 0.457798 0.166625i
\(23\) −0.582258 + 3.30215i −0.121409 + 0.688545i 0.861967 + 0.506965i \(0.169232\pi\)
−0.983376 + 0.181581i \(0.941879\pi\)
\(24\) 0 0
\(25\) 3.85853 3.23769i 0.771706 0.647538i
\(26\) 3.10027 0.608014
\(27\) 0 0
\(28\) 3.68572 0.696535
\(29\) −0.448476 + 0.376316i −0.0832799 + 0.0698802i −0.683477 0.729972i \(-0.739533\pi\)
0.600197 + 0.799852i \(0.295089\pi\)
\(30\) 0 0
\(31\) −0.805376 + 4.56751i −0.144650 + 0.820350i 0.822998 + 0.568044i \(0.192300\pi\)
−0.967648 + 0.252305i \(0.918811\pi\)
\(32\) −0.939693 + 0.342020i −0.166116 + 0.0604612i
\(33\) 0 0
\(34\) 0.299674 + 1.69954i 0.0513937 + 0.291468i
\(35\) −5.83839 10.1124i −0.986868 1.70931i
\(36\) 0 0
\(37\) 3.65360 6.32822i 0.600648 1.04035i −0.392075 0.919933i \(-0.628243\pi\)
0.992723 0.120420i \(-0.0384240\pi\)
\(38\) 3.19007 + 1.16109i 0.517497 + 0.188353i
\(39\) 0 0
\(40\) 2.42692 + 2.03643i 0.383729 + 0.321987i
\(41\) −5.42399 4.55127i −0.847085 0.710789i 0.112061 0.993701i \(-0.464255\pi\)
−0.959146 + 0.282913i \(0.908699\pi\)
\(42\) 0 0
\(43\) −1.55793 0.567040i −0.237582 0.0864728i 0.220485 0.975390i \(-0.429236\pi\)
−0.458067 + 0.888917i \(0.651458\pi\)
\(44\) 1.14253 1.97893i 0.172243 0.298334i
\(45\) 0 0
\(46\) 1.67654 + 2.90386i 0.247193 + 0.428151i
\(47\) −0.668890 3.79346i −0.0975676 0.553333i −0.993930 0.110012i \(-0.964911\pi\)
0.896363 0.443321i \(-0.146200\pi\)
\(48\) 0 0
\(49\) −6.18743 + 2.25204i −0.883918 + 0.321720i
\(50\) 0.874658 4.96043i 0.123695 0.701511i
\(51\) 0 0
\(52\) 2.37495 1.99282i 0.329346 0.276354i
\(53\) −2.58267 −0.354757 −0.177379 0.984143i \(-0.556762\pi\)
−0.177379 + 0.984143i \(0.556762\pi\)
\(54\) 0 0
\(55\) −7.23936 −0.976155
\(56\) 2.82342 2.36913i 0.377296 0.316589i
\(57\) 0 0
\(58\) −0.101661 + 0.576550i −0.0133488 + 0.0757047i
\(59\) 9.08043 3.30500i 1.18217 0.430275i 0.325203 0.945644i \(-0.394568\pi\)
0.856968 + 0.515369i \(0.172345\pi\)
\(60\) 0 0
\(61\) 2.27329 + 12.8925i 0.291065 + 1.65071i 0.682781 + 0.730623i \(0.260770\pi\)
−0.391716 + 0.920086i \(0.628119\pi\)
\(62\) 2.31899 + 4.01660i 0.294512 + 0.510109i
\(63\) 0 0
\(64\) −0.500000 + 0.866025i −0.0625000 + 0.108253i
\(65\) −9.22969 3.35933i −1.14480 0.416674i
\(66\) 0 0
\(67\) −6.59469 5.53361i −0.805670 0.676037i 0.143900 0.989592i \(-0.454036\pi\)
−0.949570 + 0.313555i \(0.898480\pi\)
\(68\) 1.32201 + 1.10929i 0.160317 + 0.134522i
\(69\) 0 0
\(70\) −10.9726 3.99369i −1.31147 0.477338i
\(71\) −0.993732 + 1.72119i −0.117934 + 0.204268i −0.918949 0.394377i \(-0.870961\pi\)
0.801015 + 0.598645i \(0.204294\pi\)
\(72\) 0 0
\(73\) −5.32371 9.22094i −0.623094 1.07923i −0.988906 0.148541i \(-0.952542\pi\)
0.365812 0.930689i \(-0.380791\pi\)
\(74\) −1.26888 7.19618i −0.147504 0.836539i
\(75\) 0 0
\(76\) 3.19007 1.16109i 0.365926 0.133186i
\(77\) −1.46249 + 8.29417i −0.166666 + 0.945208i
\(78\) 0 0
\(79\) 10.7960 9.05893i 1.21465 1.01921i 0.215559 0.976491i \(-0.430843\pi\)
0.999087 0.0427183i \(-0.0136018\pi\)
\(80\) 3.16812 0.354206
\(81\) 0 0
\(82\) −7.08052 −0.781912
\(83\) −2.37353 + 1.99163i −0.260529 + 0.218609i −0.763690 0.645583i \(-0.776615\pi\)
0.503162 + 0.864192i \(0.332170\pi\)
\(84\) 0 0
\(85\) 0.949403 5.38433i 0.102977 0.584013i
\(86\) −1.55793 + 0.567040i −0.167996 + 0.0611455i
\(87\) 0 0
\(88\) −0.396798 2.25035i −0.0422988 0.239888i
\(89\) 8.67300 + 15.0221i 0.919336 + 1.59234i 0.800425 + 0.599432i \(0.204607\pi\)
0.118911 + 0.992905i \(0.462060\pi\)
\(90\) 0 0
\(91\) −5.71337 + 9.89585i −0.598924 + 1.03737i
\(92\) 3.15087 + 1.14682i 0.328501 + 0.119565i
\(93\) 0 0
\(94\) −2.95079 2.47601i −0.304351 0.255381i
\(95\) −8.23889 6.91325i −0.845292 0.709284i
\(96\) 0 0
\(97\) −8.63687 3.14356i −0.876941 0.319181i −0.135967 0.990713i \(-0.543414\pi\)
−0.740975 + 0.671533i \(0.765636\pi\)
\(98\) −3.29226 + 5.70237i −0.332569 + 0.576026i
\(99\) 0 0
\(100\) −2.51848 4.36213i −0.251848 0.436213i
\(101\) 2.07686 + 11.7785i 0.206656 + 1.17200i 0.894813 + 0.446441i \(0.147309\pi\)
−0.688158 + 0.725561i \(0.741580\pi\)
\(102\) 0 0
\(103\) 11.9778 4.35955i 1.18020 0.429559i 0.323930 0.946081i \(-0.394996\pi\)
0.856274 + 0.516522i \(0.172773\pi\)
\(104\) 0.538357 3.05317i 0.0527903 0.299388i
\(105\) 0 0
\(106\) −1.97844 + 1.66011i −0.192163 + 0.161244i
\(107\) 6.09894 0.589607 0.294803 0.955558i \(-0.404746\pi\)
0.294803 + 0.955558i \(0.404746\pi\)
\(108\) 0 0
\(109\) 11.2390 1.07650 0.538250 0.842785i \(-0.319086\pi\)
0.538250 + 0.842785i \(0.319086\pi\)
\(110\) −5.54567 + 4.65337i −0.528759 + 0.443681i
\(111\) 0 0
\(112\) 0.640018 3.62972i 0.0604761 0.342977i
\(113\) 6.61257 2.40678i 0.622059 0.226411i −0.0117125 0.999931i \(-0.503728\pi\)
0.633771 + 0.773521i \(0.281506\pi\)
\(114\) 0 0
\(115\) −1.84466 10.4616i −0.172015 0.975548i
\(116\) 0.292722 + 0.507009i 0.0271786 + 0.0470746i
\(117\) 0 0
\(118\) 4.83159 8.36857i 0.444784 0.770389i
\(119\) −5.97705 2.17547i −0.547916 0.199425i
\(120\) 0 0
\(121\) −4.42656 3.71433i −0.402415 0.337666i
\(122\) 10.0285 + 8.41495i 0.907942 + 0.761854i
\(123\) 0 0
\(124\) 4.35827 + 1.58628i 0.391384 + 0.142452i
\(125\) −0.0585380 + 0.101391i −0.00523579 + 0.00906866i
\(126\) 0 0
\(127\) −2.99250 5.18316i −0.265541 0.459931i 0.702164 0.712015i \(-0.252217\pi\)
−0.967705 + 0.252084i \(0.918884\pi\)
\(128\) 0.173648 + 0.984808i 0.0153485 + 0.0870455i
\(129\) 0 0
\(130\) −9.22969 + 3.35933i −0.809497 + 0.294633i
\(131\) 2.85044 16.1657i 0.249044 1.41240i −0.561866 0.827228i \(-0.689916\pi\)
0.810910 0.585171i \(-0.198973\pi\)
\(132\) 0 0
\(133\) −9.58495 + 8.04273i −0.831121 + 0.697393i
\(134\) −8.60876 −0.743684
\(135\) 0 0
\(136\) 1.72576 0.147982
\(137\) −0.161757 + 0.135730i −0.0138198 + 0.0115962i −0.649671 0.760215i \(-0.725093\pi\)
0.635852 + 0.771811i \(0.280649\pi\)
\(138\) 0 0
\(139\) 0.637551 3.61573i 0.0540764 0.306682i −0.945758 0.324871i \(-0.894679\pi\)
0.999835 + 0.0181891i \(0.00579008\pi\)
\(140\) −10.9726 + 3.99369i −0.927353 + 0.337529i
\(141\) 0 0
\(142\) 0.345119 + 1.95727i 0.0289618 + 0.164250i
\(143\) 3.54217 + 6.13522i 0.296211 + 0.513053i
\(144\) 0 0
\(145\) 0.927377 1.60626i 0.0770145 0.133393i
\(146\) −10.0053 3.64164i −0.828045 0.301384i
\(147\) 0 0
\(148\) −5.59764 4.69698i −0.460123 0.386089i
\(149\) 11.8541 + 9.94675i 0.971123 + 0.814869i 0.982727 0.185063i \(-0.0592490\pi\)
−0.0116031 + 0.999933i \(0.503693\pi\)
\(150\) 0 0
\(151\) −18.9308 6.89024i −1.54057 0.560720i −0.574385 0.818585i \(-0.694759\pi\)
−0.966181 + 0.257865i \(0.916981\pi\)
\(152\) 1.69740 2.93998i 0.137677 0.238464i
\(153\) 0 0
\(154\) 4.21106 + 7.29377i 0.339337 + 0.587748i
\(155\) −2.55152 14.4704i −0.204943 1.16229i
\(156\) 0 0
\(157\) −16.9121 + 6.15549i −1.34973 + 0.491261i −0.912863 0.408265i \(-0.866134\pi\)
−0.436866 + 0.899527i \(0.643912\pi\)
\(158\) 2.44726 13.8791i 0.194693 1.10416i
\(159\) 0 0
\(160\) 2.42692 2.03643i 0.191865 0.160994i
\(161\) −12.3585 −0.973989
\(162\) 0 0
\(163\) 3.05289 0.239121 0.119560 0.992827i \(-0.461851\pi\)
0.119560 + 0.992827i \(0.461851\pi\)
\(164\) −5.42399 + 4.55127i −0.423542 + 0.355394i
\(165\) 0 0
\(166\) −0.538035 + 3.05135i −0.0417596 + 0.236831i
\(167\) 3.85386 1.40269i 0.298221 0.108544i −0.188576 0.982059i \(-0.560387\pi\)
0.486797 + 0.873515i \(0.338165\pi\)
\(168\) 0 0
\(169\) −0.588371 3.33682i −0.0452593 0.256678i
\(170\) −2.73370 4.73490i −0.209665 0.363150i
\(171\) 0 0
\(172\) −0.828957 + 1.43580i −0.0632074 + 0.109478i
\(173\) 16.0002 + 5.82361i 1.21648 + 0.442761i 0.868945 0.494908i \(-0.164798\pi\)
0.347530 + 0.937669i \(0.387020\pi\)
\(174\) 0 0
\(175\) 14.2215 + 11.9332i 1.07504 + 0.902067i
\(176\) −1.75046 1.46881i −0.131946 0.110716i
\(177\) 0 0
\(178\) 16.2999 + 5.93268i 1.22173 + 0.444673i
\(179\) 7.27802 12.6059i 0.543985 0.942210i −0.454685 0.890652i \(-0.650248\pi\)
0.998670 0.0515575i \(-0.0164185\pi\)
\(180\) 0 0
\(181\) 6.51190 + 11.2789i 0.484026 + 0.838357i 0.999832 0.0183482i \(-0.00584075\pi\)
−0.515806 + 0.856706i \(0.672507\pi\)
\(182\) 1.98423 + 11.2531i 0.147081 + 0.834139i
\(183\) 0 0
\(184\) 3.15087 1.14682i 0.232285 0.0845450i
\(185\) −4.01996 + 22.7983i −0.295554 + 1.67617i
\(186\) 0 0
\(187\) −3.02087 + 2.53481i −0.220908 + 0.185364i
\(188\) −3.85198 −0.280935
\(189\) 0 0
\(190\) −10.7551 −0.780258
\(191\) 2.75996 2.31588i 0.199704 0.167571i −0.537452 0.843295i \(-0.680613\pi\)
0.737155 + 0.675723i \(0.236169\pi\)
\(192\) 0 0
\(193\) 0.256108 1.45246i 0.0184351 0.104551i −0.974202 0.225679i \(-0.927540\pi\)
0.992637 + 0.121128i \(0.0386512\pi\)
\(194\) −8.63687 + 3.14356i −0.620091 + 0.225695i
\(195\) 0 0
\(196\) 1.14339 + 6.48449i 0.0816708 + 0.463178i
\(197\) −1.26931 2.19851i −0.0904346 0.156637i 0.817259 0.576270i \(-0.195492\pi\)
−0.907694 + 0.419633i \(0.862159\pi\)
\(198\) 0 0
\(199\) 0.925891 1.60369i 0.0656347 0.113683i −0.831341 0.555763i \(-0.812426\pi\)
0.896975 + 0.442081i \(0.145759\pi\)
\(200\) −4.73319 1.72274i −0.334687 0.121816i
\(201\) 0 0
\(202\) 9.16203 + 7.68785i 0.644638 + 0.540916i
\(203\) −1.65296 1.38700i −0.116015 0.0973480i
\(204\) 0 0
\(205\) 21.0791 + 7.67216i 1.47223 + 0.535847i
\(206\) 6.37324 11.0388i 0.444045 0.769108i
\(207\) 0 0
\(208\) −1.55014 2.68492i −0.107483 0.186165i
\(209\) 1.34705 + 7.63949i 0.0931773 + 0.528434i
\(210\) 0 0
\(211\) 17.8432 6.49438i 1.22837 0.447091i 0.355333 0.934740i \(-0.384367\pi\)
0.873040 + 0.487648i \(0.162145\pi\)
\(212\) −0.448476 + 2.54343i −0.0308015 + 0.174684i
\(213\) 0 0
\(214\) 4.67206 3.92032i 0.319375 0.267988i
\(215\) 5.25247 0.358215
\(216\) 0 0
\(217\) −17.0943 −1.16043
\(218\) 8.60957 7.22429i 0.583114 0.489290i
\(219\) 0 0
\(220\) −1.25710 + 7.12937i −0.0847537 + 0.480662i
\(221\) −5.02765 + 1.82992i −0.338196 + 0.123093i
\(222\) 0 0
\(223\) −1.25971 7.14415i −0.0843562 0.478408i −0.997494 0.0707560i \(-0.977459\pi\)
0.913137 0.407652i \(-0.133652\pi\)
\(224\) −1.84286 3.19193i −0.123131 0.213270i
\(225\) 0 0
\(226\) 3.51848 6.09418i 0.234046 0.405379i
\(227\) 26.8068 + 9.75687i 1.77923 + 0.647586i 0.999777 + 0.0211232i \(0.00672422\pi\)
0.779451 + 0.626463i \(0.215498\pi\)
\(228\) 0 0
\(229\) 1.42131 + 1.19262i 0.0939225 + 0.0788104i 0.688540 0.725198i \(-0.258252\pi\)
−0.594617 + 0.804009i \(0.702696\pi\)
\(230\) −8.13767 6.82831i −0.536582 0.450246i
\(231\) 0 0
\(232\) 0.550137 + 0.200234i 0.0361183 + 0.0131460i
\(233\) −4.26735 + 7.39126i −0.279563 + 0.484218i −0.971276 0.237955i \(-0.923523\pi\)
0.691713 + 0.722172i \(0.256856\pi\)
\(234\) 0 0
\(235\) 6.10176 + 10.5686i 0.398035 + 0.689417i
\(236\) −1.67799 9.51638i −0.109228 0.619464i
\(237\) 0 0
\(238\) −5.97705 + 2.17547i −0.387435 + 0.141015i
\(239\) −1.26554 + 7.17724i −0.0818611 + 0.464257i 0.916129 + 0.400884i \(0.131297\pi\)
−0.997990 + 0.0633733i \(0.979814\pi\)
\(240\) 0 0
\(241\) −1.02261 + 0.858069i −0.0658719 + 0.0552731i −0.675129 0.737700i \(-0.735912\pi\)
0.609257 + 0.792973i \(0.291468\pi\)
\(242\) −5.77847 −0.371454
\(243\) 0 0
\(244\) 13.0913 0.838087
\(245\) 15.9801 13.4089i 1.02093 0.856663i
\(246\) 0 0
\(247\) −1.82761 + 10.3649i −0.116288 + 0.659503i
\(248\) 4.35827 1.58628i 0.276750 0.100729i
\(249\) 0 0
\(250\) 0.0203300 + 0.115297i 0.00128578 + 0.00729204i
\(251\) 1.43928 + 2.49291i 0.0908466 + 0.157351i 0.907868 0.419257i \(-0.137709\pi\)
−0.817021 + 0.576608i \(0.804376\pi\)
\(252\) 0 0
\(253\) −3.83102 + 6.63552i −0.240854 + 0.417171i
\(254\) −5.62406 2.04699i −0.352885 0.128440i
\(255\) 0 0
\(256\) 0.766044 + 0.642788i 0.0478778 + 0.0401742i
\(257\) −19.7470 16.5697i −1.23179 1.03359i −0.998121 0.0612737i \(-0.980484\pi\)
−0.233665 0.972317i \(-0.575072\pi\)
\(258\) 0 0
\(259\) 25.3081 + 9.21138i 1.57257 + 0.572367i
\(260\) −4.91101 + 8.50613i −0.304568 + 0.527528i
\(261\) 0 0
\(262\) −8.20752 14.2158i −0.507062 0.878257i
\(263\) −2.61682 14.8408i −0.161360 0.915120i −0.952738 0.303793i \(-0.901747\pi\)
0.791378 0.611327i \(-0.209364\pi\)
\(264\) 0 0
\(265\) 7.68875 2.79848i 0.472316 0.171909i
\(266\) −2.17273 + 12.3222i −0.133219 + 0.755521i
\(267\) 0 0
\(268\) −6.59469 + 5.53361i −0.402835 + 0.338019i
\(269\) 16.0615 0.979286 0.489643 0.871923i \(-0.337127\pi\)
0.489643 + 0.871923i \(0.337127\pi\)
\(270\) 0 0
\(271\) 9.41446 0.571888 0.285944 0.958246i \(-0.407693\pi\)
0.285944 + 0.958246i \(0.407693\pi\)
\(272\) 1.32201 1.10929i 0.0801583 0.0672608i
\(273\) 0 0
\(274\) −0.0366673 + 0.207951i −0.00221515 + 0.0125628i
\(275\) 10.8157 3.93658i 0.652209 0.237385i
\(276\) 0 0
\(277\) 0.968047 + 5.49007i 0.0581643 + 0.329866i 0.999980 0.00626247i \(-0.00199342\pi\)
−0.941816 + 0.336129i \(0.890882\pi\)
\(278\) −1.83576 3.17962i −0.110101 0.190701i
\(279\) 0 0
\(280\) −5.83839 + 10.1124i −0.348911 + 0.604331i
\(281\) −26.3159 9.57821i −1.56988 0.571388i −0.596904 0.802313i \(-0.703603\pi\)
−0.972972 + 0.230925i \(0.925825\pi\)
\(282\) 0 0
\(283\) 4.71517 + 3.95650i 0.280288 + 0.235189i 0.772083 0.635521i \(-0.219215\pi\)
−0.491796 + 0.870711i \(0.663659\pi\)
\(284\) 1.52249 + 1.27752i 0.0903429 + 0.0758067i
\(285\) 0 0
\(286\) 6.65710 + 2.42299i 0.393643 + 0.143274i
\(287\) 13.0484 22.6005i 0.770222 1.33406i
\(288\) 0 0
\(289\) 7.01088 + 12.1432i 0.412405 + 0.714306i
\(290\) −0.322075 1.82658i −0.0189129 0.107260i
\(291\) 0 0
\(292\) −10.0053 + 3.64164i −0.585517 + 0.213111i
\(293\) 0.405486 2.29962i 0.0236887 0.134345i −0.970670 0.240416i \(-0.922716\pi\)
0.994359 + 0.106071i \(0.0338271\pi\)
\(294\) 0 0
\(295\) −23.4518 + 19.6784i −1.36541 + 1.14572i
\(296\) −7.30720 −0.424722
\(297\) 0 0
\(298\) 15.4744 0.896408
\(299\) −7.96341 + 6.68210i −0.460536 + 0.386436i
\(300\) 0 0
\(301\) 1.06110 6.01777i 0.0611606 0.346859i
\(302\) −18.9308 + 6.89024i −1.08934 + 0.396489i
\(303\) 0 0
\(304\) −0.589500 3.34322i −0.0338102 0.191747i
\(305\) −20.7374 35.9183i −1.18742 2.05668i
\(306\) 0 0
\(307\) −3.41265 + 5.91088i −0.194770 + 0.337351i −0.946825 0.321749i \(-0.895729\pi\)
0.752055 + 0.659100i \(0.229063\pi\)
\(308\) 7.91420 + 2.88053i 0.450953 + 0.164134i
\(309\) 0 0
\(310\) −11.2560 9.44489i −0.639297 0.536434i
\(311\) 6.58432 + 5.52490i 0.373362 + 0.313288i 0.810090 0.586306i \(-0.199418\pi\)
−0.436728 + 0.899594i \(0.643863\pi\)
\(312\) 0 0
\(313\) 20.3621 + 7.41120i 1.15093 + 0.418906i 0.845851 0.533420i \(-0.179093\pi\)
0.305083 + 0.952326i \(0.401316\pi\)
\(314\) −8.99872 + 15.5862i −0.507827 + 0.879582i
\(315\) 0 0
\(316\) −7.04660 12.2051i −0.396402 0.686588i
\(317\) 6.13325 + 34.7834i 0.344477 + 1.95363i 0.297460 + 0.954734i \(0.403861\pi\)
0.0470178 + 0.998894i \(0.485028\pi\)
\(318\) 0 0
\(319\) −1.25710 + 0.457547i −0.0703842 + 0.0256177i
\(320\) 0.550137 3.11998i 0.0307536 0.174412i
\(321\) 0 0
\(322\) −9.46719 + 7.94392i −0.527586 + 0.442697i
\(323\) −5.85859 −0.325981
\(324\) 0 0
\(325\) 15.6159 0.866217
\(326\) 2.33865 1.96236i 0.129526 0.108685i
\(327\) 0 0
\(328\) −1.22952 + 6.97295i −0.0678888 + 0.385017i
\(329\) 13.3411 4.85577i 0.735520 0.267707i
\(330\) 0 0
\(331\) −4.48249 25.4215i −0.246380 1.39729i −0.817265 0.576261i \(-0.804511\pi\)
0.570885 0.821030i \(-0.306600\pi\)
\(332\) 1.54921 + 2.68331i 0.0850240 + 0.147266i
\(333\) 0 0
\(334\) 2.05060 3.55174i 0.112204 0.194343i
\(335\) 25.6288 + 9.32810i 1.40025 + 0.509649i
\(336\) 0 0
\(337\) −2.59274 2.17557i −0.141236 0.118511i 0.569433 0.822038i \(-0.307163\pi\)
−0.710668 + 0.703527i \(0.751607\pi\)
\(338\) −2.59559 2.17795i −0.141181 0.118465i
\(339\) 0 0
\(340\) −5.13767 1.86996i −0.278629 0.101413i
\(341\) −5.29904 + 9.17821i −0.286959 + 0.497028i
\(342\) 0 0
\(343\) 0.765664 + 1.32617i 0.0413420 + 0.0716064i
\(344\) 0.287894 + 1.63273i 0.0155222 + 0.0880308i
\(345\) 0 0
\(346\) 16.0002 5.82361i 0.860178 0.313079i
\(347\) −2.81310 + 15.9539i −0.151015 + 0.856451i 0.811323 + 0.584598i \(0.198748\pi\)
−0.962339 + 0.271853i \(0.912364\pi\)
\(348\) 0 0
\(349\) 3.44148 2.88774i 0.184218 0.154577i −0.546015 0.837775i \(-0.683856\pi\)
0.730233 + 0.683198i \(0.239411\pi\)
\(350\) 18.5648 0.992330
\(351\) 0 0
\(352\) −2.28507 −0.121795
\(353\) −17.7927 + 14.9298i −0.947008 + 0.794634i −0.978791 0.204861i \(-0.934326\pi\)
0.0317832 + 0.999495i \(0.489881\pi\)
\(354\) 0 0
\(355\) 1.09338 6.20086i 0.0580305 0.329107i
\(356\) 16.2999 5.93268i 0.863894 0.314432i
\(357\) 0 0
\(358\) −2.52763 14.3349i −0.133589 0.757624i
\(359\) 5.77697 + 10.0060i 0.304897 + 0.528097i 0.977238 0.212144i \(-0.0680447\pi\)
−0.672341 + 0.740241i \(0.734711\pi\)
\(360\) 0 0
\(361\) 3.73768 6.47385i 0.196720 0.340729i
\(362\) 12.2384 + 4.45440i 0.643234 + 0.234118i
\(363\) 0 0
\(364\) 8.75339 + 7.34497i 0.458802 + 0.384981i
\(365\) 25.8404 + 21.6827i 1.35255 + 1.13492i
\(366\) 0 0
\(367\) −14.6307 5.32516i −0.763719 0.277971i −0.0693521 0.997592i \(-0.522093\pi\)
−0.694367 + 0.719621i \(0.744315\pi\)
\(368\) 1.67654 2.90386i 0.0873959 0.151374i
\(369\) 0 0
\(370\) 11.5750 + 20.0485i 0.601757 + 1.04227i
\(371\) −1.65296 9.37439i −0.0858173 0.486694i
\(372\) 0 0
\(373\) 9.16883 3.33718i 0.474744 0.172793i −0.0935562 0.995614i \(-0.529823\pi\)
0.568300 + 0.822821i \(0.307601\pi\)
\(374\) −0.684776 + 3.88356i −0.0354089 + 0.200814i
\(375\) 0 0
\(376\) −2.95079 + 2.47601i −0.152175 + 0.127690i
\(377\) −1.81504 −0.0934792
\(378\) 0 0
\(379\) −18.7904 −0.965197 −0.482599 0.875842i \(-0.660307\pi\)
−0.482599 + 0.875842i \(0.660307\pi\)
\(380\) −8.23889 + 6.91325i −0.422646 + 0.354642i
\(381\) 0 0
\(382\) 0.625632 3.54814i 0.0320101 0.181539i
\(383\) −28.9125 + 10.5233i −1.47736 + 0.537715i −0.950088 0.311982i \(-0.899007\pi\)
−0.527271 + 0.849697i \(0.676785\pi\)
\(384\) 0 0
\(385\) −4.63332 26.2769i −0.236136 1.33919i
\(386\) −0.737435 1.27727i −0.0375344 0.0650116i
\(387\) 0 0
\(388\) −4.59558 + 7.95978i −0.233305 + 0.404097i
\(389\) −27.8155 10.1240i −1.41030 0.513308i −0.479085 0.877769i \(-0.659031\pi\)
−0.931219 + 0.364460i \(0.881253\pi\)
\(390\) 0 0
\(391\) −4.43280 3.71956i −0.224176 0.188106i
\(392\) 5.04404 + 4.23245i 0.254762 + 0.213771i
\(393\) 0 0
\(394\) −2.38552 0.868259i −0.120181 0.0437423i
\(395\) −22.3244 + 38.6670i −1.12326 + 1.94555i
\(396\) 0 0
\(397\) −8.07134 13.9800i −0.405089 0.701635i 0.589243 0.807956i \(-0.299426\pi\)
−0.994332 + 0.106321i \(0.966093\pi\)
\(398\) −0.321559 1.82365i −0.0161183 0.0914113i
\(399\) 0 0
\(400\) −4.73319 + 1.72274i −0.236659 + 0.0861370i
\(401\) 4.40413 24.9771i 0.219932 1.24730i −0.652209 0.758039i \(-0.726157\pi\)
0.872140 0.489256i \(-0.162731\pi\)
\(402\) 0 0
\(403\) −11.0150 + 9.24264i −0.548694 + 0.460409i
\(404\) 11.9602 0.595041
\(405\) 0 0
\(406\) −2.15778 −0.107089
\(407\) 12.7910 10.7329i 0.634025 0.532010i
\(408\) 0 0
\(409\) −3.95420 + 22.4254i −0.195522 + 1.10886i 0.716150 + 0.697946i \(0.245902\pi\)
−0.911673 + 0.410917i \(0.865209\pi\)
\(410\) 21.0791 7.67216i 1.04102 0.378901i
\(411\) 0 0
\(412\) −2.21340 12.5528i −0.109047 0.618433i
\(413\) 17.8079 + 30.8442i 0.876269 + 1.51774i
\(414\) 0 0
\(415\) 4.90808 8.50104i 0.240928 0.417300i
\(416\) −2.91331 1.06036i −0.142837 0.0519883i
\(417\) 0 0
\(418\) 5.94247 + 4.98632i 0.290656 + 0.243889i
\(419\) −3.77105 3.16429i −0.184228 0.154586i 0.546010 0.837779i \(-0.316146\pi\)
−0.730238 + 0.683193i \(0.760591\pi\)
\(420\) 0 0
\(421\) −18.5285 6.74382i −0.903023 0.328674i −0.151560 0.988448i \(-0.548430\pi\)
−0.751464 + 0.659775i \(0.770652\pi\)
\(422\) 9.49415 16.4443i 0.462168 0.800498i
\(423\) 0 0
\(424\) 1.29134 + 2.23666i 0.0627128 + 0.108622i
\(425\) 1.50945 + 8.56049i 0.0732189 + 0.415245i
\(426\) 0 0
\(427\) −45.3411 + 16.5028i −2.19421 + 0.798627i
\(428\) 1.05907 6.00628i 0.0511921 0.290325i
\(429\) 0 0
\(430\) 4.02362 3.37622i 0.194036 0.162816i
\(431\) −6.16323 −0.296873 −0.148436 0.988922i \(-0.547424\pi\)
−0.148436 + 0.988922i \(0.547424\pi\)
\(432\) 0 0
\(433\) −14.7838 −0.710466 −0.355233 0.934778i \(-0.615599\pi\)
−0.355233 + 0.934778i \(0.615599\pi\)
\(434\) −13.0950 + 10.9880i −0.628579 + 0.527440i
\(435\) 0 0
\(436\) 1.95163 11.0683i 0.0934662 0.530073i
\(437\) −10.6966 + 3.89323i −0.511686 + 0.186239i
\(438\) 0 0
\(439\) 5.16899 + 29.3148i 0.246703 + 1.39912i 0.816505 + 0.577338i \(0.195909\pi\)
−0.569803 + 0.821782i \(0.692980\pi\)
\(440\) 3.61968 + 6.26947i 0.172561 + 0.298885i
\(441\) 0 0
\(442\) −2.67516 + 4.63351i −0.127244 + 0.220394i
\(443\) −28.6365 10.4228i −1.36056 0.495204i −0.444335 0.895861i \(-0.646560\pi\)
−0.916228 + 0.400656i \(0.868782\pi\)
\(444\) 0 0
\(445\) −42.0973 35.3238i −1.99560 1.67451i
\(446\) −5.55716 4.66301i −0.263139 0.220800i
\(447\) 0 0
\(448\) −3.46344 1.26059i −0.163632 0.0595573i
\(449\) −5.92055 + 10.2547i −0.279408 + 0.483949i −0.971238 0.238112i \(-0.923472\pi\)
0.691830 + 0.722061i \(0.256805\pi\)
\(450\) 0 0
\(451\) −8.08973 14.0118i −0.380930 0.659791i
\(452\) −1.22195 6.93005i −0.0574759 0.325962i
\(453\) 0 0
\(454\) 26.8068 9.75687i 1.25810 0.457913i
\(455\) 6.28628 35.6513i 0.294705 1.67136i
\(456\) 0 0
\(457\) −0.142785 + 0.119811i −0.00667922 + 0.00560453i −0.646121 0.763235i \(-0.723610\pi\)
0.639442 + 0.768839i \(0.279165\pi\)
\(458\) 1.85538 0.0866963
\(459\) 0 0
\(460\) −10.6230 −0.495299
\(461\) 7.97096 6.68843i 0.371245 0.311511i −0.438009 0.898971i \(-0.644316\pi\)
0.809254 + 0.587459i \(0.199872\pi\)
\(462\) 0 0
\(463\) 4.47811 25.3966i 0.208115 1.18028i −0.684346 0.729158i \(-0.739912\pi\)
0.892461 0.451124i \(-0.148977\pi\)
\(464\) 0.550137 0.200234i 0.0255395 0.00929561i
\(465\) 0 0
\(466\) 1.48203 + 8.40503i 0.0686539 + 0.389356i
\(467\) −10.8506 18.7937i −0.502104 0.869670i −0.999997 0.00243153i \(-0.999226\pi\)
0.497893 0.867239i \(-0.334107\pi\)
\(468\) 0 0
\(469\) 15.8647 27.4785i 0.732566 1.26884i
\(470\) 11.4676 + 4.17385i 0.528959 + 0.192525i
\(471\) 0 0
\(472\) −7.40243 6.21138i −0.340724 0.285902i
\(473\) −2.90212 2.43517i −0.133440 0.111969i
\(474\) 0 0
\(475\) 16.0682 + 5.84835i 0.737260 + 0.268341i
\(476\) −3.18032 + 5.50848i −0.145770 + 0.252481i
\(477\) 0 0
\(478\) 3.64398 + 6.31156i 0.166672 + 0.288684i
\(479\) −6.79333 38.5269i −0.310395 1.76034i −0.596954 0.802276i \(-0.703622\pi\)
0.286559 0.958063i \(-0.407489\pi\)
\(480\) 0 0
\(481\) 21.2881 7.74823i 0.970654 0.353289i
\(482\) −0.231806 + 1.31464i −0.0105585 + 0.0598801i
\(483\) 0 0
\(484\) −4.42656 + 3.71433i −0.201207 + 0.168833i
\(485\) 29.1187 1.32221
\(486\) 0 0
\(487\) −10.4833 −0.475043 −0.237522 0.971382i \(-0.576335\pi\)
−0.237522 + 0.971382i \(0.576335\pi\)
\(488\) 10.0285 8.41495i 0.453971 0.380927i
\(489\) 0 0
\(490\) 3.62239 20.5436i 0.163643 0.928066i
\(491\) −6.44349 + 2.34524i −0.290791 + 0.105839i −0.483297 0.875457i \(-0.660561\pi\)
0.192506 + 0.981296i \(0.438339\pi\)
\(492\) 0 0
\(493\) −0.175443 0.994984i −0.00790153 0.0448118i
\(494\) 5.26240 + 9.11475i 0.236767 + 0.410092i
\(495\) 0 0
\(496\) 2.31899 4.01660i 0.104126 0.180351i
\(497\) −6.88347 2.50538i −0.308766 0.112382i
\(498\) 0 0
\(499\) 14.3815 + 12.0675i 0.643804 + 0.540216i 0.905184 0.425020i \(-0.139733\pi\)
−0.261380 + 0.965236i \(0.584177\pi\)
\(500\) 0.0896853 + 0.0752549i 0.00401085 + 0.00336550i
\(501\) 0 0
\(502\) 2.70496 + 0.984526i 0.120728 + 0.0439415i
\(503\) 6.21350 10.7621i 0.277046 0.479858i −0.693603 0.720357i \(-0.743978\pi\)
0.970649 + 0.240499i \(0.0773112\pi\)
\(504\) 0 0
\(505\) −18.9456 32.8148i −0.843069 1.46024i
\(506\) 1.33050 + 7.54563i 0.0591479 + 0.335444i
\(507\) 0 0
\(508\) −5.62406 + 2.04699i −0.249527 + 0.0908204i
\(509\) 5.72652 32.4767i 0.253824 1.43950i −0.545251 0.838273i \(-0.683566\pi\)
0.799075 0.601232i \(-0.205323\pi\)
\(510\) 0 0
\(511\) 30.0622 25.2252i 1.32987 1.11590i
\(512\) 1.00000 0.0441942
\(513\) 0 0
\(514\) −25.7779 −1.13702
\(515\) −30.9346 + 25.9572i −1.36314 + 1.14381i
\(516\) 0 0
\(517\) 1.52846 8.66831i 0.0672215 0.381232i
\(518\) 25.3081 9.21138i 1.11197 0.404725i
\(519\) 0 0
\(520\) 1.70558 + 9.67281i 0.0747945 + 0.424181i
\(521\) −7.16598 12.4118i −0.313947 0.543773i 0.665266 0.746607i \(-0.268318\pi\)
−0.979213 + 0.202834i \(0.934985\pi\)
\(522\) 0 0
\(523\) 2.85442 4.94400i 0.124815 0.216186i −0.796846 0.604183i \(-0.793500\pi\)
0.921661 + 0.387997i \(0.126833\pi\)
\(524\) −15.4251 5.61427i −0.673848 0.245261i
\(525\) 0 0
\(526\) −11.5441 9.68661i −0.503345 0.422356i
\(527\) −6.13143 5.14488i −0.267089 0.224114i
\(528\) 0 0
\(529\) 11.0478 + 4.02106i 0.480338 + 0.174829i
\(530\) 4.09110 7.08599i 0.177706 0.307796i
\(531\) 0 0
\(532\) 6.25613 + 10.8359i 0.271238 + 0.469798i
\(533\) −3.81185 21.6181i −0.165109 0.936382i
\(534\) 0 0
\(535\) −18.1569 + 6.60856i −0.784990 + 0.285713i
\(536\) −1.49490 + 8.47798i −0.0645697 + 0.366193i
\(537\) 0 0
\(538\) 12.3038 10.3241i 0.530455 0.445104i
\(539\) −15.0461 −0.648081
\(540\) 0 0
\(541\) 18.0099 0.774305 0.387153 0.922016i \(-0.373459\pi\)
0.387153 + 0.922016i \(0.373459\pi\)
\(542\) 7.21190 6.05150i 0.309777 0.259934i
\(543\) 0 0
\(544\) 0.299674 1.69954i 0.0128484 0.0728671i
\(545\) −33.4591 + 12.1781i −1.43323 + 0.521653i
\(546\) 0 0
\(547\) −3.58197 20.3143i −0.153154 0.868578i −0.960454 0.278438i \(-0.910183\pi\)
0.807301 0.590141i \(-0.200928\pi\)
\(548\) 0.105579 + 0.182869i 0.00451012 + 0.00781176i
\(549\) 0 0
\(550\) 5.75489 9.96776i 0.245389 0.425027i
\(551\) −1.86760 0.679753i −0.0795626 0.0289584i
\(552\) 0 0
\(553\) 39.7911 + 33.3887i 1.69209 + 1.41983i
\(554\) 4.27051 + 3.58339i 0.181437 + 0.152244i
\(555\) 0 0
\(556\) −3.45009 1.25573i −0.146316 0.0532548i
\(557\) 1.90209 3.29452i 0.0805942 0.139593i −0.822911 0.568170i \(-0.807652\pi\)
0.903505 + 0.428577i \(0.140985\pi\)
\(558\) 0 0
\(559\) −2.57000 4.45136i −0.108699 0.188273i
\(560\) 2.02765 + 11.4994i 0.0856839 + 0.485938i
\(561\) 0 0
\(562\) −26.3159 + 9.57821i −1.11007 + 0.404032i
\(563\) −1.92252 + 10.9032i −0.0810247 + 0.459514i 0.917119 + 0.398613i \(0.130508\pi\)
−0.998144 + 0.0609006i \(0.980603\pi\)
\(564\) 0 0
\(565\) −17.0781 + 14.3302i −0.718481 + 0.602877i
\(566\) 6.15522 0.258723
\(567\) 0 0
\(568\) 1.98746 0.0833921
\(569\) 35.7860 30.0280i 1.50023 1.25884i 0.619704 0.784836i \(-0.287253\pi\)
0.880523 0.474004i \(-0.157192\pi\)
\(570\) 0 0
\(571\) −5.50225 + 31.2048i −0.230262 + 1.30588i 0.622104 + 0.782935i \(0.286278\pi\)
−0.852366 + 0.522946i \(0.824833\pi\)
\(572\) 6.65710 2.42299i 0.278347 0.101310i
\(573\) 0 0
\(574\) −4.53166 25.7003i −0.189148 1.07271i
\(575\) 8.44468 + 14.6266i 0.352167 + 0.609972i
\(576\) 0 0
\(577\) −22.1642 + 38.3895i −0.922707 + 1.59818i −0.127499 + 0.991839i \(0.540695\pi\)
−0.795208 + 0.606336i \(0.792639\pi\)
\(578\) 13.1762 + 4.79573i 0.548056 + 0.199476i
\(579\) 0 0
\(580\) −1.42082 1.19221i −0.0589965 0.0495040i
\(581\) −8.74816 7.34058i −0.362935 0.304539i
\(582\) 0 0
\(583\) −5.54567 2.01846i −0.229678 0.0835960i
\(584\) −5.32371 + 9.22094i −0.220297 + 0.381565i
\(585\) 0 0
\(586\) −1.16755 2.02226i −0.0482310 0.0835386i
\(587\) 7.12733 + 40.4211i 0.294176 + 1.66836i 0.670531 + 0.741882i \(0.266066\pi\)
−0.376354 + 0.926476i \(0.622823\pi\)
\(588\) 0 0
\(589\) −14.7954 + 5.38510i −0.609636 + 0.221889i
\(590\) −5.31608 + 30.1490i −0.218860 + 1.24121i
\(591\) 0 0
\(592\) −5.59764 + 4.69698i −0.230062 + 0.193045i
\(593\) −9.69265 −0.398029 −0.199015 0.979996i \(-0.563774\pi\)
−0.199015 + 0.979996i \(0.563774\pi\)
\(594\) 0 0
\(595\) 20.1513 0.826121
\(596\) 11.8541 9.94675i 0.485562 0.407435i
\(597\) 0 0
\(598\) −1.80516 + 10.2376i −0.0738184 + 0.418645i
\(599\) 28.0385 10.2052i 1.14562 0.416972i 0.301680 0.953409i \(-0.402452\pi\)
0.843940 + 0.536437i \(0.180230\pi\)
\(600\) 0 0
\(601\) 2.17941 + 12.3600i 0.0888998 + 0.504176i 0.996447 + 0.0842252i \(0.0268415\pi\)
−0.907547 + 0.419951i \(0.862047\pi\)
\(602\) −3.05530 5.29194i −0.124525 0.215683i
\(603\) 0 0
\(604\) −10.0729 + 17.4467i −0.409859 + 0.709896i
\(605\) 17.2028 + 6.26131i 0.699394 + 0.254558i
\(606\) 0 0
\(607\) −2.12971 1.78704i −0.0864421 0.0725336i 0.598543 0.801091i \(-0.295747\pi\)
−0.684985 + 0.728557i \(0.740191\pi\)
\(608\) −2.60057 2.18213i −0.105467 0.0884972i
\(609\) 0 0
\(610\) −38.9736 14.1852i −1.57800 0.574344i
\(611\) 5.97110 10.3422i 0.241565 0.418403i
\(612\) 0 0
\(613\) 4.29646 + 7.44168i 0.173532 + 0.300567i 0.939652 0.342131i \(-0.111149\pi\)
−0.766120 + 0.642697i \(0.777815\pi\)
\(614\) 1.18520 + 6.72160i 0.0478307 + 0.271262i
\(615\) 0 0
\(616\) 7.91420 2.88053i 0.318872 0.116060i
\(617\) −3.48669 + 19.7740i −0.140369 + 0.796071i 0.830601 + 0.556868i \(0.187997\pi\)
−0.970970 + 0.239203i \(0.923114\pi\)
\(618\) 0 0
\(619\) 6.42853 5.39418i 0.258384 0.216810i −0.504388 0.863477i \(-0.668282\pi\)
0.762773 + 0.646667i \(0.223838\pi\)
\(620\) −14.6936 −0.590111
\(621\) 0 0
\(622\) 8.59522 0.344637
\(623\) −48.9751 + 41.0950i −1.96215 + 1.64644i
\(624\) 0 0
\(625\) −4.30888 + 24.4369i −0.172355 + 0.977475i
\(626\) 20.3621 7.41120i 0.813833 0.296211i
\(627\) 0 0
\(628\) 3.12522 + 17.7240i 0.124710 + 0.707265i
\(629\) 6.30522 + 10.9210i 0.251405 + 0.435447i
\(630\) 0 0
\(631\) −8.78157 + 15.2101i −0.349589 + 0.605506i −0.986176 0.165699i \(-0.947012\pi\)
0.636588 + 0.771204i \(0.280345\pi\)
\(632\) −13.2433 4.82016i −0.526789 0.191735i
\(633\) 0 0
\(634\) 27.0567 + 22.7032i 1.07456 + 0.901660i
\(635\) 14.5251 + 12.1880i 0.576410 + 0.483666i
\(636\) 0 0
\(637\) −19.1827 6.98194i −0.760047 0.276635i
\(638\) −0.668890 + 1.15855i −0.0264816 + 0.0458675i
\(639\) 0 0
\(640\) −1.58406 2.74367i −0.0626154 0.108453i
\(641\) −2.32943 13.2108i −0.0920069 0.521797i −0.995624 0.0934548i \(-0.970209\pi\)
0.903617 0.428342i \(-0.140902\pi\)
\(642\) 0 0
\(643\) 9.80578 3.56901i 0.386702 0.140748i −0.141351 0.989960i \(-0.545144\pi\)
0.528053 + 0.849211i \(0.322922\pi\)
\(644\) −2.14604 + 12.1708i −0.0845657 + 0.479596i
\(645\) 0 0
\(646\) −4.48794 + 3.76583i −0.176576 + 0.148165i
\(647\) −37.9585 −1.49230 −0.746152 0.665775i \(-0.768101\pi\)
−0.746152 + 0.665775i \(0.768101\pi\)
\(648\) 0 0
\(649\) 22.0810 0.866756
\(650\) 11.9625 10.0377i 0.469208 0.393712i
\(651\) 0 0
\(652\) 0.530129 3.00651i 0.0207615 0.117744i
\(653\) 25.6595 9.33930i 1.00413 0.365475i 0.212957 0.977062i \(-0.431691\pi\)
0.791178 + 0.611587i \(0.209468\pi\)
\(654\) 0 0
\(655\) 9.03052 + 51.2146i 0.352852 + 2.00112i
\(656\) 3.54026 + 6.13191i 0.138224 + 0.239411i
\(657\) 0 0
\(658\) 7.09866 12.2952i 0.276735 0.479318i
\(659\) 32.2831 + 11.7501i 1.25757 + 0.457718i 0.882953 0.469462i \(-0.155552\pi\)
0.374617 + 0.927180i \(0.377774\pi\)
\(660\) 0 0
\(661\) −18.8276 15.7982i −0.732309 0.614481i 0.198451 0.980111i \(-0.436409\pi\)
−0.930760 + 0.365630i \(0.880853\pi\)
\(662\) −19.7744 16.5927i −0.768554 0.644893i
\(663\) 0 0
\(664\) 2.91156 + 1.05972i 0.112991 + 0.0411252i
\(665\) 19.8202 34.3295i 0.768593 1.33124i
\(666\) 0 0
\(667\) −0.981523 1.70005i −0.0380047 0.0658261i
\(668\) −0.712165 4.03889i −0.0275545 0.156269i
\(669\) 0 0
\(670\) 25.6288 9.32810i 0.990125 0.360376i
\(671\) −5.19461 + 29.4601i −0.200536 + 1.13730i
\(672\) 0 0
\(673\) 32.8445 27.5598i 1.26606 1.06235i 0.271054 0.962564i \(-0.412628\pi\)
0.995009 0.0997881i \(-0.0318165\pi\)
\(674\) −3.38459 −0.130369
\(675\) 0 0
\(676\) −3.38830 −0.130319
\(677\) 5.73570 4.81283i 0.220441 0.184972i −0.525879 0.850560i \(-0.676263\pi\)
0.746320 + 0.665588i \(0.231819\pi\)
\(678\) 0 0
\(679\) 5.88251 33.3614i 0.225750 1.28029i
\(680\) −5.13767 + 1.86996i −0.197021 + 0.0717096i
\(681\) 0 0
\(682\) 1.84034 + 10.4371i 0.0704702 + 0.399656i
\(683\) −8.37724 14.5098i −0.320546 0.555202i 0.660055 0.751218i \(-0.270533\pi\)
−0.980601 + 0.196015i \(0.937200\pi\)
\(684\) 0 0
\(685\) 0.334487 0.579349i 0.0127801 0.0221358i
\(686\) 1.43898 + 0.523745i 0.0549404 + 0.0199967i
\(687\) 0 0
\(688\) 1.27004 + 1.06569i 0.0484197 + 0.0406289i
\(689\) −6.13371 5.14679i −0.233676 0.196077i
\(690\) 0 0
\(691\) 14.0516 + 5.11438i 0.534550 + 0.194560i 0.595169 0.803601i \(-0.297085\pi\)
−0.0606190 + 0.998161i \(0.519307\pi\)
\(692\) 8.51355 14.7459i 0.323637 0.560555i
\(693\) 0 0
\(694\) 8.10001 + 14.0296i 0.307472 + 0.532558i
\(695\) 2.01984 + 11.4551i 0.0766167 + 0.434515i
\(696\) 0 0
\(697\) 11.4823 4.17923i 0.434924 0.158299i
\(698\) 0.780120 4.42428i 0.0295280 0.167461i
\(699\) 0 0
\(700\) 14.2215 11.9332i 0.537521 0.451033i
\(701\) −42.1025 −1.59019 −0.795094 0.606486i \(-0.792579\pi\)
−0.795094 + 0.606486i \(0.792579\pi\)
\(702\) 0 0
\(703\) 24.8065 0.935593
\(704\) −1.75046 + 1.46881i −0.0659731 + 0.0553580i
\(705\) 0 0
\(706\) −4.03327 + 22.8738i −0.151794 + 0.860867i
\(707\) −41.4234 + 15.0769i −1.55789 + 0.567024i
\(708\) 0 0
\(709\) 4.94647 + 28.0528i 0.185769 + 1.05355i 0.924964 + 0.380055i \(0.124095\pi\)
−0.739195 + 0.673491i \(0.764794\pi\)
\(710\) −3.14826 5.45294i −0.118152 0.204645i
\(711\) 0 0
\(712\) 8.67300 15.0221i 0.325035 0.562976i
\(713\) −14.6137 5.31894i −0.547286 0.199196i
\(714\) 0 0
\(715\) −17.1931 14.4267i −0.642985 0.539529i
\(716\) −11.1506 9.35645i −0.416717 0.349667i
\(717\) 0 0
\(718\) 10.8572 + 3.95168i 0.405185 + 0.147475i
\(719\) −1.26744 + 2.19526i −0.0472674 + 0.0818695i −0.888691 0.458506i \(-0.848385\pi\)
0.841424 + 0.540376i \(0.181718\pi\)
\(720\) 0 0
\(721\) 23.4900 + 40.6858i 0.874812 + 1.51522i
\(722\) −1.29808 7.36179i −0.0483096 0.273977i
\(723\) 0 0
\(724\) 12.2384 4.45440i 0.454835 0.165547i
\(725\) −0.512063 + 2.90406i −0.0190176 + 0.107854i
\(726\) 0 0
\(727\) 15.2316 12.7808i 0.564907 0.474014i −0.315044 0.949077i \(-0.602019\pi\)
0.879952 + 0.475063i \(0.157575\pi\)
\(728\) 11.4267 0.423503
\(729\) 0 0
\(730\) 33.7323 1.24849
\(731\) 2.19177 1.83912i 0.0810656 0.0680221i
\(732\) 0 0
\(733\) −1.73840 + 9.85898i −0.0642094 + 0.364150i 0.935725 + 0.352729i \(0.114746\pi\)
−0.999935 + 0.0114203i \(0.996365\pi\)
\(734\) −14.6307 + 5.32516i −0.540031 + 0.196555i
\(735\) 0 0
\(736\) −0.582258 3.30215i −0.0214623 0.121719i
\(737\) −9.83580 17.0361i −0.362306 0.627533i
\(738\) 0 0
\(739\) 20.1957 34.9800i 0.742911 1.28676i −0.208253 0.978075i \(-0.566778\pi\)
0.951164 0.308685i \(-0.0998890\pi\)
\(740\) 21.7539 + 7.91778i 0.799690 + 0.291063i
\(741\) 0 0
\(742\) −7.29198 6.11870i −0.267697 0.224624i
\(743\) 27.3096 + 22.9155i 1.00189 + 0.840688i 0.987246 0.159205i \(-0.0508930\pi\)
0.0146474 + 0.999893i \(0.495337\pi\)
\(744\) 0 0
\(745\) −46.0681 16.7674i −1.68781 0.614311i
\(746\) 4.87863 8.45004i 0.178619 0.309378i
\(747\) 0 0
\(748\) 1.97173 + 3.41514i 0.0720937 + 0.124870i
\(749\) 3.90343 + 22.1375i 0.142628 + 0.808886i
\(750\) 0 0
\(751\) 8.89769 3.23850i 0.324681 0.118174i −0.174537 0.984651i \(-0.555843\pi\)
0.499218 + 0.866476i \(0.333621\pi\)
\(752\) −0.668890 + 3.79346i −0.0243919 + 0.138333i
\(753\) 0 0
\(754\) −1.39040 + 1.16668i −0.0506354 + 0.0424881i
\(755\) 63.8240 2.32279
\(756\) 0 0
\(757\) −37.9651 −1.37987 −0.689933 0.723873i \(-0.742360\pi\)
−0.689933 + 0.723873i \(0.742360\pi\)
\(758\) −14.3943 + 12.0782i −0.522823 + 0.438701i
\(759\) 0 0
\(760\) −1.86760 + 10.5917i −0.0677451 + 0.384202i
\(761\) −42.1788 + 15.3518i −1.52898 + 0.556504i −0.963372 0.268170i \(-0.913581\pi\)
−0.565609 + 0.824673i \(0.691359\pi\)
\(762\) 0 0
\(763\) 7.19316 + 40.7945i 0.260410 + 1.47686i
\(764\) −1.80144 3.12018i −0.0651737 0.112884i
\(765\) 0 0
\(766\) −15.3840 + 26.6459i −0.555847 + 0.962755i
\(767\) 28.1518 + 10.2464i 1.01650 + 0.369977i
\(768\) 0 0
\(769\) 35.0364 + 29.3991i 1.26345 + 1.06016i 0.995306 + 0.0967777i \(0.0308536\pi\)
0.268140 + 0.963380i \(0.413591\pi\)
\(770\) −20.4398 17.1510i −0.736598 0.618080i
\(771\) 0 0
\(772\) −1.38592 0.504435i −0.0498805 0.0181550i
\(773\) 10.2853 17.8147i 0.369938 0.640752i −0.619617 0.784904i \(-0.712712\pi\)
0.989556 + 0.144152i \(0.0460455\pi\)
\(774\) 0 0
\(775\) 11.6806 + 20.2315i 0.419581 + 0.726735i
\(776\) 1.59603 + 9.05153i 0.0572941 + 0.324931i
\(777\) 0 0
\(778\) −27.8155 + 10.1240i −0.997235 + 0.362964i
\(779\) 4.17397 23.6717i 0.149548 0.848128i
\(780\) 0 0
\(781\) −3.47898 + 2.91921i −0.124488 + 0.104458i
\(782\) −5.78661 −0.206929
\(783\) 0 0
\(784\) 6.58452 0.235162
\(785\) 43.6783 36.6504i 1.55894 1.30811i
\(786\) 0 0
\(787\) 7.73837 43.8865i 0.275843 1.56438i −0.460427 0.887697i \(-0.652304\pi\)
0.736271 0.676687i \(-0.236585\pi\)
\(788\) −2.38552 + 0.868259i −0.0849807 + 0.0309305i
\(789\) 0 0
\(790\) 7.75319 + 43.9705i 0.275846 + 1.56440i
\(791\) 12.9681 + 22.4614i 0.461093 + 0.798637i
\(792\) 0 0
\(793\) −20.2934 + 35.1492i −0.720639 + 1.24818i
\(794\) −15.1692 5.52112i −0.538333 0.195937i
\(795\) 0 0
\(796\) −1.41855 1.19030i −0.0502791 0.0421892i
\(797\) 33.5988 + 28.1927i 1.19013 + 0.998638i 0.999857 + 0.0169072i \(0.00538197\pi\)
0.190274 + 0.981731i \(0.439062\pi\)
\(798\) 0 0
\(799\) 6.24668 + 2.27361i 0.220992 + 0.0804344i
\(800\) −2.51848 + 4.36213i −0.0890416 + 0.154225i
\(801\) 0 0
\(802\) −12.6812 21.9645i −0.447788 0.775592i
\(803\) −4.22488 23.9605i −0.149093 0.845546i
\(804\) 0 0
\(805\) 36.7921 13.3912i 1.29675 0.471978i
\(806\) −2.49689 + 14.1605i −0.0879491 + 0.498784i
\(807\) 0 0
\(808\) 9.16203 7.68785i 0.322319 0.270458i
\(809\) −15.5821 −0.547836 −0.273918 0.961753i \(-0.588320\pi\)
−0.273918 + 0.961753i \(0.588320\pi\)
\(810\) 0 0
\(811\) −30.4691 −1.06992 −0.534958 0.844879i \(-0.679673\pi\)
−0.534958 + 0.844879i \(0.679673\pi\)
\(812\) −1.65296 + 1.38700i −0.0580074 + 0.0486740i
\(813\) 0 0
\(814\) 2.89948 16.4438i 0.101627 0.576354i
\(815\) −9.08863 + 3.30799i −0.318361 + 0.115874i
\(816\) 0 0
\(817\) −0.977341 5.54278i −0.0341928 0.193917i
\(818\) 11.3857 + 19.7205i 0.398090 + 0.689512i
\(819\) 0 0
\(820\) 11.2159 19.4266i 0.391678 0.678406i
\(821\) 1.78637 + 0.650187i 0.0623448 + 0.0226917i 0.373004 0.927830i \(-0.378328\pi\)
−0.310659 + 0.950521i \(0.600550\pi\)
\(822\) 0 0
\(823\) −16.8844 14.1677i −0.588553 0.493855i 0.299190 0.954194i \(-0.403284\pi\)
−0.887743 + 0.460339i \(0.847728\pi\)
\(824\) −9.76437 8.19328i −0.340158 0.285426i
\(825\) 0 0
\(826\) 33.4679 + 12.1813i 1.16450 + 0.423842i
\(827\) −24.2488 + 42.0001i −0.843213 + 1.46049i 0.0439508 + 0.999034i \(0.486006\pi\)
−0.887164 + 0.461454i \(0.847328\pi\)
\(828\) 0 0
\(829\) 10.1593 + 17.5964i 0.352846 + 0.611148i 0.986747 0.162267i \(-0.0518805\pi\)
−0.633900 + 0.773415i \(0.718547\pi\)
\(830\) −1.70456 9.66703i −0.0591661 0.335547i
\(831\) 0 0
\(832\) −2.91331 + 1.06036i −0.101001 + 0.0367612i
\(833\) 1.97321 11.1906i 0.0683678 0.387733i
\(834\) 0 0
\(835\) −9.95326 + 8.35178i −0.344447 + 0.289025i
\(836\) 7.75734 0.268293
\(837\) 0 0
\(838\) −4.92276 −0.170054
\(839\) −3.88105 + 3.25659i −0.133989 + 0.112430i −0.707319 0.706894i \(-0.750096\pi\)
0.573330 + 0.819324i \(0.305651\pi\)
\(840\) 0 0
\(841\) −4.97628 + 28.2219i −0.171596 + 0.973169i
\(842\) −18.5285 + 6.74382i −0.638534 + 0.232407i
\(843\) 0 0
\(844\) −3.29728 18.6998i −0.113497 0.643674i
\(845\) 5.36726 + 9.29636i 0.184639 + 0.319804i
\(846\) 0 0
\(847\) 10.6489 18.4444i 0.365901 0.633758i
\(848\) 2.42692 + 0.883326i 0.0833407 + 0.0303335i
\(849\) 0 0
\(850\) 6.65888 + 5.58746i 0.228398 + 0.191648i
\(851\) 18.7694 + 15.7494i 0.643406 + 0.539882i
\(852\) 0 0
\(853\) −24.8716 9.05254i −0.851589 0.309953i −0.120901 0.992665i \(-0.538578\pi\)
−0.730688 + 0.682712i \(0.760801\pi\)
\(854\) −24.1255 + 41.7866i −0.825558 + 1.42991i
\(855\) 0 0
\(856\) −3.04947 5.28184i −0.104229 0.180529i
\(857\) −3.17978 18.0334i −0.108619 0.616011i −0.989713 0.143068i \(-0.954303\pi\)
0.881094 0.472942i \(-0.156808\pi\)
\(858\) 0 0
\(859\) 8.87010 3.22845i 0.302644 0.110153i −0.186234 0.982505i \(-0.559628\pi\)
0.488878 + 0.872352i \(0.337406\pi\)
\(860\) 0.912081 5.17267i 0.0311017 0.176387i
\(861\) 0 0
\(862\) −4.72131 + 3.96165i −0.160809 + 0.134934i
\(863\) −14.2154 −0.483898 −0.241949 0.970289i \(-0.577787\pi\)
−0.241949 + 0.970289i \(0.577787\pi\)
\(864\) 0 0
\(865\) −53.9438 −1.83414
\(866\) −11.3251 + 9.50287i −0.384842 + 0.322921i
\(867\) 0 0
\(868\) −2.96839 + 16.8346i −0.100754 + 0.571403i
\(869\) 30.2618 11.0144i 1.02656 0.373637i
\(870\) 0 0
\(871\) −4.63459 26.2841i −0.157037 0.890601i
\(872\) −5.61950 9.73326i −0.190300 0.329610i
\(873\) 0 0
\(874\) −5.69153 + 9.85801i −0.192519 + 0.333452i
\(875\) −0.405486 0.147585i −0.0137079 0.00498927i
\(876\) 0 0
\(877\) 29.9565 + 25.1365i 1.01156 + 0.848799i 0.988544 0.150936i \(-0.0482288\pi\)
0.0230156 + 0.999735i \(0.492673\pi\)
\(878\) 22.8029 + 19.1339i 0.769560 + 0.645737i
\(879\) 0 0
\(880\) 6.80277 + 2.47601i 0.229321 + 0.0834661i
\(881\) 11.4469 19.8266i 0.385657 0.667977i −0.606203 0.795310i \(-0.707308\pi\)
0.991860 + 0.127333i \(0.0406416\pi\)
\(882\) 0 0
\(883\) 8.57546 + 14.8531i 0.288587 + 0.499847i 0.973473 0.228803i \(-0.0734812\pi\)
−0.684886 + 0.728651i \(0.740148\pi\)
\(884\) 0.929073 + 5.26903i 0.0312481 + 0.177217i
\(885\) 0 0
\(886\) −28.6365 + 10.4228i −0.962063 + 0.350162i
\(887\) 3.17030 17.9797i 0.106448 0.603698i −0.884184 0.467139i \(-0.845285\pi\)
0.990632 0.136559i \(-0.0436043\pi\)
\(888\) 0 0
\(889\) 16.8982 14.1793i 0.566747 0.475557i
\(890\) −54.9541 −1.84207
\(891\) 0 0
\(892\) −7.25436 −0.242894
\(893\) 10.0173 8.40554i 0.335217 0.281281i
\(894\) 0 0
\(895\) −8.00783 + 45.4146i −0.267672 + 1.51804i
\(896\) −3.46344 + 1.26059i −0.115706 + 0.0421134i
\(897\) 0 0
\(898\) 2.05619 + 11.6612i 0.0686158 + 0.389140i
\(899\) −1.35764 2.35150i −0.0452797 0.0784268i
\(900\) 0 0
\(901\) 2.22853 3.85993i 0.0742431 0.128593i
\(902\) −15.2037 5.53370i −0.506228 0.184252i
\(903\) 0 0
\(904\) −5.39062 4.52327i −0.179289 0.150442i
\(905\) −31.6077 26.5220i −1.05068 0.881621i
\(906\) 0 0
\(907\) −27.4312 9.98413i −0.910837 0.331518i −0.156250 0.987718i \(-0.549941\pi\)
−0.754587 + 0.656200i \(0.772163\pi\)
\(908\) 14.2636 24.7053i 0.473354 0.819873i
\(909\) 0 0
\(910\) −18.1006 31.3512i −0.600030 1.03928i
\(911\) 9.48742 + 53.8058i 0.314332 + 1.78267i 0.575939 + 0.817493i \(0.304637\pi\)
−0.261607 + 0.965175i \(0.584252\pi\)
\(912\) 0 0
\(913\) −6.65312 + 2.42154i −0.220186 + 0.0801412i
\(914\) −0.0323668 + 0.183561i −0.00107060 + 0.00607167i
\(915\) 0 0
\(916\) 1.42131 1.19262i 0.0469613 0.0394052i
\(917\) 60.5012 1.99793
\(918\) 0 0
\(919\) 41.0995 1.35575 0.677873 0.735179i \(-0.262902\pi\)
0.677873 + 0.735179i \(0.262902\pi\)
\(920\) −8.13767 + 6.82831i −0.268291 + 0.225123i
\(921\) 0 0
\(922\) 1.80687 10.2473i 0.0595061 0.337476i
\(923\) −5.79009 + 2.10742i −0.190583 + 0.0693666i
\(924\) 0 0
\(925\) −6.39130 36.2469i −0.210145 1.19179i
\(926\) −12.8942 22.3334i −0.423730 0.733922i
\(927\) 0 0
\(928\) 0.292722 0.507009i 0.00960907 0.0166434i
\(929\) −13.7158 4.99215i −0.450002 0.163787i 0.107070 0.994251i \(-0.465853\pi\)
−0.557072 + 0.830464i \(0.688075\pi\)
\(930\) 0 0
\(931\) −17.1235 14.3683i −0.561200 0.470902i
\(932\) 6.53795 + 5.48600i 0.214158 + 0.179700i
\(933\) 0 0
\(934\) −20.3924 7.42222i −0.667259 0.242863i
\(935\) 6.24668 10.8196i 0.204288 0.353838i
\(936\) 0 0
\(937\) −12.4641 21.5885i −0.407185 0.705265i 0.587388 0.809305i \(-0.300156\pi\)
−0.994573 + 0.104041i \(0.966823\pi\)
\(938\) −5.50977 31.2474i −0.179900 1.02026i
\(939\) 0 0
\(940\) 11.4676 4.17385i 0.374031 0.136136i
\(941\) 3.61958 20.5277i 0.117995 0.669182i −0.867229 0.497910i \(-0.834101\pi\)
0.985224 0.171273i \(-0.0547879\pi\)
\(942\) 0 0
\(943\) 18.1871 15.2608i 0.592254 0.496960i
\(944\) −9.66319 −0.314510
\(945\) 0 0
\(946\) −3.78845 −0.123173
\(947\) 27.5110 23.0844i 0.893986 0.750143i −0.0750197 0.997182i \(-0.523902\pi\)
0.969006 + 0.247039i \(0.0794575\pi\)
\(948\) 0 0
\(949\) 5.73212 32.5085i 0.186072 1.05527i
\(950\) 16.0682 5.84835i 0.521322 0.189746i
\(951\) 0 0
\(952\) 1.10452 + 6.26402i 0.0357975 + 0.203018i
\(953\) −2.90103 5.02474i −0.0939737 0.162767i 0.815206 0.579171i \(-0.196624\pi\)
−0.909180 + 0.416404i \(0.863290\pi\)
\(954\) 0 0
\(955\) −5.70716 + 9.88509i −0.184679 + 0.319874i
\(956\) 6.84845 + 2.49263i 0.221495 + 0.0806174i
\(957\) 0 0
\(958\) −29.9686 25.1466i −0.968241 0.812451i
\(959\) −0.596190 0.500263i −0.0192520 0.0161543i
\(960\) 0 0
\(961\) 8.91692 + 3.24549i 0.287643 + 0.104693i
\(962\) 11.3272 19.6192i 0.365202 0.632549i
\(963\) 0 0
\(964\) 0.667459 + 1.15607i 0.0214974 + 0.0372346i
\(965\) 0.811381 + 4.60157i 0.0261193 + 0.148130i
\(966\) 0 0
\(967\) −27.8702 + 10.1439i −0.896247 + 0.326207i −0.748748 0.662855i \(-0.769345\pi\)
−0.147499 + 0.989062i \(0.547122\pi\)
\(968\) −1.00342 + 5.69068i −0.0322511 + 0.182905i
\(969\) 0 0
\(970\) 22.3062 18.7171i 0.716209 0.600971i
\(971\) 47.1522 1.51318 0.756592 0.653887i \(-0.226863\pi\)
0.756592 + 0.653887i \(0.226863\pi\)
\(972\) 0 0
\(973\) 13.5322 0.433821
\(974\) −8.03067 + 6.73853i −0.257319 + 0.215916i
\(975\) 0 0
\(976\) 2.27329 12.8925i 0.0727661 0.412677i
\(977\) 22.3675 8.14109i 0.715598 0.260456i 0.0415422 0.999137i \(-0.486773\pi\)
0.674056 + 0.738680i \(0.264551\pi\)
\(978\) 0 0
\(979\) 6.88286 + 39.0346i 0.219977 + 1.24755i
\(980\) −10.4303 18.0657i −0.333183 0.577089i
\(981\) 0 0
\(982\) −3.42851 + 5.93835i −0.109408 + 0.189501i
\(983\) −10.4139 3.79035i −0.332152 0.120894i 0.170560 0.985347i \(-0.445442\pi\)
−0.502712 + 0.864454i \(0.667664\pi\)
\(984\) 0 0
\(985\) 6.16102 + 5.16971i 0.196306 + 0.164721i
\(986\) −0.773960 0.649430i −0.0246479 0.0206821i
\(987\) 0 0
\(988\) 9.89008 + 3.59969i 0.314645 + 0.114522i
\(989\) 2.77957 4.81435i 0.0883851 0.153087i
\(990\) 0 0
\(991\) −5.71846 9.90466i −0.181653 0.314632i 0.760791 0.648997i \(-0.224811\pi\)
−0.942443 + 0.334365i \(0.891478\pi\)
\(992\) −0.805376 4.56751i −0.0255707 0.145019i
\(993\) 0 0
\(994\) −6.88347 + 2.50538i −0.218330 + 0.0794657i
\(995\) −1.01874 + 5.77753i −0.0322961 + 0.183160i
\(996\) 0 0
\(997\) −21.3684 + 17.9303i −0.676745 + 0.567857i −0.915053 0.403333i \(-0.867852\pi\)
0.238308 + 0.971190i \(0.423407\pi\)
\(998\) 18.7737 0.594271
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 486.2.e.h.109.1 12
3.2 odd 2 486.2.e.e.109.2 12
9.2 odd 6 486.2.e.g.433.1 12
9.4 even 3 54.2.e.b.13.1 12
9.5 odd 6 162.2.e.b.91.1 12
9.7 even 3 486.2.e.f.433.2 12
27.2 odd 18 486.2.e.g.55.1 12
27.4 even 9 1458.2.a.g.1.5 6
27.5 odd 18 1458.2.c.g.973.5 12
27.7 even 9 54.2.e.b.25.1 yes 12
27.11 odd 18 486.2.e.e.379.2 12
27.13 even 9 1458.2.c.f.487.2 12
27.14 odd 18 1458.2.c.g.487.5 12
27.16 even 9 inner 486.2.e.h.379.1 12
27.20 odd 18 162.2.e.b.73.1 12
27.22 even 9 1458.2.c.f.973.2 12
27.23 odd 18 1458.2.a.f.1.2 6
27.25 even 9 486.2.e.f.55.2 12
36.31 odd 6 432.2.u.b.337.2 12
108.7 odd 18 432.2.u.b.241.2 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
54.2.e.b.13.1 12 9.4 even 3
54.2.e.b.25.1 yes 12 27.7 even 9
162.2.e.b.73.1 12 27.20 odd 18
162.2.e.b.91.1 12 9.5 odd 6
432.2.u.b.241.2 12 108.7 odd 18
432.2.u.b.337.2 12 36.31 odd 6
486.2.e.e.109.2 12 3.2 odd 2
486.2.e.e.379.2 12 27.11 odd 18
486.2.e.f.55.2 12 27.25 even 9
486.2.e.f.433.2 12 9.7 even 3
486.2.e.g.55.1 12 27.2 odd 18
486.2.e.g.433.1 12 9.2 odd 6
486.2.e.h.109.1 12 1.1 even 1 trivial
486.2.e.h.379.1 12 27.16 even 9 inner
1458.2.a.f.1.2 6 27.23 odd 18
1458.2.a.g.1.5 6 27.4 even 9
1458.2.c.f.487.2 12 27.13 even 9
1458.2.c.f.973.2 12 27.22 even 9
1458.2.c.g.487.5 12 27.14 odd 18
1458.2.c.g.973.5 12 27.5 odd 18