Properties

Label 1458.2.c.g.973.5
Level $1458$
Weight $2$
Character 1458.973
Analytic conductor $11.642$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1458,2,Mod(487,1458)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1458, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1458.487");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1458 = 2 \cdot 3^{6} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1458.c (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.6421886147\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 6 x^{11} + 33 x^{10} - 110 x^{9} + 318 x^{8} - 678 x^{7} + 1225 x^{6} - 1698 x^{5} + 1905 x^{4} + \cdots + 57 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 3^{7} \)
Twist minimal: no (minimal twist has level 54)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 973.5
Root \(0.500000 + 1.74095i\) of defining polynomial
Character \(\chi\) \(=\) 1458.973
Dual form 1458.2.c.g.487.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.500000 + 0.866025i) q^{2} +(-0.500000 + 0.866025i) q^{4} +(1.58406 - 2.74367i) q^{5} +(-1.84286 - 3.19193i) q^{7} -1.00000 q^{8} +3.16812 q^{10} +(-1.14253 - 1.97893i) q^{11} +(-1.55014 + 2.68492i) q^{13} +(1.84286 - 3.19193i) q^{14} +(-0.500000 - 0.866025i) q^{16} -1.72576 q^{17} -3.39480 q^{19} +(1.58406 + 2.74367i) q^{20} +(1.14253 - 1.97893i) q^{22} +(-1.67654 + 2.90386i) q^{23} +(-2.51848 - 4.36213i) q^{25} -3.10027 q^{26} +3.68572 q^{28} +(-0.292722 - 0.507009i) q^{29} +(2.31899 - 4.01660i) q^{31} +(0.500000 - 0.866025i) q^{32} +(-0.862878 - 1.49455i) q^{34} -11.6768 q^{35} -7.30720 q^{37} +(-1.69740 - 2.93998i) q^{38} +(-1.58406 + 2.74367i) q^{40} +(-3.54026 + 6.13191i) q^{41} +(-0.828957 - 1.43580i) q^{43} +2.28507 q^{44} -3.35309 q^{46} +(-1.92599 - 3.33591i) q^{47} +(-3.29226 + 5.70237i) q^{49} +(2.51848 - 4.36213i) q^{50} +(-1.55014 - 2.68492i) q^{52} +2.58267 q^{53} -7.23936 q^{55} +(1.84286 + 3.19193i) q^{56} +(0.292722 - 0.507009i) q^{58} +(-4.83159 + 8.36857i) q^{59} +(-6.54567 - 11.3374i) q^{61} +4.63798 q^{62} +1.00000 q^{64} +(4.91101 + 8.50613i) q^{65} +(4.30438 - 7.45541i) q^{67} +(0.862878 - 1.49455i) q^{68} +(-5.83839 - 10.1124i) q^{70} -1.98746 q^{71} +10.6474 q^{73} +(-3.65360 - 6.32822i) q^{74} +(1.69740 - 2.93998i) q^{76} +(-4.21106 + 7.29377i) q^{77} +(-7.04660 - 12.2051i) q^{79} -3.16812 q^{80} -7.08052 q^{82} +(-1.54921 - 2.68331i) q^{83} +(-2.73370 + 4.73490i) q^{85} +(0.828957 - 1.43580i) q^{86} +(1.14253 + 1.97893i) q^{88} +17.3460 q^{89} +11.4267 q^{91} +(-1.67654 - 2.90386i) q^{92} +(1.92599 - 3.33591i) q^{94} +(-5.37755 + 9.31420i) q^{95} +(-4.59558 - 7.95978i) q^{97} -6.58452 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 6 q^{2} - 6 q^{4} + 3 q^{5} - 6 q^{7} - 12 q^{8} + 6 q^{10} + 3 q^{11} - 9 q^{13} + 6 q^{14} - 6 q^{16} - 12 q^{17} + 18 q^{19} + 3 q^{20} - 3 q^{22} - 3 q^{23} - 15 q^{25} - 18 q^{26} + 12 q^{28}+ \cdots - 24 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1458\mathbb{Z}\right)^\times\).

\(n\) \(731\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.500000 + 0.866025i 0.353553 + 0.612372i
\(3\) 0 0
\(4\) −0.500000 + 0.866025i −0.250000 + 0.433013i
\(5\) 1.58406 2.74367i 0.708412 1.22701i −0.257034 0.966402i \(-0.582745\pi\)
0.965446 0.260603i \(-0.0839215\pi\)
\(6\) 0 0
\(7\) −1.84286 3.19193i −0.696535 1.20643i −0.969660 0.244456i \(-0.921391\pi\)
0.273125 0.961979i \(-0.411943\pi\)
\(8\) −1.00000 −0.353553
\(9\) 0 0
\(10\) 3.16812 1.00185
\(11\) −1.14253 1.97893i −0.344487 0.596669i 0.640774 0.767730i \(-0.278614\pi\)
−0.985260 + 0.171061i \(0.945280\pi\)
\(12\) 0 0
\(13\) −1.55014 + 2.68492i −0.429931 + 0.744662i −0.996867 0.0791000i \(-0.974795\pi\)
0.566936 + 0.823762i \(0.308129\pi\)
\(14\) 1.84286 3.19193i 0.492525 0.853078i
\(15\) 0 0
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) −1.72576 −0.418557 −0.209279 0.977856i \(-0.567112\pi\)
−0.209279 + 0.977856i \(0.567112\pi\)
\(18\) 0 0
\(19\) −3.39480 −0.778820 −0.389410 0.921065i \(-0.627321\pi\)
−0.389410 + 0.921065i \(0.627321\pi\)
\(20\) 1.58406 + 2.74367i 0.354206 + 0.613503i
\(21\) 0 0
\(22\) 1.14253 1.97893i 0.243589 0.421909i
\(23\) −1.67654 + 2.90386i −0.349584 + 0.605497i −0.986175 0.165704i \(-0.947010\pi\)
0.636592 + 0.771201i \(0.280344\pi\)
\(24\) 0 0
\(25\) −2.51848 4.36213i −0.503695 0.872426i
\(26\) −3.10027 −0.608014
\(27\) 0 0
\(28\) 3.68572 0.696535
\(29\) −0.292722 0.507009i −0.0543571 0.0941493i 0.837566 0.546335i \(-0.183978\pi\)
−0.891924 + 0.452186i \(0.850644\pi\)
\(30\) 0 0
\(31\) 2.31899 4.01660i 0.416502 0.721403i −0.579082 0.815269i \(-0.696589\pi\)
0.995585 + 0.0938656i \(0.0299224\pi\)
\(32\) 0.500000 0.866025i 0.0883883 0.153093i
\(33\) 0 0
\(34\) −0.862878 1.49455i −0.147982 0.256313i
\(35\) −11.6768 −1.97374
\(36\) 0 0
\(37\) −7.30720 −1.20130 −0.600648 0.799514i \(-0.705091\pi\)
−0.600648 + 0.799514i \(0.705091\pi\)
\(38\) −1.69740 2.93998i −0.275354 0.476928i
\(39\) 0 0
\(40\) −1.58406 + 2.74367i −0.250462 + 0.433812i
\(41\) −3.54026 + 6.13191i −0.552895 + 0.957643i 0.445169 + 0.895447i \(0.353144\pi\)
−0.998064 + 0.0621961i \(0.980190\pi\)
\(42\) 0 0
\(43\) −0.828957 1.43580i −0.126415 0.218957i 0.795870 0.605467i \(-0.207014\pi\)
−0.922285 + 0.386510i \(0.873680\pi\)
\(44\) 2.28507 0.344487
\(45\) 0 0
\(46\) −3.35309 −0.494386
\(47\) −1.92599 3.33591i −0.280935 0.486593i 0.690681 0.723160i \(-0.257311\pi\)
−0.971615 + 0.236567i \(0.923978\pi\)
\(48\) 0 0
\(49\) −3.29226 + 5.70237i −0.470323 + 0.814624i
\(50\) 2.51848 4.36213i 0.356166 0.616898i
\(51\) 0 0
\(52\) −1.55014 2.68492i −0.214965 0.372331i
\(53\) 2.58267 0.354757 0.177379 0.984143i \(-0.443238\pi\)
0.177379 + 0.984143i \(0.443238\pi\)
\(54\) 0 0
\(55\) −7.23936 −0.976155
\(56\) 1.84286 + 3.19193i 0.246262 + 0.426539i
\(57\) 0 0
\(58\) 0.292722 0.507009i 0.0384363 0.0665736i
\(59\) −4.83159 + 8.36857i −0.629020 + 1.08949i 0.358729 + 0.933442i \(0.383210\pi\)
−0.987749 + 0.156053i \(0.950123\pi\)
\(60\) 0 0
\(61\) −6.54567 11.3374i −0.838087 1.45161i −0.891492 0.453036i \(-0.850341\pi\)
0.0534049 0.998573i \(-0.482993\pi\)
\(62\) 4.63798 0.589023
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 4.91101 + 8.50613i 0.609136 + 1.05506i
\(66\) 0 0
\(67\) 4.30438 7.45541i 0.525864 0.910823i −0.473682 0.880696i \(-0.657075\pi\)
0.999546 0.0301270i \(-0.00959118\pi\)
\(68\) 0.862878 1.49455i 0.104639 0.181241i
\(69\) 0 0
\(70\) −5.83839 10.1124i −0.697821 1.20866i
\(71\) −1.98746 −0.235869 −0.117934 0.993021i \(-0.537627\pi\)
−0.117934 + 0.993021i \(0.537627\pi\)
\(72\) 0 0
\(73\) 10.6474 1.24619 0.623094 0.782147i \(-0.285876\pi\)
0.623094 + 0.782147i \(0.285876\pi\)
\(74\) −3.65360 6.32822i −0.424722 0.735640i
\(75\) 0 0
\(76\) 1.69740 2.93998i 0.194705 0.337239i
\(77\) −4.21106 + 7.29377i −0.479895 + 0.831202i
\(78\) 0 0
\(79\) −7.04660 12.2051i −0.792804 1.37318i −0.924224 0.381850i \(-0.875287\pi\)
0.131420 0.991327i \(-0.458046\pi\)
\(80\) −3.16812 −0.354206
\(81\) 0 0
\(82\) −7.08052 −0.781912
\(83\) −1.54921 2.68331i −0.170048 0.294532i 0.768388 0.639984i \(-0.221059\pi\)
−0.938436 + 0.345452i \(0.887726\pi\)
\(84\) 0 0
\(85\) −2.73370 + 4.73490i −0.296511 + 0.513572i
\(86\) 0.828957 1.43580i 0.0893888 0.154826i
\(87\) 0 0
\(88\) 1.14253 + 1.97893i 0.121795 + 0.210954i
\(89\) 17.3460 1.83867 0.919336 0.393472i \(-0.128726\pi\)
0.919336 + 0.393472i \(0.128726\pi\)
\(90\) 0 0
\(91\) 11.4267 1.19785
\(92\) −1.67654 2.90386i −0.174792 0.302748i
\(93\) 0 0
\(94\) 1.92599 3.33591i 0.198651 0.344073i
\(95\) −5.37755 + 9.31420i −0.551725 + 0.955616i
\(96\) 0 0
\(97\) −4.59558 7.95978i −0.466611 0.808193i 0.532662 0.846328i \(-0.321192\pi\)
−0.999273 + 0.0381347i \(0.987858\pi\)
\(98\) −6.58452 −0.665137
\(99\) 0 0
\(100\) 5.03695 0.503695
\(101\) 5.98009 + 10.3578i 0.595041 + 1.03064i 0.993541 + 0.113473i \(0.0361976\pi\)
−0.398500 + 0.917168i \(0.630469\pi\)
\(102\) 0 0
\(103\) 6.37324 11.0388i 0.627974 1.08768i −0.359984 0.932958i \(-0.617218\pi\)
0.987958 0.154724i \(-0.0494488\pi\)
\(104\) 1.55014 2.68492i 0.152003 0.263278i
\(105\) 0 0
\(106\) 1.29134 + 2.23666i 0.125426 + 0.217244i
\(107\) −6.09894 −0.589607 −0.294803 0.955558i \(-0.595254\pi\)
−0.294803 + 0.955558i \(0.595254\pi\)
\(108\) 0 0
\(109\) 11.2390 1.07650 0.538250 0.842785i \(-0.319086\pi\)
0.538250 + 0.842785i \(0.319086\pi\)
\(110\) −3.61968 6.26947i −0.345123 0.597770i
\(111\) 0 0
\(112\) −1.84286 + 3.19193i −0.174134 + 0.301609i
\(113\) −3.51848 + 6.09418i −0.330990 + 0.573292i −0.982706 0.185171i \(-0.940716\pi\)
0.651716 + 0.758463i \(0.274049\pi\)
\(114\) 0 0
\(115\) 5.31149 + 9.19976i 0.495299 + 0.857882i
\(116\) 0.585444 0.0543571
\(117\) 0 0
\(118\) −9.66319 −0.889568
\(119\) 3.18032 + 5.50848i 0.291540 + 0.504962i
\(120\) 0 0
\(121\) 2.88923 5.00430i 0.262658 0.454936i
\(122\) 6.54567 11.3374i 0.592617 1.02644i
\(123\) 0 0
\(124\) 2.31899 + 4.01660i 0.208251 + 0.360702i
\(125\) −0.117076 −0.0104716
\(126\) 0 0
\(127\) 5.98500 0.531082 0.265541 0.964100i \(-0.414449\pi\)
0.265541 + 0.964100i \(0.414449\pi\)
\(128\) 0.500000 + 0.866025i 0.0441942 + 0.0765466i
\(129\) 0 0
\(130\) −4.91101 + 8.50613i −0.430724 + 0.746037i
\(131\) 8.20752 14.2158i 0.717094 1.24204i −0.245052 0.969510i \(-0.578805\pi\)
0.962146 0.272533i \(-0.0878615\pi\)
\(132\) 0 0
\(133\) 6.25613 + 10.8359i 0.542476 + 0.939595i
\(134\) 8.60876 0.743684
\(135\) 0 0
\(136\) 1.72576 0.147982
\(137\) −0.105579 0.182869i −0.00902025 0.0156235i 0.861480 0.507791i \(-0.169538\pi\)
−0.870500 + 0.492168i \(0.836205\pi\)
\(138\) 0 0
\(139\) −1.83576 + 3.17962i −0.155707 + 0.269692i −0.933316 0.359056i \(-0.883099\pi\)
0.777609 + 0.628748i \(0.216432\pi\)
\(140\) 5.83839 10.1124i 0.493434 0.854653i
\(141\) 0 0
\(142\) −0.993732 1.72119i −0.0833921 0.144439i
\(143\) 7.08434 0.592422
\(144\) 0 0
\(145\) −1.85475 −0.154029
\(146\) 5.32371 + 9.22094i 0.440594 + 0.763131i
\(147\) 0 0
\(148\) 3.65360 6.32822i 0.300324 0.520176i
\(149\) 7.73720 13.4012i 0.633856 1.09787i −0.352900 0.935661i \(-0.614805\pi\)
0.986756 0.162210i \(-0.0518621\pi\)
\(150\) 0 0
\(151\) −10.0729 17.4467i −0.819718 1.41979i −0.905890 0.423513i \(-0.860797\pi\)
0.0861724 0.996280i \(-0.472536\pi\)
\(152\) 3.39480 0.275354
\(153\) 0 0
\(154\) −8.42212 −0.678673
\(155\) −7.34682 12.7251i −0.590111 1.02210i
\(156\) 0 0
\(157\) −8.99872 + 15.5862i −0.718176 + 1.24392i 0.243546 + 0.969889i \(0.421689\pi\)
−0.961722 + 0.274028i \(0.911644\pi\)
\(158\) 7.04660 12.2051i 0.560597 0.970983i
\(159\) 0 0
\(160\) −1.58406 2.74367i −0.125231 0.216906i
\(161\) 12.3585 0.973989
\(162\) 0 0
\(163\) 3.05289 0.239121 0.119560 0.992827i \(-0.461851\pi\)
0.119560 + 0.992827i \(0.461851\pi\)
\(164\) −3.54026 6.13191i −0.276448 0.478821i
\(165\) 0 0
\(166\) 1.54921 2.68331i 0.120242 0.208265i
\(167\) −2.05060 + 3.55174i −0.158680 + 0.274842i −0.934393 0.356244i \(-0.884057\pi\)
0.775713 + 0.631086i \(0.217390\pi\)
\(168\) 0 0
\(169\) 1.69415 + 2.93435i 0.130319 + 0.225719i
\(170\) −5.46739 −0.419330
\(171\) 0 0
\(172\) 1.65791 0.126415
\(173\) −8.51355 14.7459i −0.647273 1.12111i −0.983771 0.179426i \(-0.942576\pi\)
0.336498 0.941684i \(-0.390757\pi\)
\(174\) 0 0
\(175\) −9.28240 + 16.0776i −0.701683 + 1.21535i
\(176\) −1.14253 + 1.97893i −0.0861217 + 0.149167i
\(177\) 0 0
\(178\) 8.67300 + 15.0221i 0.650069 + 1.12595i
\(179\) 14.5560 1.08797 0.543985 0.839095i \(-0.316915\pi\)
0.543985 + 0.839095i \(0.316915\pi\)
\(180\) 0 0
\(181\) −13.0238 −0.968052 −0.484026 0.875054i \(-0.660826\pi\)
−0.484026 + 0.875054i \(0.660826\pi\)
\(182\) 5.71337 + 9.89585i 0.423503 + 0.733529i
\(183\) 0 0
\(184\) 1.67654 2.90386i 0.123596 0.214075i
\(185\) −11.5750 + 20.0485i −0.851013 + 1.47400i
\(186\) 0 0
\(187\) 1.97173 + 3.41514i 0.144187 + 0.249740i
\(188\) 3.85198 0.280935
\(189\) 0 0
\(190\) −10.7551 −0.780258
\(191\) 1.80144 + 3.12018i 0.130347 + 0.225768i 0.923811 0.382850i \(-0.125057\pi\)
−0.793463 + 0.608618i \(0.791724\pi\)
\(192\) 0 0
\(193\) −0.737435 + 1.27727i −0.0530817 + 0.0919402i −0.891345 0.453325i \(-0.850238\pi\)
0.838264 + 0.545265i \(0.183571\pi\)
\(194\) 4.59558 7.95978i 0.329944 0.571479i
\(195\) 0 0
\(196\) −3.29226 5.70237i −0.235162 0.407312i
\(197\) −2.53862 −0.180869 −0.0904346 0.995902i \(-0.528826\pi\)
−0.0904346 + 0.995902i \(0.528826\pi\)
\(198\) 0 0
\(199\) −1.85178 −0.131269 −0.0656347 0.997844i \(-0.520907\pi\)
−0.0656347 + 0.997844i \(0.520907\pi\)
\(200\) 2.51848 + 4.36213i 0.178083 + 0.308449i
\(201\) 0 0
\(202\) −5.98009 + 10.3578i −0.420758 + 0.728774i
\(203\) −1.07889 + 1.86869i −0.0757233 + 0.131157i
\(204\) 0 0
\(205\) 11.2159 + 19.4266i 0.783356 + 1.35681i
\(206\) 12.7465 0.888089
\(207\) 0 0
\(208\) 3.10027 0.214965
\(209\) 3.87867 + 6.71805i 0.268293 + 0.464697i
\(210\) 0 0
\(211\) 9.49415 16.4443i 0.653604 1.13208i −0.328638 0.944456i \(-0.606590\pi\)
0.982242 0.187619i \(-0.0600771\pi\)
\(212\) −1.29134 + 2.23666i −0.0886893 + 0.153614i
\(213\) 0 0
\(214\) −3.04947 5.28184i −0.208457 0.361059i
\(215\) −5.25247 −0.358215
\(216\) 0 0
\(217\) −17.0943 −1.16043
\(218\) 5.61950 + 9.73326i 0.380600 + 0.659219i
\(219\) 0 0
\(220\) 3.61968 6.26947i 0.244039 0.422687i
\(221\) 2.67516 4.63351i 0.179951 0.311684i
\(222\) 0 0
\(223\) 3.62718 + 6.28246i 0.242894 + 0.420705i 0.961537 0.274674i \(-0.0885699\pi\)
−0.718643 + 0.695379i \(0.755237\pi\)
\(224\) −3.68572 −0.246262
\(225\) 0 0
\(226\) −7.03695 −0.468091
\(227\) −14.2636 24.7053i −0.946708 1.63975i −0.752296 0.658825i \(-0.771054\pi\)
−0.194412 0.980920i \(-0.562280\pi\)
\(228\) 0 0
\(229\) −0.927691 + 1.60681i −0.0613036 + 0.106181i −0.895048 0.445969i \(-0.852859\pi\)
0.833745 + 0.552150i \(0.186192\pi\)
\(230\) −5.31149 + 9.19976i −0.350229 + 0.606614i
\(231\) 0 0
\(232\) 0.292722 + 0.507009i 0.0192181 + 0.0332868i
\(233\) −8.53469 −0.559126 −0.279563 0.960127i \(-0.590190\pi\)
−0.279563 + 0.960127i \(0.590190\pi\)
\(234\) 0 0
\(235\) −12.2035 −0.796070
\(236\) −4.83159 8.36857i −0.314510 0.544747i
\(237\) 0 0
\(238\) −3.18032 + 5.50848i −0.206150 + 0.357062i
\(239\) −3.64398 + 6.31156i −0.235710 + 0.408261i −0.959479 0.281781i \(-0.909075\pi\)
0.723769 + 0.690042i \(0.242408\pi\)
\(240\) 0 0
\(241\) 0.667459 + 1.15607i 0.0429948 + 0.0744692i 0.886722 0.462303i \(-0.152977\pi\)
−0.843727 + 0.536772i \(0.819643\pi\)
\(242\) 5.77847 0.371454
\(243\) 0 0
\(244\) 13.0913 0.838087
\(245\) 10.4303 + 18.0657i 0.666365 + 1.15418i
\(246\) 0 0
\(247\) 5.26240 9.11475i 0.334839 0.579957i
\(248\) −2.31899 + 4.01660i −0.147256 + 0.255055i
\(249\) 0 0
\(250\) −0.0585380 0.101391i −0.00370227 0.00641251i
\(251\) 2.87856 0.181693 0.0908466 0.995865i \(-0.471043\pi\)
0.0908466 + 0.995865i \(0.471043\pi\)
\(252\) 0 0
\(253\) 7.66203 0.481708
\(254\) 2.99250 + 5.18316i 0.187766 + 0.325220i
\(255\) 0 0
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) −12.8890 + 22.3243i −0.803991 + 1.39255i 0.112979 + 0.993597i \(0.463961\pi\)
−0.916970 + 0.398956i \(0.869373\pi\)
\(258\) 0 0
\(259\) 13.4661 + 23.3240i 0.836745 + 1.44929i
\(260\) −9.82203 −0.609136
\(261\) 0 0
\(262\) 16.4150 1.01412
\(263\) −7.53485 13.0507i −0.464619 0.804743i 0.534566 0.845127i \(-0.320475\pi\)
−0.999184 + 0.0403840i \(0.987142\pi\)
\(264\) 0 0
\(265\) 4.09110 7.08599i 0.251314 0.435289i
\(266\) −6.25613 + 10.8359i −0.383588 + 0.664394i
\(267\) 0 0
\(268\) 4.30438 + 7.45541i 0.262932 + 0.455411i
\(269\) −16.0615 −0.979286 −0.489643 0.871923i \(-0.662873\pi\)
−0.489643 + 0.871923i \(0.662873\pi\)
\(270\) 0 0
\(271\) 9.41446 0.571888 0.285944 0.958246i \(-0.407693\pi\)
0.285944 + 0.958246i \(0.407693\pi\)
\(272\) 0.862878 + 1.49455i 0.0523196 + 0.0906203i
\(273\) 0 0
\(274\) 0.105579 0.182869i 0.00637828 0.0110475i
\(275\) −5.75489 + 9.96776i −0.347033 + 0.601079i
\(276\) 0 0
\(277\) −2.78738 4.82788i −0.167477 0.290079i 0.770055 0.637978i \(-0.220229\pi\)
−0.937532 + 0.347898i \(0.886895\pi\)
\(278\) −3.67151 −0.220203
\(279\) 0 0
\(280\) 11.6768 0.697821
\(281\) 14.0024 + 24.2529i 0.835313 + 1.44680i 0.893775 + 0.448515i \(0.148047\pi\)
−0.0584622 + 0.998290i \(0.518620\pi\)
\(282\) 0 0
\(283\) −3.07761 + 5.33058i −0.182945 + 0.316870i −0.942882 0.333127i \(-0.891896\pi\)
0.759937 + 0.649996i \(0.225230\pi\)
\(284\) 0.993732 1.72119i 0.0589671 0.102134i
\(285\) 0 0
\(286\) 3.54217 + 6.13522i 0.209453 + 0.362783i
\(287\) 26.0968 1.54044
\(288\) 0 0
\(289\) −14.0218 −0.824810
\(290\) −0.927377 1.60626i −0.0544575 0.0943231i
\(291\) 0 0
\(292\) −5.32371 + 9.22094i −0.311547 + 0.539615i
\(293\) 1.16755 2.02226i 0.0682090 0.118141i −0.829904 0.557906i \(-0.811605\pi\)
0.898113 + 0.439765i \(0.144938\pi\)
\(294\) 0 0
\(295\) 15.3070 + 26.5126i 0.891211 + 1.54362i
\(296\) 7.30720 0.424722
\(297\) 0 0
\(298\) 15.4744 0.896408
\(299\) −5.19775 9.00276i −0.300594 0.520643i
\(300\) 0 0
\(301\) −3.05530 + 5.29194i −0.176105 + 0.305022i
\(302\) 10.0729 17.4467i 0.579628 1.00395i
\(303\) 0 0
\(304\) 1.69740 + 2.93998i 0.0973525 + 0.168619i
\(305\) −41.4749 −2.37484
\(306\) 0 0
\(307\) 6.82529 0.389540 0.194770 0.980849i \(-0.437604\pi\)
0.194770 + 0.980849i \(0.437604\pi\)
\(308\) −4.21106 7.29377i −0.239947 0.415601i
\(309\) 0 0
\(310\) 7.34682 12.7251i 0.417271 0.722735i
\(311\) 4.29761 7.44368i 0.243695 0.422092i −0.718069 0.695972i \(-0.754974\pi\)
0.961764 + 0.273880i \(0.0883071\pi\)
\(312\) 0 0
\(313\) 10.8344 + 18.7658i 0.612399 + 1.06071i 0.990835 + 0.135079i \(0.0431288\pi\)
−0.378436 + 0.925628i \(0.623538\pi\)
\(314\) −17.9974 −1.01565
\(315\) 0 0
\(316\) 14.0932 0.792804
\(317\) 17.6600 + 30.5880i 0.991883 + 1.71799i 0.606059 + 0.795420i \(0.292750\pi\)
0.385824 + 0.922572i \(0.373917\pi\)
\(318\) 0 0
\(319\) −0.668890 + 1.15855i −0.0374506 + 0.0648664i
\(320\) 1.58406 2.74367i 0.0885515 0.153376i
\(321\) 0 0
\(322\) 6.17927 + 10.7028i 0.344357 + 0.596444i
\(323\) 5.85859 0.325981
\(324\) 0 0
\(325\) 15.6159 0.866217
\(326\) 1.52645 + 2.64388i 0.0845420 + 0.146431i
\(327\) 0 0
\(328\) 3.54026 6.13191i 0.195478 0.338578i
\(329\) −7.09866 + 12.2952i −0.391362 + 0.677859i
\(330\) 0 0
\(331\) 12.9068 + 22.3553i 0.709423 + 1.22876i 0.965071 + 0.261987i \(0.0843778\pi\)
−0.255648 + 0.966770i \(0.582289\pi\)
\(332\) 3.09842 0.170048
\(333\) 0 0
\(334\) −4.10119 −0.224407
\(335\) −13.6368 23.6196i −0.745057 1.29048i
\(336\) 0 0
\(337\) 1.69229 2.93114i 0.0921851 0.159669i −0.816245 0.577706i \(-0.803948\pi\)
0.908430 + 0.418036i \(0.137282\pi\)
\(338\) −1.69415 + 2.93435i −0.0921495 + 0.159608i
\(339\) 0 0
\(340\) −2.73370 4.73490i −0.148255 0.256786i
\(341\) −10.5981 −0.573919
\(342\) 0 0
\(343\) −1.53133 −0.0826839
\(344\) 0.828957 + 1.43580i 0.0446944 + 0.0774130i
\(345\) 0 0
\(346\) 8.51355 14.7459i 0.457691 0.792744i
\(347\) −8.10001 + 14.0296i −0.434831 + 0.753150i −0.997282 0.0736809i \(-0.976525\pi\)
0.562450 + 0.826831i \(0.309859\pi\)
\(348\) 0 0
\(349\) −2.24627 3.89065i −0.120240 0.208261i 0.799622 0.600503i \(-0.205033\pi\)
−0.919862 + 0.392242i \(0.871700\pi\)
\(350\) −18.5648 −0.992330
\(351\) 0 0
\(352\) −2.28507 −0.121795
\(353\) −11.6133 20.1149i −0.618116 1.07061i −0.989829 0.142260i \(-0.954563\pi\)
0.371714 0.928347i \(-0.378770\pi\)
\(354\) 0 0
\(355\) −3.14826 + 5.45294i −0.167092 + 0.289412i
\(356\) −8.67300 + 15.0221i −0.459668 + 0.796169i
\(357\) 0 0
\(358\) 7.27802 + 12.6059i 0.384656 + 0.666243i
\(359\) 11.5539 0.609794 0.304897 0.952385i \(-0.401378\pi\)
0.304897 + 0.952385i \(0.401378\pi\)
\(360\) 0 0
\(361\) −7.47535 −0.393440
\(362\) −6.51190 11.2789i −0.342258 0.592808i
\(363\) 0 0
\(364\) −5.71337 + 9.89585i −0.299462 + 0.518683i
\(365\) 16.8661 29.2130i 0.882814 1.52908i
\(366\) 0 0
\(367\) −7.78486 13.4838i −0.406366 0.703847i 0.588113 0.808779i \(-0.299871\pi\)
−0.994479 + 0.104932i \(0.966538\pi\)
\(368\) 3.35309 0.174792
\(369\) 0 0
\(370\) −23.1500 −1.20351
\(371\) −4.75950 8.24370i −0.247101 0.427991i
\(372\) 0 0
\(373\) 4.87863 8.45004i 0.252606 0.437526i −0.711637 0.702548i \(-0.752046\pi\)
0.964243 + 0.265021i \(0.0853790\pi\)
\(374\) −1.97173 + 3.41514i −0.101956 + 0.176593i
\(375\) 0 0
\(376\) 1.92599 + 3.33591i 0.0993254 + 0.172037i
\(377\) 1.81504 0.0934792
\(378\) 0 0
\(379\) −18.7904 −0.965197 −0.482599 0.875842i \(-0.660307\pi\)
−0.482599 + 0.875842i \(0.660307\pi\)
\(380\) −5.37755 9.31420i −0.275863 0.477808i
\(381\) 0 0
\(382\) −1.80144 + 3.12018i −0.0921695 + 0.159642i
\(383\) 15.3840 26.6459i 0.786086 1.36154i −0.142262 0.989829i \(-0.545437\pi\)
0.928348 0.371712i \(-0.121229\pi\)
\(384\) 0 0
\(385\) 13.3411 + 23.1075i 0.679926 + 1.17767i
\(386\) −1.47487 −0.0750689
\(387\) 0 0
\(388\) 9.19117 0.466611
\(389\) 14.8003 + 25.6349i 0.750407 + 1.29974i 0.947626 + 0.319383i \(0.103476\pi\)
−0.197219 + 0.980359i \(0.563191\pi\)
\(390\) 0 0
\(391\) 2.89330 5.01135i 0.146321 0.253435i
\(392\) 3.29226 5.70237i 0.166284 0.288013i
\(393\) 0 0
\(394\) −1.26931 2.19851i −0.0639469 0.110759i
\(395\) −44.6489 −2.24653
\(396\) 0 0
\(397\) 16.1427 0.810178 0.405089 0.914277i \(-0.367241\pi\)
0.405089 + 0.914277i \(0.367241\pi\)
\(398\) −0.925891 1.60369i −0.0464107 0.0803858i
\(399\) 0 0
\(400\) −2.51848 + 4.36213i −0.125924 + 0.218107i
\(401\) 12.6812 21.9645i 0.633268 1.09685i −0.353611 0.935393i \(-0.615046\pi\)
0.986879 0.161460i \(-0.0516204\pi\)
\(402\) 0 0
\(403\) 7.18950 + 12.4526i 0.358134 + 0.620307i
\(404\) −11.9602 −0.595041
\(405\) 0 0
\(406\) −2.15778 −0.107089
\(407\) 8.34872 + 14.4604i 0.413831 + 0.716776i
\(408\) 0 0
\(409\) 11.3857 19.7205i 0.562984 0.975118i −0.434250 0.900793i \(-0.642986\pi\)
0.997234 0.0743250i \(-0.0236802\pi\)
\(410\) −11.2159 + 19.4266i −0.553916 + 0.959411i
\(411\) 0 0
\(412\) 6.37324 + 11.0388i 0.313987 + 0.543841i
\(413\) 35.6158 1.75254
\(414\) 0 0
\(415\) −9.81616 −0.481856
\(416\) 1.55014 + 2.68492i 0.0760017 + 0.131639i
\(417\) 0 0
\(418\) −3.87867 + 6.71805i −0.189712 + 0.328591i
\(419\) −2.46138 + 4.26323i −0.120246 + 0.208273i −0.919865 0.392236i \(-0.871702\pi\)
0.799619 + 0.600508i \(0.205035\pi\)
\(420\) 0 0
\(421\) −9.85880 17.0759i −0.480489 0.832231i 0.519261 0.854616i \(-0.326207\pi\)
−0.999749 + 0.0223851i \(0.992874\pi\)
\(422\) 18.9883 0.924336
\(423\) 0 0
\(424\) −2.58267 −0.125426
\(425\) 4.34628 + 7.52797i 0.210825 + 0.365160i
\(426\) 0 0
\(427\) −24.1255 + 41.7866i −1.16751 + 2.02219i
\(428\) 3.04947 5.28184i 0.147402 0.255307i
\(429\) 0 0
\(430\) −2.62623 4.54877i −0.126648 0.219361i
\(431\) 6.16323 0.296873 0.148436 0.988922i \(-0.452576\pi\)
0.148436 + 0.988922i \(0.452576\pi\)
\(432\) 0 0
\(433\) −14.7838 −0.710466 −0.355233 0.934778i \(-0.615599\pi\)
−0.355233 + 0.934778i \(0.615599\pi\)
\(434\) −8.54714 14.8041i −0.410276 0.710618i
\(435\) 0 0
\(436\) −5.61950 + 9.73326i −0.269125 + 0.466138i
\(437\) 5.69153 9.85801i 0.272263 0.471573i
\(438\) 0 0
\(439\) −14.8835 25.7790i −0.710352 1.23037i −0.964725 0.263259i \(-0.915203\pi\)
0.254374 0.967106i \(-0.418131\pi\)
\(440\) 7.23936 0.345123
\(441\) 0 0
\(442\) 5.35032 0.254489
\(443\) 15.2372 + 26.3916i 0.723940 + 1.25390i 0.959409 + 0.282020i \(0.0910043\pi\)
−0.235468 + 0.971882i \(0.575662\pi\)
\(444\) 0 0
\(445\) 27.4771 47.5917i 1.30254 2.25606i
\(446\) −3.62718 + 6.28246i −0.171752 + 0.297483i
\(447\) 0 0
\(448\) −1.84286 3.19193i −0.0870669 0.150804i
\(449\) −11.8411 −0.558816 −0.279408 0.960172i \(-0.590138\pi\)
−0.279408 + 0.960172i \(0.590138\pi\)
\(450\) 0 0
\(451\) 16.1795 0.761861
\(452\) −3.51848 6.09418i −0.165495 0.286646i
\(453\) 0 0
\(454\) 14.2636 24.7053i 0.669423 1.15948i
\(455\) 18.1006 31.3512i 0.848570 1.46977i
\(456\) 0 0
\(457\) 0.0931965 + 0.161421i 0.00435955 + 0.00755096i 0.868197 0.496220i \(-0.165279\pi\)
−0.863837 + 0.503771i \(0.831946\pi\)
\(458\) −1.85538 −0.0866963
\(459\) 0 0
\(460\) −10.6230 −0.495299
\(461\) 5.20268 + 9.01130i 0.242313 + 0.419698i 0.961373 0.275250i \(-0.0887607\pi\)
−0.719060 + 0.694948i \(0.755427\pi\)
\(462\) 0 0
\(463\) −12.8942 + 22.3334i −0.599245 + 1.03792i 0.393688 + 0.919244i \(0.371199\pi\)
−0.992933 + 0.118678i \(0.962134\pi\)
\(464\) −0.292722 + 0.507009i −0.0135893 + 0.0235373i
\(465\) 0 0
\(466\) −4.26735 7.39126i −0.197681 0.342394i
\(467\) −21.7011 −1.00421 −0.502104 0.864807i \(-0.667441\pi\)
−0.502104 + 0.864807i \(0.667441\pi\)
\(468\) 0 0
\(469\) −31.7295 −1.46513
\(470\) −6.10176 10.5686i −0.281453 0.487491i
\(471\) 0 0
\(472\) 4.83159 8.36857i 0.222392 0.385194i
\(473\) −1.89422 + 3.28089i −0.0870965 + 0.150856i
\(474\) 0 0
\(475\) 8.54972 + 14.8085i 0.392288 + 0.679463i
\(476\) −6.36065 −0.291540
\(477\) 0 0
\(478\) −7.28796 −0.333344
\(479\) −19.5606 33.8800i −0.893747 1.54802i −0.835348 0.549722i \(-0.814734\pi\)
−0.0583996 0.998293i \(-0.518600\pi\)
\(480\) 0 0
\(481\) 11.3272 19.6192i 0.516474 0.894559i
\(482\) −0.667459 + 1.15607i −0.0304019 + 0.0526577i
\(483\) 0 0
\(484\) 2.88923 + 5.00430i 0.131329 + 0.227468i
\(485\) −29.1187 −1.32221
\(486\) 0 0
\(487\) −10.4833 −0.475043 −0.237522 0.971382i \(-0.576335\pi\)
−0.237522 + 0.971382i \(0.576335\pi\)
\(488\) 6.54567 + 11.3374i 0.296309 + 0.513221i
\(489\) 0 0
\(490\) −10.4303 + 18.0657i −0.471191 + 0.816127i
\(491\) 3.42851 5.93835i 0.154727 0.267994i −0.778233 0.627976i \(-0.783884\pi\)
0.932959 + 0.359982i \(0.117217\pi\)
\(492\) 0 0
\(493\) 0.505167 + 0.874974i 0.0227516 + 0.0394069i
\(494\) 10.5248 0.473533
\(495\) 0 0
\(496\) −4.63798 −0.208251
\(497\) 3.66262 + 6.34384i 0.164291 + 0.284560i
\(498\) 0 0
\(499\) −9.38685 + 16.2585i −0.420213 + 0.727831i −0.995960 0.0897973i \(-0.971378\pi\)
0.575747 + 0.817628i \(0.304711\pi\)
\(500\) 0.0585380 0.101391i 0.00261790 0.00453433i
\(501\) 0 0
\(502\) 1.43928 + 2.49291i 0.0642382 + 0.111264i
\(503\) 12.4270 0.554092 0.277046 0.960857i \(-0.410644\pi\)
0.277046 + 0.960857i \(0.410644\pi\)
\(504\) 0 0
\(505\) 37.8912 1.68614
\(506\) 3.83102 + 6.63552i 0.170309 + 0.294985i
\(507\) 0 0
\(508\) −2.99250 + 5.18316i −0.132771 + 0.229965i
\(509\) 16.4889 28.5595i 0.730856 1.26588i −0.225662 0.974206i \(-0.572455\pi\)
0.956518 0.291674i \(-0.0942121\pi\)
\(510\) 0 0
\(511\) −19.6217 33.9858i −0.868014 1.50344i
\(512\) −1.00000 −0.0441942
\(513\) 0 0
\(514\) −25.7779 −1.13702
\(515\) −20.1912 34.9721i −0.889728 1.54105i
\(516\) 0 0
\(517\) −4.40102 + 7.62279i −0.193557 + 0.335250i
\(518\) −13.4661 + 23.3240i −0.591668 + 1.02480i
\(519\) 0 0
\(520\) −4.91101 8.50613i −0.215362 0.373018i
\(521\) −14.3320 −0.627895 −0.313947 0.949440i \(-0.601652\pi\)
−0.313947 + 0.949440i \(0.601652\pi\)
\(522\) 0 0
\(523\) −5.70884 −0.249630 −0.124815 0.992180i \(-0.539834\pi\)
−0.124815 + 0.992180i \(0.539834\pi\)
\(524\) 8.20752 + 14.2158i 0.358547 + 0.621022i
\(525\) 0 0
\(526\) 7.53485 13.0507i 0.328535 0.569039i
\(527\) −4.00200 + 6.93168i −0.174330 + 0.301949i
\(528\) 0 0
\(529\) 5.87840 + 10.1817i 0.255583 + 0.442682i
\(530\) 8.18220 0.355412
\(531\) 0 0
\(532\) −12.5123 −0.542476
\(533\) −10.9758 19.0106i −0.475413 0.823440i
\(534\) 0 0
\(535\) −9.66107 + 16.7335i −0.417685 + 0.723451i
\(536\) −4.30438 + 7.45541i −0.185921 + 0.322025i
\(537\) 0 0
\(538\) −8.03074 13.9096i −0.346230 0.599688i
\(539\) 15.0461 0.648081
\(540\) 0 0
\(541\) 18.0099 0.774305 0.387153 0.922016i \(-0.373459\pi\)
0.387153 + 0.922016i \(0.373459\pi\)
\(542\) 4.70723 + 8.15316i 0.202193 + 0.350208i
\(543\) 0 0
\(544\) −0.862878 + 1.49455i −0.0369956 + 0.0640782i
\(545\) 17.8032 30.8361i 0.762606 1.32087i
\(546\) 0 0
\(547\) 10.3139 + 17.8641i 0.440989 + 0.763815i 0.997763 0.0668489i \(-0.0212945\pi\)
−0.556774 + 0.830664i \(0.687961\pi\)
\(548\) 0.211159 0.00902025
\(549\) 0 0
\(550\) −11.5098 −0.490779
\(551\) 0.993732 + 1.72119i 0.0423344 + 0.0733253i
\(552\) 0 0
\(553\) −25.9718 + 44.9844i −1.10443 + 1.91293i
\(554\) 2.78738 4.82788i 0.118424 0.205117i
\(555\) 0 0
\(556\) −1.83576 3.17962i −0.0778534 0.134846i
\(557\) 3.80418 0.161188 0.0805942 0.996747i \(-0.474318\pi\)
0.0805942 + 0.996747i \(0.474318\pi\)
\(558\) 0 0
\(559\) 5.13999 0.217398
\(560\) 5.83839 + 10.1124i 0.246717 + 0.427326i
\(561\) 0 0
\(562\) −14.0024 + 24.2529i −0.590656 + 1.02305i
\(563\) −5.53568 + 9.58808i −0.233301 + 0.404090i −0.958778 0.284157i \(-0.908286\pi\)
0.725476 + 0.688247i \(0.241619\pi\)
\(564\) 0 0
\(565\) 11.1469 + 19.3071i 0.468955 + 0.812254i
\(566\) −6.15522 −0.258723
\(567\) 0 0
\(568\) 1.98746 0.0833921
\(569\) 23.3576 + 40.4566i 0.979203 + 1.69603i 0.665302 + 0.746574i \(0.268303\pi\)
0.313901 + 0.949456i \(0.398364\pi\)
\(570\) 0 0
\(571\) 15.8431 27.4411i 0.663013 1.14837i −0.316807 0.948490i \(-0.602611\pi\)
0.979820 0.199883i \(-0.0640561\pi\)
\(572\) −3.54217 + 6.13522i −0.148106 + 0.256526i
\(573\) 0 0
\(574\) 13.0484 + 22.6005i 0.544630 + 0.943326i
\(575\) 16.8894 0.704335
\(576\) 0 0
\(577\) 44.3284 1.84541 0.922707 0.385502i \(-0.125972\pi\)
0.922707 + 0.385502i \(0.125972\pi\)
\(578\) −7.01088 12.1432i −0.291614 0.505091i
\(579\) 0 0
\(580\) 0.927377 1.60626i 0.0385072 0.0666965i
\(581\) −5.70996 + 9.88993i −0.236889 + 0.410304i
\(582\) 0 0
\(583\) −2.95079 5.11092i −0.122209 0.211673i
\(584\) −10.6474 −0.440594
\(585\) 0 0
\(586\) 2.33510 0.0964621
\(587\) 20.5223 + 35.5457i 0.847047 + 1.46713i 0.883831 + 0.467806i \(0.154955\pi\)
−0.0367841 + 0.999323i \(0.511711\pi\)
\(588\) 0 0
\(589\) −7.87249 + 13.6356i −0.324380 + 0.561843i
\(590\) −15.3070 + 26.5126i −0.630181 + 1.09151i
\(591\) 0 0
\(592\) 3.65360 + 6.32822i 0.150162 + 0.260088i
\(593\) 9.69265 0.398029 0.199015 0.979996i \(-0.436226\pi\)
0.199015 + 0.979996i \(0.436226\pi\)
\(594\) 0 0
\(595\) 20.1513 0.826121
\(596\) 7.73720 + 13.4012i 0.316928 + 0.548935i
\(597\) 0 0
\(598\) 5.19775 9.00276i 0.212552 0.368150i
\(599\) −14.9190 + 25.8404i −0.609572 + 1.05581i 0.381739 + 0.924270i \(0.375325\pi\)
−0.991311 + 0.131539i \(0.958008\pi\)
\(600\) 0 0
\(601\) −6.27535 10.8692i −0.255977 0.443365i 0.709184 0.705024i \(-0.249064\pi\)
−0.965160 + 0.261659i \(0.915730\pi\)
\(602\) −6.11061 −0.249050
\(603\) 0 0
\(604\) 20.1457 0.819718
\(605\) −9.15342 15.8542i −0.372140 0.644565i
\(606\) 0 0
\(607\) 1.39007 2.40767i 0.0564211 0.0977242i −0.836435 0.548066i \(-0.815364\pi\)
0.892856 + 0.450341i \(0.148698\pi\)
\(608\) −1.69740 + 2.93998i −0.0688386 + 0.119232i
\(609\) 0 0
\(610\) −20.7374 35.9183i −0.839634 1.45429i
\(611\) 11.9422 0.483130
\(612\) 0 0
\(613\) −8.59291 −0.347064 −0.173532 0.984828i \(-0.555518\pi\)
−0.173532 + 0.984828i \(0.555518\pi\)
\(614\) 3.41265 + 5.91088i 0.137723 + 0.238544i
\(615\) 0 0
\(616\) 4.21106 7.29377i 0.169668 0.293874i
\(617\) −10.0395 + 17.3890i −0.404176 + 0.700053i −0.994225 0.107314i \(-0.965775\pi\)
0.590049 + 0.807367i \(0.299108\pi\)
\(618\) 0 0
\(619\) −4.19592 7.26755i −0.168648 0.292108i 0.769296 0.638892i \(-0.220607\pi\)
−0.937945 + 0.346784i \(0.887274\pi\)
\(620\) 14.6936 0.590111
\(621\) 0 0
\(622\) 8.59522 0.344637
\(623\) −31.9662 55.3672i −1.28070 2.21824i
\(624\) 0 0
\(625\) 12.4069 21.4894i 0.496277 0.859577i
\(626\) −10.8344 + 18.7658i −0.433032 + 0.750033i
\(627\) 0 0
\(628\) −8.99872 15.5862i −0.359088 0.621959i
\(629\) 12.6104 0.502811
\(630\) 0 0
\(631\) 17.5631 0.699178 0.349589 0.936903i \(-0.386321\pi\)
0.349589 + 0.936903i \(0.386321\pi\)
\(632\) 7.04660 + 12.2051i 0.280299 + 0.485491i
\(633\) 0 0
\(634\) −17.6600 + 30.5880i −0.701367 + 1.21480i
\(635\) 9.48058 16.4208i 0.376225 0.651641i
\(636\) 0 0
\(637\) −10.2069 17.6789i −0.404413 0.700463i
\(638\) −1.33778 −0.0529632
\(639\) 0 0
\(640\) 3.16812 0.125231
\(641\) −6.70732 11.6174i −0.264923 0.458860i 0.702620 0.711565i \(-0.252013\pi\)
−0.967543 + 0.252705i \(0.918680\pi\)
\(642\) 0 0
\(643\) 5.21755 9.03706i 0.205760 0.356387i −0.744615 0.667495i \(-0.767367\pi\)
0.950375 + 0.311108i \(0.100700\pi\)
\(644\) −6.17927 + 10.7028i −0.243497 + 0.421750i
\(645\) 0 0
\(646\) 2.92929 + 5.07369i 0.115252 + 0.199622i
\(647\) 37.9585 1.49230 0.746152 0.665775i \(-0.231899\pi\)
0.746152 + 0.665775i \(0.231899\pi\)
\(648\) 0 0
\(649\) 22.0810 0.866756
\(650\) 7.80797 + 13.5238i 0.306254 + 0.530447i
\(651\) 0 0
\(652\) −1.52645 + 2.64388i −0.0597802 + 0.103542i
\(653\) −13.6531 + 23.6479i −0.534289 + 0.925415i 0.464909 + 0.885359i \(0.346087\pi\)
−0.999197 + 0.0400567i \(0.987246\pi\)
\(654\) 0 0
\(655\) −26.0024 45.0374i −1.01600 1.75976i
\(656\) 7.08052 0.276448
\(657\) 0 0
\(658\) −14.1973 −0.553469
\(659\) −17.1775 29.7522i −0.669139 1.15898i −0.978145 0.207922i \(-0.933330\pi\)
0.309007 0.951060i \(-0.400003\pi\)
\(660\) 0 0
\(661\) 12.2889 21.2849i 0.477981 0.827887i −0.521700 0.853129i \(-0.674702\pi\)
0.999681 + 0.0252414i \(0.00803544\pi\)
\(662\) −12.9068 + 22.3553i −0.501638 + 0.868863i
\(663\) 0 0
\(664\) 1.54921 + 2.68331i 0.0601210 + 0.104133i
\(665\) 39.6403 1.53719
\(666\) 0 0
\(667\) 1.96305 0.0760094
\(668\) −2.05060 3.55174i −0.0793400 0.137421i
\(669\) 0 0
\(670\) 13.6368 23.6196i 0.526835 0.912504i
\(671\) −14.9573 + 25.9068i −0.577420 + 1.00012i
\(672\) 0 0
\(673\) −21.4377 37.1312i −0.826363 1.43130i −0.900873 0.434083i \(-0.857072\pi\)
0.0745094 0.997220i \(-0.476261\pi\)
\(674\) 3.38459 0.130369
\(675\) 0 0
\(676\) −3.38830 −0.130319
\(677\) 3.74371 + 6.48430i 0.143883 + 0.249212i 0.928956 0.370191i \(-0.120708\pi\)
−0.785073 + 0.619403i \(0.787375\pi\)
\(678\) 0 0
\(679\) −16.9380 + 29.3375i −0.650022 + 1.12587i
\(680\) 2.73370 4.73490i 0.104832 0.181575i
\(681\) 0 0
\(682\) −5.29904 9.17821i −0.202911 0.351452i
\(683\) −16.7545 −0.641093 −0.320546 0.947233i \(-0.603866\pi\)
−0.320546 + 0.947233i \(0.603866\pi\)
\(684\) 0 0
\(685\) −0.668975 −0.0255602
\(686\) −0.765664 1.32617i −0.0292332 0.0506334i
\(687\) 0 0
\(688\) −0.828957 + 1.43580i −0.0316037 + 0.0547392i
\(689\) −4.00350 + 6.93426i −0.152521 + 0.264174i
\(690\) 0 0
\(691\) 7.47672 + 12.9501i 0.284428 + 0.492644i 0.972470 0.233027i \(-0.0748630\pi\)
−0.688042 + 0.725671i \(0.741530\pi\)
\(692\) 17.0271 0.647273
\(693\) 0 0
\(694\) −16.2000 −0.614945
\(695\) 5.81588 + 10.0734i 0.220609 + 0.382106i
\(696\) 0 0
\(697\) 6.10962 10.5822i 0.231418 0.400828i
\(698\) 2.24627 3.89065i 0.0850224 0.147263i
\(699\) 0 0
\(700\) −9.28240 16.0776i −0.350842 0.607676i
\(701\) 42.1025 1.59019 0.795094 0.606486i \(-0.207421\pi\)
0.795094 + 0.606486i \(0.207421\pi\)
\(702\) 0 0
\(703\) 24.8065 0.935593
\(704\) −1.14253 1.97893i −0.0430609 0.0745836i
\(705\) 0 0
\(706\) 11.6133 20.1149i 0.437074 0.757034i
\(707\) 22.0409 38.1760i 0.828934 1.43576i
\(708\) 0 0
\(709\) −14.2428 24.6692i −0.534899 0.926473i −0.999168 0.0407786i \(-0.987016\pi\)
0.464269 0.885694i \(-0.346317\pi\)
\(710\) −6.29651 −0.236304
\(711\) 0 0
\(712\) −17.3460 −0.650069
\(713\) 7.77577 + 13.4680i 0.291205 + 0.504382i
\(714\) 0 0
\(715\) 11.2220 19.4371i 0.419679 0.726905i
\(716\) −7.27802 + 12.6059i −0.271993 + 0.471105i
\(717\) 0 0
\(718\) 5.77697 + 10.0060i 0.215595 + 0.373421i
\(719\) −2.53487 −0.0945348 −0.0472674 0.998882i \(-0.515051\pi\)
−0.0472674 + 0.998882i \(0.515051\pi\)
\(720\) 0 0
\(721\) −46.9799 −1.74962
\(722\) −3.73768 6.47385i −0.139102 0.240932i
\(723\) 0 0
\(724\) 6.51190 11.2789i 0.242013 0.419179i
\(725\) −1.47443 + 2.55378i −0.0547589 + 0.0948451i
\(726\) 0 0
\(727\) −9.94170 17.2195i −0.368717 0.638637i 0.620648 0.784089i \(-0.286870\pi\)
−0.989365 + 0.145452i \(0.953536\pi\)
\(728\) −11.4267 −0.423503
\(729\) 0 0
\(730\) 33.7323 1.24849
\(731\) 1.43058 + 2.47783i 0.0529118 + 0.0916460i
\(732\) 0 0
\(733\) 5.00553 8.66984i 0.184884 0.320228i −0.758654 0.651494i \(-0.774143\pi\)
0.943537 + 0.331266i \(0.107476\pi\)
\(734\) 7.78486 13.4838i 0.287344 0.497695i
\(735\) 0 0
\(736\) 1.67654 + 2.90386i 0.0617982 + 0.107038i
\(737\) −19.6716 −0.724613
\(738\) 0 0
\(739\) −40.3914 −1.48582 −0.742911 0.669390i \(-0.766556\pi\)
−0.742911 + 0.669390i \(0.766556\pi\)
\(740\) −11.5750 20.0485i −0.425506 0.736998i
\(741\) 0 0
\(742\) 4.75950 8.24370i 0.174727 0.302636i
\(743\) 17.8251 30.8740i 0.653939 1.13266i −0.328219 0.944602i \(-0.606449\pi\)
0.982159 0.188054i \(-0.0602181\pi\)
\(744\) 0 0
\(745\) −24.5123 42.4566i −0.898062 1.55549i
\(746\) 9.75726 0.357239
\(747\) 0 0
\(748\) −3.94347 −0.144187
\(749\) 11.2395 + 19.4674i 0.410682 + 0.711322i
\(750\) 0 0
\(751\) 4.73436 8.20016i 0.172759 0.299228i −0.766624 0.642096i \(-0.778065\pi\)
0.939384 + 0.342868i \(0.111398\pi\)
\(752\) −1.92599 + 3.33591i −0.0702337 + 0.121648i
\(753\) 0 0
\(754\) 0.907519 + 1.57187i 0.0330499 + 0.0572441i
\(755\) −63.8240 −2.32279
\(756\) 0 0
\(757\) −37.9651 −1.37987 −0.689933 0.723873i \(-0.742360\pi\)
−0.689933 + 0.723873i \(0.742360\pi\)
\(758\) −9.39519 16.2730i −0.341249 0.591060i
\(759\) 0 0
\(760\) 5.37755 9.31420i 0.195064 0.337861i
\(761\) 22.4429 38.8722i 0.813554 1.40912i −0.0968081 0.995303i \(-0.530863\pi\)
0.910362 0.413813i \(-0.135803\pi\)
\(762\) 0 0
\(763\) −20.7119 35.8740i −0.749821 1.29873i
\(764\) −3.60287 −0.130347
\(765\) 0 0
\(766\) 30.7680 1.11169
\(767\) −14.9793 25.9449i −0.540870 0.936814i
\(768\) 0 0
\(769\) −22.8684 + 39.6093i −0.824656 + 1.42835i 0.0775257 + 0.996990i \(0.475298\pi\)
−0.902182 + 0.431356i \(0.858035\pi\)
\(770\) −13.3411 + 23.1075i −0.480781 + 0.832736i
\(771\) 0 0
\(772\) −0.737435 1.27727i −0.0265409 0.0459701i
\(773\) 20.5707 0.739876 0.369938 0.929056i \(-0.379379\pi\)
0.369938 + 0.929056i \(0.379379\pi\)
\(774\) 0 0
\(775\) −23.3613 −0.839162
\(776\) 4.59558 + 7.95978i 0.164972 + 0.285740i
\(777\) 0 0
\(778\) −14.8003 + 25.6349i −0.530618 + 0.919057i
\(779\) 12.0185 20.8166i 0.430606 0.745831i
\(780\) 0 0
\(781\) 2.27074 + 3.93304i 0.0812536 + 0.140735i
\(782\) 5.78661 0.206929
\(783\) 0 0
\(784\) 6.58452 0.235162
\(785\) 28.5090 + 49.3790i 1.01753 + 1.76241i
\(786\) 0 0
\(787\) −22.2818 + 38.5931i −0.794259 + 1.37570i 0.129050 + 0.991638i \(0.458807\pi\)
−0.923309 + 0.384059i \(0.874526\pi\)
\(788\) 1.26931 2.19851i 0.0452173 0.0783187i
\(789\) 0 0
\(790\) −22.3244 38.6670i −0.794267 1.37571i
\(791\) 25.9362 0.922186
\(792\) 0 0
\(793\) 40.5867 1.44128
\(794\) 8.07134 + 13.9800i 0.286441 + 0.496131i
\(795\) 0 0
\(796\) 0.925891 1.60369i 0.0328174 0.0568413i
\(797\) 21.9301 37.9840i 0.776803 1.34546i −0.156973 0.987603i \(-0.550174\pi\)
0.933776 0.357859i \(-0.116493\pi\)
\(798\) 0 0
\(799\) 3.32379 + 5.75697i 0.117587 + 0.203667i
\(800\) −5.03695 −0.178083
\(801\) 0 0
\(802\) 25.3624 0.895577
\(803\) −12.1650 21.0705i −0.429295 0.743561i
\(804\) 0 0
\(805\) 19.5766 33.9077i 0.689986 1.19509i
\(806\) −7.18950 + 12.4526i −0.253239 + 0.438623i
\(807\) 0 0
\(808\) −5.98009 10.3578i −0.210379 0.364387i
\(809\) 15.5821 0.547836 0.273918 0.961753i \(-0.411680\pi\)
0.273918 + 0.961753i \(0.411680\pi\)
\(810\) 0 0
\(811\) −30.4691 −1.06992 −0.534958 0.844879i \(-0.679673\pi\)
−0.534958 + 0.844879i \(0.679673\pi\)
\(812\) −1.07889 1.86869i −0.0378617 0.0655783i
\(813\) 0 0
\(814\) −8.34872 + 14.4604i −0.292622 + 0.506837i
\(815\) 4.83596 8.37612i 0.169396 0.293403i
\(816\) 0 0
\(817\) 2.81414 + 4.87424i 0.0984544 + 0.170528i
\(818\) 22.7713 0.796180
\(819\) 0 0
\(820\) −22.4319 −0.783356
\(821\) −0.950509 1.64633i −0.0331730 0.0574573i 0.848962 0.528453i \(-0.177228\pi\)
−0.882135 + 0.470996i \(0.843895\pi\)
\(822\) 0 0
\(823\) 11.0205 19.0881i 0.384151 0.665369i −0.607500 0.794320i \(-0.707828\pi\)
0.991651 + 0.128951i \(0.0411609\pi\)
\(824\) −6.37324 + 11.0388i −0.222022 + 0.384554i
\(825\) 0 0
\(826\) 17.8079 + 30.8442i 0.619616 + 1.07321i
\(827\) −48.4976 −1.68643 −0.843213 0.537579i \(-0.819339\pi\)
−0.843213 + 0.537579i \(0.819339\pi\)
\(828\) 0 0
\(829\) −20.3186 −0.705693 −0.352846 0.935681i \(-0.614786\pi\)
−0.352846 + 0.935681i \(0.614786\pi\)
\(830\) −4.90808 8.50104i −0.170362 0.295075i
\(831\) 0 0
\(832\) −1.55014 + 2.68492i −0.0537413 + 0.0930827i
\(833\) 5.68164 9.84089i 0.196857 0.340966i
\(834\) 0 0
\(835\) 6.49653 + 11.2523i 0.224822 + 0.389403i
\(836\) −7.75734 −0.268293
\(837\) 0 0
\(838\) −4.92276 −0.170054
\(839\) −2.53317 4.38759i −0.0874549 0.151476i 0.818980 0.573822i \(-0.194540\pi\)
−0.906435 + 0.422346i \(0.861207\pi\)
\(840\) 0 0
\(841\) 14.3286 24.8179i 0.494091 0.855790i
\(842\) 9.85880 17.0759i 0.339757 0.588476i
\(843\) 0 0
\(844\) 9.49415 + 16.4443i 0.326802 + 0.566038i
\(845\) 10.7345 0.369278
\(846\) 0 0
\(847\) −21.2978 −0.731801
\(848\) −1.29134 2.23666i −0.0443446 0.0768072i
\(849\) 0 0
\(850\) −4.34628 + 7.52797i −0.149076 + 0.258207i
\(851\) 12.2508 21.2191i 0.419953 0.727381i
\(852\) 0 0
\(853\) −13.2339 22.9218i −0.453121 0.784829i 0.545457 0.838139i \(-0.316356\pi\)
−0.998578 + 0.0533102i \(0.983023\pi\)
\(854\) −48.2510 −1.65112
\(855\) 0 0
\(856\) 6.09894 0.208457
\(857\) −9.15582 15.8583i −0.312757 0.541711i 0.666201 0.745772i \(-0.267919\pi\)
−0.978958 + 0.204061i \(0.934586\pi\)
\(858\) 0 0
\(859\) 4.71968 8.17473i 0.161034 0.278918i −0.774206 0.632934i \(-0.781851\pi\)
0.935240 + 0.354015i \(0.115184\pi\)
\(860\) 2.62623 4.54877i 0.0895538 0.155112i
\(861\) 0 0
\(862\) 3.08162 + 5.33752i 0.104960 + 0.181797i
\(863\) 14.2154 0.483898 0.241949 0.970289i \(-0.422213\pi\)
0.241949 + 0.970289i \(0.422213\pi\)
\(864\) 0 0
\(865\) −53.9438 −1.83414
\(866\) −7.39192 12.8032i −0.251188 0.435070i
\(867\) 0 0
\(868\) 8.54714 14.8041i 0.290109 0.502483i
\(869\) −16.1019 + 27.8894i −0.546221 + 0.946083i
\(870\) 0 0
\(871\) 13.3448 + 23.1138i 0.452170 + 0.783182i
\(872\) −11.2390 −0.380600
\(873\) 0 0
\(874\) 11.3831 0.385038
\(875\) 0.215754 + 0.373698i 0.00729383 + 0.0126333i
\(876\) 0 0
\(877\) −19.5527 + 33.8663i −0.660248 + 1.14358i 0.320302 + 0.947316i \(0.396216\pi\)
−0.980550 + 0.196268i \(0.937118\pi\)
\(878\) 14.8835 25.7790i 0.502294 0.869999i
\(879\) 0 0
\(880\) 3.61968 + 6.26947i 0.122019 + 0.211344i
\(881\) 22.8938 0.771313 0.385657 0.922642i \(-0.373975\pi\)
0.385657 + 0.922642i \(0.373975\pi\)
\(882\) 0 0
\(883\) −17.1509 −0.577174 −0.288587 0.957454i \(-0.593185\pi\)
−0.288587 + 0.957454i \(0.593185\pi\)
\(884\) 2.67516 + 4.63351i 0.0899753 + 0.155842i
\(885\) 0 0
\(886\) −15.2372 + 26.3916i −0.511903 + 0.886642i
\(887\) 9.12852 15.8111i 0.306506 0.530883i −0.671090 0.741376i \(-0.734174\pi\)
0.977595 + 0.210493i \(0.0675069\pi\)
\(888\) 0 0
\(889\) −11.0295 19.1037i −0.369918 0.640716i
\(890\) 54.9541 1.84207
\(891\) 0 0
\(892\) −7.25436 −0.242894
\(893\) 6.53835 + 11.3247i 0.218797 + 0.378968i
\(894\) 0 0
\(895\) 23.0576 39.9370i 0.770731 1.33495i
\(896\) 1.84286 3.19193i 0.0615656 0.106635i
\(897\) 0 0
\(898\) −5.92055 10.2547i −0.197571 0.342204i
\(899\) −2.71527 −0.0905595
\(900\) 0 0
\(901\) −4.45706 −0.148486
\(902\) 8.08973 + 14.0118i 0.269358 + 0.466543i
\(903\) 0 0
\(904\) 3.51848 6.09418i 0.117023 0.202689i
\(905\) −20.6305 + 35.7330i −0.685779 + 1.18780i
\(906\) 0 0
\(907\) −14.5958 25.2807i −0.484646 0.839432i 0.515198 0.857071i \(-0.327718\pi\)
−0.999844 + 0.0176391i \(0.994385\pi\)
\(908\) 28.5272 0.946708
\(909\) 0 0
\(910\) 36.2012 1.20006
\(911\) 27.3179 + 47.3161i 0.905084 + 1.56765i 0.820805 + 0.571209i \(0.193525\pi\)
0.0842793 + 0.996442i \(0.473141\pi\)
\(912\) 0 0
\(913\) −3.54005 + 6.13155i −0.117159 + 0.202925i
\(914\) −0.0931965 + 0.161421i −0.00308267 + 0.00533934i
\(915\) 0 0
\(916\) −0.927691 1.60681i −0.0306518 0.0530905i
\(917\) −60.5012 −1.99793
\(918\) 0 0
\(919\) 41.0995 1.35575 0.677873 0.735179i \(-0.262902\pi\)
0.677873 + 0.735179i \(0.262902\pi\)
\(920\) −5.31149 9.19976i −0.175114 0.303307i
\(921\) 0 0
\(922\) −5.20268 + 9.01130i −0.171341 + 0.296771i
\(923\) 3.08084 5.33617i 0.101407 0.175642i
\(924\) 0 0
\(925\) 18.4030 + 31.8749i 0.605087 + 1.04804i
\(926\) −25.7884 −0.847460
\(927\) 0 0
\(928\) −0.585444 −0.0192181
\(929\) 7.29804 + 12.6406i 0.239441 + 0.414724i 0.960554 0.278094i \(-0.0897025\pi\)
−0.721113 + 0.692817i \(0.756369\pi\)
\(930\) 0 0
\(931\) 11.1766 19.3584i 0.366297 0.634445i
\(932\) 4.26735 7.39126i 0.139782 0.242109i
\(933\) 0 0
\(934\) −10.8506 18.7937i −0.355041 0.614950i
\(935\) 12.4934 0.408576
\(936\) 0 0
\(937\) 24.9282 0.814370 0.407185 0.913346i \(-0.366511\pi\)
0.407185 + 0.913346i \(0.366511\pi\)
\(938\) −15.8647 27.4785i −0.518002 0.897206i
\(939\) 0 0
\(940\) 6.10176 10.5686i 0.199017 0.344708i
\(941\) 10.4222 18.0517i 0.339753 0.588469i −0.644633 0.764492i \(-0.722990\pi\)
0.984386 + 0.176023i \(0.0563233\pi\)
\(942\) 0 0
\(943\) −11.8708 20.5608i −0.386566 0.669553i
\(944\) 9.66319 0.314510
\(945\) 0 0
\(946\) −3.78845 −0.123173
\(947\) 17.9565 + 31.1016i 0.583508 + 1.01067i 0.995060 + 0.0992789i \(0.0316536\pi\)
−0.411552 + 0.911386i \(0.635013\pi\)
\(948\) 0 0
\(949\) −16.5050 + 28.5875i −0.535774 + 0.927988i
\(950\) −8.54972 + 14.8085i −0.277390 + 0.480453i
\(951\) 0 0
\(952\) −3.18032 5.50848i −0.103075 0.178531i
\(953\) −5.80207 −0.187947 −0.0939737 0.995575i \(-0.529957\pi\)
−0.0939737 + 0.995575i \(0.529957\pi\)
\(954\) 0 0
\(955\) 11.4143 0.369359
\(956\) −3.64398 6.31156i −0.117855 0.204131i
\(957\) 0 0
\(958\) 19.5606 33.8800i 0.631975 1.09461i
\(959\) −0.389136 + 0.674003i −0.0125658 + 0.0217647i
\(960\) 0 0
\(961\) 4.74459 + 8.21788i 0.153051 + 0.265093i
\(962\) 22.6543 0.730405
\(963\) 0 0
\(964\) −1.33492 −0.0429948
\(965\) 2.33628 + 4.04655i 0.0752075 + 0.130263i
\(966\) 0 0
\(967\) −14.8294 + 25.6854i −0.476883 + 0.825986i −0.999649 0.0264906i \(-0.991567\pi\)
0.522766 + 0.852476i \(0.324900\pi\)
\(968\) −2.88923 + 5.00430i −0.0928635 + 0.160844i
\(969\) 0 0
\(970\) −14.5593 25.2175i −0.467472 0.809685i
\(971\) −47.1522 −1.51318 −0.756592 0.653887i \(-0.773137\pi\)
−0.756592 + 0.653887i \(0.773137\pi\)
\(972\) 0 0
\(973\) 13.5322 0.433821
\(974\) −5.24165 9.07880i −0.167953 0.290903i
\(975\) 0 0
\(976\) −6.54567 + 11.3374i −0.209522 + 0.362902i
\(977\) −11.9015 + 20.6140i −0.380762 + 0.659499i −0.991171 0.132587i \(-0.957672\pi\)
0.610410 + 0.792086i \(0.291005\pi\)
\(978\) 0 0
\(979\) −19.8184 34.3265i −0.633399 1.09708i
\(980\) −20.8605 −0.666365
\(981\) 0 0
\(982\) 6.85702 0.218816
\(983\) 5.54113 + 9.59751i 0.176734 + 0.306113i 0.940760 0.339073i \(-0.110113\pi\)
−0.764026 + 0.645186i \(0.776780\pi\)
\(984\) 0 0
\(985\) −4.02132 + 6.96513i −0.128130 + 0.221928i
\(986\) −0.505167 + 0.874974i −0.0160878 + 0.0278649i
\(987\) 0 0
\(988\) 5.26240 + 9.11475i 0.167419 + 0.289979i
\(989\) 5.55913 0.176770
\(990\) 0 0
\(991\) 11.4369 0.363306 0.181653 0.983363i \(-0.441855\pi\)
0.181653 + 0.983363i \(0.441855\pi\)
\(992\) −2.31899 4.01660i −0.0736279 0.127527i
\(993\) 0 0
\(994\) −3.66262 + 6.34384i −0.116171 + 0.201214i
\(995\) −2.93333 + 5.08068i −0.0929928 + 0.161068i
\(996\) 0 0
\(997\) 13.9473 + 24.1574i 0.441714 + 0.765071i 0.997817 0.0660422i \(-0.0210372\pi\)
−0.556103 + 0.831114i \(0.687704\pi\)
\(998\) −18.7737 −0.594271
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1458.2.c.g.973.5 12
3.2 odd 2 1458.2.c.f.973.2 12
9.2 odd 6 1458.2.c.f.487.2 12
9.4 even 3 1458.2.a.f.1.2 6
9.5 odd 6 1458.2.a.g.1.5 6
9.7 even 3 inner 1458.2.c.g.487.5 12
27.2 odd 18 54.2.e.b.13.1 12
27.4 even 9 162.2.e.b.73.1 12
27.5 odd 18 486.2.e.f.55.2 12
27.7 even 9 486.2.e.g.433.1 12
27.11 odd 18 486.2.e.h.109.1 12
27.13 even 9 486.2.e.e.379.2 12
27.14 odd 18 486.2.e.h.379.1 12
27.16 even 9 486.2.e.e.109.2 12
27.20 odd 18 486.2.e.f.433.2 12
27.22 even 9 486.2.e.g.55.1 12
27.23 odd 18 54.2.e.b.25.1 yes 12
27.25 even 9 162.2.e.b.91.1 12
108.23 even 18 432.2.u.b.241.2 12
108.83 even 18 432.2.u.b.337.2 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
54.2.e.b.13.1 12 27.2 odd 18
54.2.e.b.25.1 yes 12 27.23 odd 18
162.2.e.b.73.1 12 27.4 even 9
162.2.e.b.91.1 12 27.25 even 9
432.2.u.b.241.2 12 108.23 even 18
432.2.u.b.337.2 12 108.83 even 18
486.2.e.e.109.2 12 27.16 even 9
486.2.e.e.379.2 12 27.13 even 9
486.2.e.f.55.2 12 27.5 odd 18
486.2.e.f.433.2 12 27.20 odd 18
486.2.e.g.55.1 12 27.22 even 9
486.2.e.g.433.1 12 27.7 even 9
486.2.e.h.109.1 12 27.11 odd 18
486.2.e.h.379.1 12 27.14 odd 18
1458.2.a.f.1.2 6 9.4 even 3
1458.2.a.g.1.5 6 9.5 odd 6
1458.2.c.f.487.2 12 9.2 odd 6
1458.2.c.f.973.2 12 3.2 odd 2
1458.2.c.g.487.5 12 9.7 even 3 inner
1458.2.c.g.973.5 12 1.1 even 1 trivial