Properties

Label 1458.2.a.g.1.5
Level $1458$
Weight $2$
Character 1458.1
Self dual yes
Analytic conductor $11.642$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1458,2,Mod(1,1458)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1458, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1458.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1458 = 2 \cdot 3^{6} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1458.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(11.6421886147\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.6.6357609.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 9x^{4} - x^{3} + 18x^{2} - 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: no (minimal twist has level 54)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(-1.59848\) of defining polynomial
Character \(\chi\) \(=\) 1458.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +1.00000 q^{4} +3.16812 q^{5} +3.68572 q^{7} +1.00000 q^{8} +3.16812 q^{10} -2.28507 q^{11} +3.10027 q^{13} +3.68572 q^{14} +1.00000 q^{16} +1.72576 q^{17} -3.39480 q^{19} +3.16812 q^{20} -2.28507 q^{22} -3.35309 q^{23} +5.03695 q^{25} +3.10027 q^{26} +3.68572 q^{28} -0.585444 q^{29} -4.63798 q^{31} +1.00000 q^{32} +1.72576 q^{34} +11.6768 q^{35} -7.30720 q^{37} -3.39480 q^{38} +3.16812 q^{40} -7.08052 q^{41} +1.65791 q^{43} -2.28507 q^{44} -3.35309 q^{46} -3.85198 q^{47} +6.58452 q^{49} +5.03695 q^{50} +3.10027 q^{52} -2.58267 q^{53} -7.23936 q^{55} +3.68572 q^{56} -0.585444 q^{58} -9.66319 q^{59} +13.0913 q^{61} -4.63798 q^{62} +1.00000 q^{64} +9.82203 q^{65} -8.60876 q^{67} +1.72576 q^{68} +11.6768 q^{70} +1.98746 q^{71} +10.6474 q^{73} -7.30720 q^{74} -3.39480 q^{76} -8.42212 q^{77} +14.0932 q^{79} +3.16812 q^{80} -7.08052 q^{82} -3.09842 q^{83} +5.46739 q^{85} +1.65791 q^{86} -2.28507 q^{88} -17.3460 q^{89} +11.4267 q^{91} -3.35309 q^{92} -3.85198 q^{94} -10.7551 q^{95} +9.19117 q^{97} +6.58452 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 6 q^{2} + 6 q^{4} + 3 q^{5} + 6 q^{7} + 6 q^{8} + 3 q^{10} + 3 q^{11} + 9 q^{13} + 6 q^{14} + 6 q^{16} + 6 q^{17} + 9 q^{19} + 3 q^{20} + 3 q^{22} - 3 q^{23} + 15 q^{25} + 9 q^{26} + 6 q^{28} + 3 q^{29}+ \cdots + 12 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) 3.16812 1.41682 0.708412 0.705799i \(-0.249412\pi\)
0.708412 + 0.705799i \(0.249412\pi\)
\(6\) 0 0
\(7\) 3.68572 1.39307 0.696535 0.717522i \(-0.254724\pi\)
0.696535 + 0.717522i \(0.254724\pi\)
\(8\) 1.00000 0.353553
\(9\) 0 0
\(10\) 3.16812 1.00185
\(11\) −2.28507 −0.688974 −0.344487 0.938791i \(-0.611947\pi\)
−0.344487 + 0.938791i \(0.611947\pi\)
\(12\) 0 0
\(13\) 3.10027 0.859862 0.429931 0.902862i \(-0.358538\pi\)
0.429931 + 0.902862i \(0.358538\pi\)
\(14\) 3.68572 0.985050
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 1.72576 0.418557 0.209279 0.977856i \(-0.432888\pi\)
0.209279 + 0.977856i \(0.432888\pi\)
\(18\) 0 0
\(19\) −3.39480 −0.778820 −0.389410 0.921065i \(-0.627321\pi\)
−0.389410 + 0.921065i \(0.627321\pi\)
\(20\) 3.16812 0.708412
\(21\) 0 0
\(22\) −2.28507 −0.487178
\(23\) −3.35309 −0.699167 −0.349584 0.936905i \(-0.613677\pi\)
−0.349584 + 0.936905i \(0.613677\pi\)
\(24\) 0 0
\(25\) 5.03695 1.00739
\(26\) 3.10027 0.608014
\(27\) 0 0
\(28\) 3.68572 0.696535
\(29\) −0.585444 −0.108714 −0.0543571 0.998522i \(-0.517311\pi\)
−0.0543571 + 0.998522i \(0.517311\pi\)
\(30\) 0 0
\(31\) −4.63798 −0.833005 −0.416502 0.909135i \(-0.636744\pi\)
−0.416502 + 0.909135i \(0.636744\pi\)
\(32\) 1.00000 0.176777
\(33\) 0 0
\(34\) 1.72576 0.295965
\(35\) 11.6768 1.97374
\(36\) 0 0
\(37\) −7.30720 −1.20130 −0.600648 0.799514i \(-0.705091\pi\)
−0.600648 + 0.799514i \(0.705091\pi\)
\(38\) −3.39480 −0.550709
\(39\) 0 0
\(40\) 3.16812 0.500923
\(41\) −7.08052 −1.10579 −0.552895 0.833251i \(-0.686477\pi\)
−0.552895 + 0.833251i \(0.686477\pi\)
\(42\) 0 0
\(43\) 1.65791 0.252830 0.126415 0.991977i \(-0.459653\pi\)
0.126415 + 0.991977i \(0.459653\pi\)
\(44\) −2.28507 −0.344487
\(45\) 0 0
\(46\) −3.35309 −0.494386
\(47\) −3.85198 −0.561869 −0.280935 0.959727i \(-0.590644\pi\)
−0.280935 + 0.959727i \(0.590644\pi\)
\(48\) 0 0
\(49\) 6.58452 0.940646
\(50\) 5.03695 0.712333
\(51\) 0 0
\(52\) 3.10027 0.429931
\(53\) −2.58267 −0.354757 −0.177379 0.984143i \(-0.556762\pi\)
−0.177379 + 0.984143i \(0.556762\pi\)
\(54\) 0 0
\(55\) −7.23936 −0.976155
\(56\) 3.68572 0.492525
\(57\) 0 0
\(58\) −0.585444 −0.0768726
\(59\) −9.66319 −1.25804 −0.629020 0.777389i \(-0.716544\pi\)
−0.629020 + 0.777389i \(0.716544\pi\)
\(60\) 0 0
\(61\) 13.0913 1.67617 0.838087 0.545537i \(-0.183674\pi\)
0.838087 + 0.545537i \(0.183674\pi\)
\(62\) −4.63798 −0.589023
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 9.82203 1.21827
\(66\) 0 0
\(67\) −8.60876 −1.05173 −0.525864 0.850569i \(-0.676258\pi\)
−0.525864 + 0.850569i \(0.676258\pi\)
\(68\) 1.72576 0.209279
\(69\) 0 0
\(70\) 11.6768 1.39564
\(71\) 1.98746 0.235869 0.117934 0.993021i \(-0.462373\pi\)
0.117934 + 0.993021i \(0.462373\pi\)
\(72\) 0 0
\(73\) 10.6474 1.24619 0.623094 0.782147i \(-0.285876\pi\)
0.623094 + 0.782147i \(0.285876\pi\)
\(74\) −7.30720 −0.849444
\(75\) 0 0
\(76\) −3.39480 −0.389410
\(77\) −8.42212 −0.959789
\(78\) 0 0
\(79\) 14.0932 1.58561 0.792804 0.609477i \(-0.208620\pi\)
0.792804 + 0.609477i \(0.208620\pi\)
\(80\) 3.16812 0.354206
\(81\) 0 0
\(82\) −7.08052 −0.781912
\(83\) −3.09842 −0.340096 −0.170048 0.985436i \(-0.554392\pi\)
−0.170048 + 0.985436i \(0.554392\pi\)
\(84\) 0 0
\(85\) 5.46739 0.593022
\(86\) 1.65791 0.178778
\(87\) 0 0
\(88\) −2.28507 −0.243589
\(89\) −17.3460 −1.83867 −0.919336 0.393472i \(-0.871274\pi\)
−0.919336 + 0.393472i \(0.871274\pi\)
\(90\) 0 0
\(91\) 11.4267 1.19785
\(92\) −3.35309 −0.349584
\(93\) 0 0
\(94\) −3.85198 −0.397302
\(95\) −10.7551 −1.10345
\(96\) 0 0
\(97\) 9.19117 0.933221 0.466611 0.884463i \(-0.345475\pi\)
0.466611 + 0.884463i \(0.345475\pi\)
\(98\) 6.58452 0.665137
\(99\) 0 0
\(100\) 5.03695 0.503695
\(101\) 11.9602 1.19008 0.595041 0.803695i \(-0.297136\pi\)
0.595041 + 0.803695i \(0.297136\pi\)
\(102\) 0 0
\(103\) −12.7465 −1.25595 −0.627974 0.778234i \(-0.716115\pi\)
−0.627974 + 0.778234i \(0.716115\pi\)
\(104\) 3.10027 0.304007
\(105\) 0 0
\(106\) −2.58267 −0.250851
\(107\) 6.09894 0.589607 0.294803 0.955558i \(-0.404746\pi\)
0.294803 + 0.955558i \(0.404746\pi\)
\(108\) 0 0
\(109\) 11.2390 1.07650 0.538250 0.842785i \(-0.319086\pi\)
0.538250 + 0.842785i \(0.319086\pi\)
\(110\) −7.23936 −0.690246
\(111\) 0 0
\(112\) 3.68572 0.348268
\(113\) −7.03695 −0.661981 −0.330990 0.943634i \(-0.607383\pi\)
−0.330990 + 0.943634i \(0.607383\pi\)
\(114\) 0 0
\(115\) −10.6230 −0.990597
\(116\) −0.585444 −0.0543571
\(117\) 0 0
\(118\) −9.66319 −0.889568
\(119\) 6.36065 0.583080
\(120\) 0 0
\(121\) −5.77847 −0.525315
\(122\) 13.0913 1.18523
\(123\) 0 0
\(124\) −4.63798 −0.416502
\(125\) 0.117076 0.0104716
\(126\) 0 0
\(127\) 5.98500 0.531082 0.265541 0.964100i \(-0.414449\pi\)
0.265541 + 0.964100i \(0.414449\pi\)
\(128\) 1.00000 0.0883883
\(129\) 0 0
\(130\) 9.82203 0.861449
\(131\) 16.4150 1.43419 0.717094 0.696976i \(-0.245472\pi\)
0.717094 + 0.696976i \(0.245472\pi\)
\(132\) 0 0
\(133\) −12.5123 −1.08495
\(134\) −8.60876 −0.743684
\(135\) 0 0
\(136\) 1.72576 0.147982
\(137\) −0.211159 −0.0180405 −0.00902025 0.999959i \(-0.502871\pi\)
−0.00902025 + 0.999959i \(0.502871\pi\)
\(138\) 0 0
\(139\) 3.67151 0.311413 0.155707 0.987803i \(-0.450235\pi\)
0.155707 + 0.987803i \(0.450235\pi\)
\(140\) 11.6768 0.986868
\(141\) 0 0
\(142\) 1.98746 0.166784
\(143\) −7.08434 −0.592422
\(144\) 0 0
\(145\) −1.85475 −0.154029
\(146\) 10.6474 0.881188
\(147\) 0 0
\(148\) −7.30720 −0.600648
\(149\) 15.4744 1.26771 0.633856 0.773451i \(-0.281471\pi\)
0.633856 + 0.773451i \(0.281471\pi\)
\(150\) 0 0
\(151\) 20.1457 1.63944 0.819718 0.572768i \(-0.194130\pi\)
0.819718 + 0.572768i \(0.194130\pi\)
\(152\) −3.39480 −0.275354
\(153\) 0 0
\(154\) −8.42212 −0.678673
\(155\) −14.6936 −1.18022
\(156\) 0 0
\(157\) 17.9974 1.43635 0.718176 0.695862i \(-0.244977\pi\)
0.718176 + 0.695862i \(0.244977\pi\)
\(158\) 14.0932 1.12119
\(159\) 0 0
\(160\) 3.16812 0.250462
\(161\) −12.3585 −0.973989
\(162\) 0 0
\(163\) 3.05289 0.239121 0.119560 0.992827i \(-0.461851\pi\)
0.119560 + 0.992827i \(0.461851\pi\)
\(164\) −7.08052 −0.552895
\(165\) 0 0
\(166\) −3.09842 −0.240484
\(167\) −4.10119 −0.317360 −0.158680 0.987330i \(-0.550724\pi\)
−0.158680 + 0.987330i \(0.550724\pi\)
\(168\) 0 0
\(169\) −3.38830 −0.260638
\(170\) 5.46739 0.419330
\(171\) 0 0
\(172\) 1.65791 0.126415
\(173\) −17.0271 −1.29455 −0.647273 0.762258i \(-0.724091\pi\)
−0.647273 + 0.762258i \(0.724091\pi\)
\(174\) 0 0
\(175\) 18.5648 1.40337
\(176\) −2.28507 −0.172243
\(177\) 0 0
\(178\) −17.3460 −1.30014
\(179\) −14.5560 −1.08797 −0.543985 0.839095i \(-0.683085\pi\)
−0.543985 + 0.839095i \(0.683085\pi\)
\(180\) 0 0
\(181\) −13.0238 −0.968052 −0.484026 0.875054i \(-0.660826\pi\)
−0.484026 + 0.875054i \(0.660826\pi\)
\(182\) 11.4267 0.847006
\(183\) 0 0
\(184\) −3.35309 −0.247193
\(185\) −23.1500 −1.70203
\(186\) 0 0
\(187\) −3.94347 −0.288375
\(188\) −3.85198 −0.280935
\(189\) 0 0
\(190\) −10.7551 −0.780258
\(191\) 3.60287 0.260695 0.130347 0.991468i \(-0.458391\pi\)
0.130347 + 0.991468i \(0.458391\pi\)
\(192\) 0 0
\(193\) 1.47487 0.106163 0.0530817 0.998590i \(-0.483096\pi\)
0.0530817 + 0.998590i \(0.483096\pi\)
\(194\) 9.19117 0.659887
\(195\) 0 0
\(196\) 6.58452 0.470323
\(197\) 2.53862 0.180869 0.0904346 0.995902i \(-0.471174\pi\)
0.0904346 + 0.995902i \(0.471174\pi\)
\(198\) 0 0
\(199\) −1.85178 −0.131269 −0.0656347 0.997844i \(-0.520907\pi\)
−0.0656347 + 0.997844i \(0.520907\pi\)
\(200\) 5.03695 0.356166
\(201\) 0 0
\(202\) 11.9602 0.841515
\(203\) −2.15778 −0.151447
\(204\) 0 0
\(205\) −22.4319 −1.56671
\(206\) −12.7465 −0.888089
\(207\) 0 0
\(208\) 3.10027 0.214965
\(209\) 7.75734 0.536586
\(210\) 0 0
\(211\) −18.9883 −1.30721 −0.653604 0.756837i \(-0.726744\pi\)
−0.653604 + 0.756837i \(0.726744\pi\)
\(212\) −2.58267 −0.177379
\(213\) 0 0
\(214\) 6.09894 0.416915
\(215\) 5.25247 0.358215
\(216\) 0 0
\(217\) −17.0943 −1.16043
\(218\) 11.2390 0.761201
\(219\) 0 0
\(220\) −7.23936 −0.488077
\(221\) 5.35032 0.359901
\(222\) 0 0
\(223\) −7.25436 −0.485788 −0.242894 0.970053i \(-0.578097\pi\)
−0.242894 + 0.970053i \(0.578097\pi\)
\(224\) 3.68572 0.246262
\(225\) 0 0
\(226\) −7.03695 −0.468091
\(227\) −28.5272 −1.89342 −0.946708 0.322095i \(-0.895613\pi\)
−0.946708 + 0.322095i \(0.895613\pi\)
\(228\) 0 0
\(229\) 1.85538 0.122607 0.0613036 0.998119i \(-0.480474\pi\)
0.0613036 + 0.998119i \(0.480474\pi\)
\(230\) −10.6230 −0.700458
\(231\) 0 0
\(232\) −0.585444 −0.0384363
\(233\) 8.53469 0.559126 0.279563 0.960127i \(-0.409810\pi\)
0.279563 + 0.960127i \(0.409810\pi\)
\(234\) 0 0
\(235\) −12.2035 −0.796070
\(236\) −9.66319 −0.629020
\(237\) 0 0
\(238\) 6.36065 0.412300
\(239\) −7.28796 −0.471419 −0.235710 0.971824i \(-0.575741\pi\)
−0.235710 + 0.971824i \(0.575741\pi\)
\(240\) 0 0
\(241\) −1.33492 −0.0859897 −0.0429948 0.999075i \(-0.513690\pi\)
−0.0429948 + 0.999075i \(0.513690\pi\)
\(242\) −5.77847 −0.371454
\(243\) 0 0
\(244\) 13.0913 0.838087
\(245\) 20.8605 1.33273
\(246\) 0 0
\(247\) −10.5248 −0.669677
\(248\) −4.63798 −0.294512
\(249\) 0 0
\(250\) 0.117076 0.00740453
\(251\) −2.87856 −0.181693 −0.0908466 0.995865i \(-0.528957\pi\)
−0.0908466 + 0.995865i \(0.528957\pi\)
\(252\) 0 0
\(253\) 7.66203 0.481708
\(254\) 5.98500 0.375532
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) −25.7779 −1.60798 −0.803991 0.594641i \(-0.797294\pi\)
−0.803991 + 0.594641i \(0.797294\pi\)
\(258\) 0 0
\(259\) −26.9323 −1.67349
\(260\) 9.82203 0.609136
\(261\) 0 0
\(262\) 16.4150 1.01412
\(263\) −15.0697 −0.929237 −0.464619 0.885511i \(-0.653809\pi\)
−0.464619 + 0.885511i \(0.653809\pi\)
\(264\) 0 0
\(265\) −8.18220 −0.502629
\(266\) −12.5123 −0.767176
\(267\) 0 0
\(268\) −8.60876 −0.525864
\(269\) 16.0615 0.979286 0.489643 0.871923i \(-0.337127\pi\)
0.489643 + 0.871923i \(0.337127\pi\)
\(270\) 0 0
\(271\) 9.41446 0.571888 0.285944 0.958246i \(-0.407693\pi\)
0.285944 + 0.958246i \(0.407693\pi\)
\(272\) 1.72576 0.104639
\(273\) 0 0
\(274\) −0.211159 −0.0127566
\(275\) −11.5098 −0.694066
\(276\) 0 0
\(277\) 5.57476 0.334955 0.167477 0.985876i \(-0.446438\pi\)
0.167477 + 0.985876i \(0.446438\pi\)
\(278\) 3.67151 0.220203
\(279\) 0 0
\(280\) 11.6768 0.697821
\(281\) 28.0048 1.67063 0.835313 0.549775i \(-0.185286\pi\)
0.835313 + 0.549775i \(0.185286\pi\)
\(282\) 0 0
\(283\) 6.15522 0.365890 0.182945 0.983123i \(-0.441437\pi\)
0.182945 + 0.983123i \(0.441437\pi\)
\(284\) 1.98746 0.117934
\(285\) 0 0
\(286\) −7.08434 −0.418906
\(287\) −26.0968 −1.54044
\(288\) 0 0
\(289\) −14.0218 −0.824810
\(290\) −1.85475 −0.108915
\(291\) 0 0
\(292\) 10.6474 0.623094
\(293\) 2.33510 0.136418 0.0682090 0.997671i \(-0.478272\pi\)
0.0682090 + 0.997671i \(0.478272\pi\)
\(294\) 0 0
\(295\) −30.6141 −1.78242
\(296\) −7.30720 −0.424722
\(297\) 0 0
\(298\) 15.4744 0.896408
\(299\) −10.3955 −0.601187
\(300\) 0 0
\(301\) 6.11061 0.352210
\(302\) 20.1457 1.15926
\(303\) 0 0
\(304\) −3.39480 −0.194705
\(305\) 41.4749 2.37484
\(306\) 0 0
\(307\) 6.82529 0.389540 0.194770 0.980849i \(-0.437604\pi\)
0.194770 + 0.980849i \(0.437604\pi\)
\(308\) −8.42212 −0.479895
\(309\) 0 0
\(310\) −14.6936 −0.834543
\(311\) 8.59522 0.487390 0.243695 0.969852i \(-0.421640\pi\)
0.243695 + 0.969852i \(0.421640\pi\)
\(312\) 0 0
\(313\) −21.6689 −1.22480 −0.612399 0.790549i \(-0.709795\pi\)
−0.612399 + 0.790549i \(0.709795\pi\)
\(314\) 17.9974 1.01565
\(315\) 0 0
\(316\) 14.0932 0.792804
\(317\) 35.3200 1.98377 0.991883 0.127153i \(-0.0405838\pi\)
0.991883 + 0.127153i \(0.0405838\pi\)
\(318\) 0 0
\(319\) 1.33778 0.0749013
\(320\) 3.16812 0.177103
\(321\) 0 0
\(322\) −12.3585 −0.688715
\(323\) −5.85859 −0.325981
\(324\) 0 0
\(325\) 15.6159 0.866217
\(326\) 3.05289 0.169084
\(327\) 0 0
\(328\) −7.08052 −0.390956
\(329\) −14.1973 −0.782724
\(330\) 0 0
\(331\) −25.8137 −1.41885 −0.709423 0.704783i \(-0.751045\pi\)
−0.709423 + 0.704783i \(0.751045\pi\)
\(332\) −3.09842 −0.170048
\(333\) 0 0
\(334\) −4.10119 −0.224407
\(335\) −27.2735 −1.49011
\(336\) 0 0
\(337\) −3.38459 −0.184370 −0.0921851 0.995742i \(-0.529385\pi\)
−0.0921851 + 0.995742i \(0.529385\pi\)
\(338\) −3.38830 −0.184299
\(339\) 0 0
\(340\) 5.46739 0.296511
\(341\) 10.5981 0.573919
\(342\) 0 0
\(343\) −1.53133 −0.0826839
\(344\) 1.65791 0.0893888
\(345\) 0 0
\(346\) −17.0271 −0.915382
\(347\) −16.2000 −0.869663 −0.434831 0.900512i \(-0.643192\pi\)
−0.434831 + 0.900512i \(0.643192\pi\)
\(348\) 0 0
\(349\) 4.49253 0.240480 0.120240 0.992745i \(-0.461634\pi\)
0.120240 + 0.992745i \(0.461634\pi\)
\(350\) 18.5648 0.992330
\(351\) 0 0
\(352\) −2.28507 −0.121795
\(353\) −23.2267 −1.23623 −0.618116 0.786087i \(-0.712104\pi\)
−0.618116 + 0.786087i \(0.712104\pi\)
\(354\) 0 0
\(355\) 6.29651 0.334184
\(356\) −17.3460 −0.919336
\(357\) 0 0
\(358\) −14.5560 −0.769311
\(359\) −11.5539 −0.609794 −0.304897 0.952385i \(-0.598622\pi\)
−0.304897 + 0.952385i \(0.598622\pi\)
\(360\) 0 0
\(361\) −7.47535 −0.393440
\(362\) −13.0238 −0.684516
\(363\) 0 0
\(364\) 11.4267 0.598924
\(365\) 33.7323 1.76563
\(366\) 0 0
\(367\) 15.5697 0.812733 0.406366 0.913710i \(-0.366796\pi\)
0.406366 + 0.913710i \(0.366796\pi\)
\(368\) −3.35309 −0.174792
\(369\) 0 0
\(370\) −23.1500 −1.20351
\(371\) −9.51900 −0.494202
\(372\) 0 0
\(373\) −9.75726 −0.505212 −0.252606 0.967569i \(-0.581288\pi\)
−0.252606 + 0.967569i \(0.581288\pi\)
\(374\) −3.94347 −0.203912
\(375\) 0 0
\(376\) −3.85198 −0.198651
\(377\) −1.81504 −0.0934792
\(378\) 0 0
\(379\) −18.7904 −0.965197 −0.482599 0.875842i \(-0.660307\pi\)
−0.482599 + 0.875842i \(0.660307\pi\)
\(380\) −10.7551 −0.551725
\(381\) 0 0
\(382\) 3.60287 0.184339
\(383\) 30.7680 1.57217 0.786086 0.618117i \(-0.212104\pi\)
0.786086 + 0.618117i \(0.212104\pi\)
\(384\) 0 0
\(385\) −26.6822 −1.35985
\(386\) 1.47487 0.0750689
\(387\) 0 0
\(388\) 9.19117 0.466611
\(389\) 29.6007 1.50081 0.750407 0.660976i \(-0.229858\pi\)
0.750407 + 0.660976i \(0.229858\pi\)
\(390\) 0 0
\(391\) −5.78661 −0.292641
\(392\) 6.58452 0.332569
\(393\) 0 0
\(394\) 2.53862 0.127894
\(395\) 44.6489 2.24653
\(396\) 0 0
\(397\) 16.1427 0.810178 0.405089 0.914277i \(-0.367241\pi\)
0.405089 + 0.914277i \(0.367241\pi\)
\(398\) −1.85178 −0.0928215
\(399\) 0 0
\(400\) 5.03695 0.251848
\(401\) 25.3624 1.26654 0.633268 0.773932i \(-0.281713\pi\)
0.633268 + 0.773932i \(0.281713\pi\)
\(402\) 0 0
\(403\) −14.3790 −0.716269
\(404\) 11.9602 0.595041
\(405\) 0 0
\(406\) −2.15778 −0.107089
\(407\) 16.6974 0.827661
\(408\) 0 0
\(409\) −22.7713 −1.12597 −0.562984 0.826468i \(-0.690347\pi\)
−0.562984 + 0.826468i \(0.690347\pi\)
\(410\) −22.4319 −1.10783
\(411\) 0 0
\(412\) −12.7465 −0.627974
\(413\) −35.6158 −1.75254
\(414\) 0 0
\(415\) −9.81616 −0.481856
\(416\) 3.10027 0.152003
\(417\) 0 0
\(418\) 7.75734 0.379424
\(419\) −4.92276 −0.240492 −0.120246 0.992744i \(-0.538368\pi\)
−0.120246 + 0.992744i \(0.538368\pi\)
\(420\) 0 0
\(421\) 19.7176 0.960977 0.480489 0.877001i \(-0.340459\pi\)
0.480489 + 0.877001i \(0.340459\pi\)
\(422\) −18.9883 −0.924336
\(423\) 0 0
\(424\) −2.58267 −0.125426
\(425\) 8.69255 0.421651
\(426\) 0 0
\(427\) 48.2510 2.33503
\(428\) 6.09894 0.294803
\(429\) 0 0
\(430\) 5.25247 0.253296
\(431\) −6.16323 −0.296873 −0.148436 0.988922i \(-0.547424\pi\)
−0.148436 + 0.988922i \(0.547424\pi\)
\(432\) 0 0
\(433\) −14.7838 −0.710466 −0.355233 0.934778i \(-0.615599\pi\)
−0.355233 + 0.934778i \(0.615599\pi\)
\(434\) −17.0943 −0.820551
\(435\) 0 0
\(436\) 11.2390 0.538250
\(437\) 11.3831 0.544525
\(438\) 0 0
\(439\) 29.7670 1.42070 0.710352 0.703847i \(-0.248536\pi\)
0.710352 + 0.703847i \(0.248536\pi\)
\(440\) −7.23936 −0.345123
\(441\) 0 0
\(442\) 5.35032 0.254489
\(443\) 30.4744 1.44788 0.723940 0.689862i \(-0.242329\pi\)
0.723940 + 0.689862i \(0.242329\pi\)
\(444\) 0 0
\(445\) −54.9541 −2.60508
\(446\) −7.25436 −0.343504
\(447\) 0 0
\(448\) 3.68572 0.174134
\(449\) 11.8411 0.558816 0.279408 0.960172i \(-0.409862\pi\)
0.279408 + 0.960172i \(0.409862\pi\)
\(450\) 0 0
\(451\) 16.1795 0.761861
\(452\) −7.03695 −0.330990
\(453\) 0 0
\(454\) −28.5272 −1.33885
\(455\) 36.2012 1.69714
\(456\) 0 0
\(457\) −0.186393 −0.00871910 −0.00435955 0.999990i \(-0.501388\pi\)
−0.00435955 + 0.999990i \(0.501388\pi\)
\(458\) 1.85538 0.0866963
\(459\) 0 0
\(460\) −10.6230 −0.495299
\(461\) 10.4054 0.484626 0.242313 0.970198i \(-0.422094\pi\)
0.242313 + 0.970198i \(0.422094\pi\)
\(462\) 0 0
\(463\) 25.7884 1.19849 0.599245 0.800566i \(-0.295468\pi\)
0.599245 + 0.800566i \(0.295468\pi\)
\(464\) −0.585444 −0.0271786
\(465\) 0 0
\(466\) 8.53469 0.395362
\(467\) 21.7011 1.00421 0.502104 0.864807i \(-0.332559\pi\)
0.502104 + 0.864807i \(0.332559\pi\)
\(468\) 0 0
\(469\) −31.7295 −1.46513
\(470\) −12.2035 −0.562906
\(471\) 0 0
\(472\) −9.66319 −0.444784
\(473\) −3.78845 −0.174193
\(474\) 0 0
\(475\) −17.0994 −0.784576
\(476\) 6.36065 0.291540
\(477\) 0 0
\(478\) −7.28796 −0.333344
\(479\) −39.1212 −1.78749 −0.893747 0.448571i \(-0.851933\pi\)
−0.893747 + 0.448571i \(0.851933\pi\)
\(480\) 0 0
\(481\) −22.6543 −1.03295
\(482\) −1.33492 −0.0608039
\(483\) 0 0
\(484\) −5.77847 −0.262658
\(485\) 29.1187 1.32221
\(486\) 0 0
\(487\) −10.4833 −0.475043 −0.237522 0.971382i \(-0.576335\pi\)
−0.237522 + 0.971382i \(0.576335\pi\)
\(488\) 13.0913 0.592617
\(489\) 0 0
\(490\) 20.8605 0.942383
\(491\) 6.85702 0.309453 0.154727 0.987957i \(-0.450550\pi\)
0.154727 + 0.987957i \(0.450550\pi\)
\(492\) 0 0
\(493\) −1.01033 −0.0455031
\(494\) −10.5248 −0.473533
\(495\) 0 0
\(496\) −4.63798 −0.208251
\(497\) 7.32523 0.328582
\(498\) 0 0
\(499\) 18.7737 0.840427 0.420213 0.907425i \(-0.361955\pi\)
0.420213 + 0.907425i \(0.361955\pi\)
\(500\) 0.117076 0.00523579
\(501\) 0 0
\(502\) −2.87856 −0.128476
\(503\) −12.4270 −0.554092 −0.277046 0.960857i \(-0.589356\pi\)
−0.277046 + 0.960857i \(0.589356\pi\)
\(504\) 0 0
\(505\) 37.8912 1.68614
\(506\) 7.66203 0.340619
\(507\) 0 0
\(508\) 5.98500 0.265541
\(509\) 32.9777 1.46171 0.730856 0.682532i \(-0.239121\pi\)
0.730856 + 0.682532i \(0.239121\pi\)
\(510\) 0 0
\(511\) 39.2434 1.73603
\(512\) 1.00000 0.0441942
\(513\) 0 0
\(514\) −25.7779 −1.13702
\(515\) −40.3823 −1.77946
\(516\) 0 0
\(517\) 8.80204 0.387113
\(518\) −26.9323 −1.18334
\(519\) 0 0
\(520\) 9.82203 0.430724
\(521\) 14.3320 0.627895 0.313947 0.949440i \(-0.398348\pi\)
0.313947 + 0.949440i \(0.398348\pi\)
\(522\) 0 0
\(523\) −5.70884 −0.249630 −0.124815 0.992180i \(-0.539834\pi\)
−0.124815 + 0.992180i \(0.539834\pi\)
\(524\) 16.4150 0.717094
\(525\) 0 0
\(526\) −15.0697 −0.657070
\(527\) −8.00401 −0.348660
\(528\) 0 0
\(529\) −11.7568 −0.511165
\(530\) −8.18220 −0.355412
\(531\) 0 0
\(532\) −12.5123 −0.542476
\(533\) −21.9515 −0.950827
\(534\) 0 0
\(535\) 19.3221 0.835369
\(536\) −8.60876 −0.371842
\(537\) 0 0
\(538\) 16.0615 0.692459
\(539\) −15.0461 −0.648081
\(540\) 0 0
\(541\) 18.0099 0.774305 0.387153 0.922016i \(-0.373459\pi\)
0.387153 + 0.922016i \(0.373459\pi\)
\(542\) 9.41446 0.404386
\(543\) 0 0
\(544\) 1.72576 0.0739911
\(545\) 35.6064 1.52521
\(546\) 0 0
\(547\) −20.6277 −0.881977 −0.440989 0.897513i \(-0.645372\pi\)
−0.440989 + 0.897513i \(0.645372\pi\)
\(548\) −0.211159 −0.00902025
\(549\) 0 0
\(550\) −11.5098 −0.490779
\(551\) 1.98746 0.0846688
\(552\) 0 0
\(553\) 51.9435 2.20886
\(554\) 5.57476 0.236849
\(555\) 0 0
\(556\) 3.67151 0.155707
\(557\) −3.80418 −0.161188 −0.0805942 0.996747i \(-0.525682\pi\)
−0.0805942 + 0.996747i \(0.525682\pi\)
\(558\) 0 0
\(559\) 5.13999 0.217398
\(560\) 11.6768 0.493434
\(561\) 0 0
\(562\) 28.0048 1.18131
\(563\) −11.0714 −0.466602 −0.233301 0.972405i \(-0.574953\pi\)
−0.233301 + 0.972405i \(0.574953\pi\)
\(564\) 0 0
\(565\) −22.2939 −0.937911
\(566\) 6.15522 0.258723
\(567\) 0 0
\(568\) 1.98746 0.0833921
\(569\) 46.7153 1.95841 0.979203 0.202881i \(-0.0650306\pi\)
0.979203 + 0.202881i \(0.0650306\pi\)
\(570\) 0 0
\(571\) −31.6862 −1.32603 −0.663013 0.748608i \(-0.730723\pi\)
−0.663013 + 0.748608i \(0.730723\pi\)
\(572\) −7.08434 −0.296211
\(573\) 0 0
\(574\) −26.0968 −1.08926
\(575\) −16.8894 −0.704335
\(576\) 0 0
\(577\) 44.3284 1.84541 0.922707 0.385502i \(-0.125972\pi\)
0.922707 + 0.385502i \(0.125972\pi\)
\(578\) −14.0218 −0.583229
\(579\) 0 0
\(580\) −1.85475 −0.0770145
\(581\) −11.4199 −0.473778
\(582\) 0 0
\(583\) 5.90158 0.244418
\(584\) 10.6474 0.440594
\(585\) 0 0
\(586\) 2.33510 0.0964621
\(587\) 41.0447 1.69409 0.847047 0.531518i \(-0.178378\pi\)
0.847047 + 0.531518i \(0.178378\pi\)
\(588\) 0 0
\(589\) 15.7450 0.648761
\(590\) −30.6141 −1.26036
\(591\) 0 0
\(592\) −7.30720 −0.300324
\(593\) −9.69265 −0.398029 −0.199015 0.979996i \(-0.563774\pi\)
−0.199015 + 0.979996i \(0.563774\pi\)
\(594\) 0 0
\(595\) 20.1513 0.826121
\(596\) 15.4744 0.633856
\(597\) 0 0
\(598\) −10.3955 −0.425103
\(599\) −29.8379 −1.21914 −0.609572 0.792731i \(-0.708659\pi\)
−0.609572 + 0.792731i \(0.708659\pi\)
\(600\) 0 0
\(601\) 12.5507 0.511954 0.255977 0.966683i \(-0.417603\pi\)
0.255977 + 0.966683i \(0.417603\pi\)
\(602\) 6.11061 0.249050
\(603\) 0 0
\(604\) 20.1457 0.819718
\(605\) −18.3068 −0.744279
\(606\) 0 0
\(607\) −2.78013 −0.112842 −0.0564211 0.998407i \(-0.517969\pi\)
−0.0564211 + 0.998407i \(0.517969\pi\)
\(608\) −3.39480 −0.137677
\(609\) 0 0
\(610\) 41.4749 1.67927
\(611\) −11.9422 −0.483130
\(612\) 0 0
\(613\) −8.59291 −0.347064 −0.173532 0.984828i \(-0.555518\pi\)
−0.173532 + 0.984828i \(0.555518\pi\)
\(614\) 6.82529 0.275446
\(615\) 0 0
\(616\) −8.42212 −0.339337
\(617\) −20.0790 −0.808351 −0.404176 0.914681i \(-0.632442\pi\)
−0.404176 + 0.914681i \(0.632442\pi\)
\(618\) 0 0
\(619\) 8.39185 0.337297 0.168648 0.985676i \(-0.446060\pi\)
0.168648 + 0.985676i \(0.446060\pi\)
\(620\) −14.6936 −0.590111
\(621\) 0 0
\(622\) 8.59522 0.344637
\(623\) −63.9325 −2.56140
\(624\) 0 0
\(625\) −24.8139 −0.992554
\(626\) −21.6689 −0.866063
\(627\) 0 0
\(628\) 17.9974 0.718176
\(629\) −12.6104 −0.502811
\(630\) 0 0
\(631\) 17.5631 0.699178 0.349589 0.936903i \(-0.386321\pi\)
0.349589 + 0.936903i \(0.386321\pi\)
\(632\) 14.0932 0.560597
\(633\) 0 0
\(634\) 35.3200 1.40273
\(635\) 18.9612 0.752450
\(636\) 0 0
\(637\) 20.4138 0.808826
\(638\) 1.33778 0.0529632
\(639\) 0 0
\(640\) 3.16812 0.125231
\(641\) −13.4146 −0.529846 −0.264923 0.964270i \(-0.585347\pi\)
−0.264923 + 0.964270i \(0.585347\pi\)
\(642\) 0 0
\(643\) −10.4351 −0.411520 −0.205760 0.978602i \(-0.565967\pi\)
−0.205760 + 0.978602i \(0.565967\pi\)
\(644\) −12.3585 −0.486995
\(645\) 0 0
\(646\) −5.85859 −0.230503
\(647\) −37.9585 −1.49230 −0.746152 0.665775i \(-0.768101\pi\)
−0.746152 + 0.665775i \(0.768101\pi\)
\(648\) 0 0
\(649\) 22.0810 0.866756
\(650\) 15.6159 0.612508
\(651\) 0 0
\(652\) 3.05289 0.119560
\(653\) −27.3063 −1.06858 −0.534289 0.845302i \(-0.679421\pi\)
−0.534289 + 0.845302i \(0.679421\pi\)
\(654\) 0 0
\(655\) 52.0047 2.03199
\(656\) −7.08052 −0.276448
\(657\) 0 0
\(658\) −14.1973 −0.553469
\(659\) −34.3549 −1.33828 −0.669139 0.743138i \(-0.733337\pi\)
−0.669139 + 0.743138i \(0.733337\pi\)
\(660\) 0 0
\(661\) −24.5777 −0.955962 −0.477981 0.878370i \(-0.658631\pi\)
−0.477981 + 0.878370i \(0.658631\pi\)
\(662\) −25.8137 −1.00328
\(663\) 0 0
\(664\) −3.09842 −0.120242
\(665\) −39.6403 −1.53719
\(666\) 0 0
\(667\) 1.96305 0.0760094
\(668\) −4.10119 −0.158680
\(669\) 0 0
\(670\) −27.2735 −1.05367
\(671\) −29.9146 −1.15484
\(672\) 0 0
\(673\) 42.8754 1.65273 0.826363 0.563137i \(-0.190406\pi\)
0.826363 + 0.563137i \(0.190406\pi\)
\(674\) −3.38459 −0.130369
\(675\) 0 0
\(676\) −3.38830 −0.130319
\(677\) 7.48743 0.287765 0.143883 0.989595i \(-0.454041\pi\)
0.143883 + 0.989595i \(0.454041\pi\)
\(678\) 0 0
\(679\) 33.8761 1.30004
\(680\) 5.46739 0.209665
\(681\) 0 0
\(682\) 10.5981 0.405822
\(683\) 16.7545 0.641093 0.320546 0.947233i \(-0.396134\pi\)
0.320546 + 0.947233i \(0.396134\pi\)
\(684\) 0 0
\(685\) −0.668975 −0.0255602
\(686\) −1.53133 −0.0584664
\(687\) 0 0
\(688\) 1.65791 0.0632074
\(689\) −8.00699 −0.305042
\(690\) 0 0
\(691\) −14.9534 −0.568856 −0.284428 0.958697i \(-0.591804\pi\)
−0.284428 + 0.958697i \(0.591804\pi\)
\(692\) −17.0271 −0.647273
\(693\) 0 0
\(694\) −16.2000 −0.614945
\(695\) 11.6318 0.441218
\(696\) 0 0
\(697\) −12.2192 −0.462837
\(698\) 4.49253 0.170045
\(699\) 0 0
\(700\) 18.5648 0.701683
\(701\) −42.1025 −1.59019 −0.795094 0.606486i \(-0.792579\pi\)
−0.795094 + 0.606486i \(0.792579\pi\)
\(702\) 0 0
\(703\) 24.8065 0.935593
\(704\) −2.28507 −0.0861217
\(705\) 0 0
\(706\) −23.2267 −0.874147
\(707\) 44.0819 1.65787
\(708\) 0 0
\(709\) 28.4856 1.06980 0.534899 0.844916i \(-0.320350\pi\)
0.534899 + 0.844916i \(0.320350\pi\)
\(710\) 6.29651 0.236304
\(711\) 0 0
\(712\) −17.3460 −0.650069
\(713\) 15.5515 0.582410
\(714\) 0 0
\(715\) −22.4440 −0.839358
\(716\) −14.5560 −0.543985
\(717\) 0 0
\(718\) −11.5539 −0.431189
\(719\) 2.53487 0.0945348 0.0472674 0.998882i \(-0.484949\pi\)
0.0472674 + 0.998882i \(0.484949\pi\)
\(720\) 0 0
\(721\) −46.9799 −1.74962
\(722\) −7.47535 −0.278204
\(723\) 0 0
\(724\) −13.0238 −0.484026
\(725\) −2.94885 −0.109518
\(726\) 0 0
\(727\) 19.8834 0.737434 0.368717 0.929542i \(-0.379797\pi\)
0.368717 + 0.929542i \(0.379797\pi\)
\(728\) 11.4267 0.423503
\(729\) 0 0
\(730\) 33.7323 1.24849
\(731\) 2.86116 0.105824
\(732\) 0 0
\(733\) −10.0111 −0.369767 −0.184884 0.982760i \(-0.559191\pi\)
−0.184884 + 0.982760i \(0.559191\pi\)
\(734\) 15.5697 0.574689
\(735\) 0 0
\(736\) −3.35309 −0.123596
\(737\) 19.6716 0.724613
\(738\) 0 0
\(739\) −40.3914 −1.48582 −0.742911 0.669390i \(-0.766556\pi\)
−0.742911 + 0.669390i \(0.766556\pi\)
\(740\) −23.1500 −0.851013
\(741\) 0 0
\(742\) −9.51900 −0.349453
\(743\) 35.6502 1.30788 0.653939 0.756547i \(-0.273115\pi\)
0.653939 + 0.756547i \(0.273115\pi\)
\(744\) 0 0
\(745\) 49.0247 1.79612
\(746\) −9.75726 −0.357239
\(747\) 0 0
\(748\) −3.94347 −0.144187
\(749\) 22.4790 0.821364
\(750\) 0 0
\(751\) −9.46873 −0.345519 −0.172759 0.984964i \(-0.555268\pi\)
−0.172759 + 0.984964i \(0.555268\pi\)
\(752\) −3.85198 −0.140467
\(753\) 0 0
\(754\) −1.81504 −0.0660998
\(755\) 63.8240 2.32279
\(756\) 0 0
\(757\) −37.9651 −1.37987 −0.689933 0.723873i \(-0.742360\pi\)
−0.689933 + 0.723873i \(0.742360\pi\)
\(758\) −18.7904 −0.682498
\(759\) 0 0
\(760\) −10.7551 −0.390129
\(761\) 44.8858 1.62711 0.813554 0.581490i \(-0.197530\pi\)
0.813554 + 0.581490i \(0.197530\pi\)
\(762\) 0 0
\(763\) 41.4238 1.49964
\(764\) 3.60287 0.130347
\(765\) 0 0
\(766\) 30.7680 1.11169
\(767\) −29.9585 −1.08174
\(768\) 0 0
\(769\) 45.7368 1.64931 0.824656 0.565634i \(-0.191369\pi\)
0.824656 + 0.565634i \(0.191369\pi\)
\(770\) −26.6822 −0.961561
\(771\) 0 0
\(772\) 1.47487 0.0530817
\(773\) −20.5707 −0.739876 −0.369938 0.929056i \(-0.620621\pi\)
−0.369938 + 0.929056i \(0.620621\pi\)
\(774\) 0 0
\(775\) −23.3613 −0.839162
\(776\) 9.19117 0.329944
\(777\) 0 0
\(778\) 29.6007 1.06124
\(779\) 24.0369 0.861212
\(780\) 0 0
\(781\) −4.54149 −0.162507
\(782\) −5.78661 −0.206929
\(783\) 0 0
\(784\) 6.58452 0.235162
\(785\) 57.0180 2.03506
\(786\) 0 0
\(787\) 44.5635 1.58852 0.794259 0.607579i \(-0.207859\pi\)
0.794259 + 0.607579i \(0.207859\pi\)
\(788\) 2.53862 0.0904346
\(789\) 0 0
\(790\) 44.6489 1.58853
\(791\) −25.9362 −0.922186
\(792\) 0 0
\(793\) 40.5867 1.44128
\(794\) 16.1427 0.572882
\(795\) 0 0
\(796\) −1.85178 −0.0656347
\(797\) 43.8601 1.55361 0.776803 0.629744i \(-0.216840\pi\)
0.776803 + 0.629744i \(0.216840\pi\)
\(798\) 0 0
\(799\) −6.64758 −0.235174
\(800\) 5.03695 0.178083
\(801\) 0 0
\(802\) 25.3624 0.895577
\(803\) −24.3301 −0.858590
\(804\) 0 0
\(805\) −39.1533 −1.37997
\(806\) −14.3790 −0.506479
\(807\) 0 0
\(808\) 11.9602 0.420758
\(809\) −15.5821 −0.547836 −0.273918 0.961753i \(-0.588320\pi\)
−0.273918 + 0.961753i \(0.588320\pi\)
\(810\) 0 0
\(811\) −30.4691 −1.06992 −0.534958 0.844879i \(-0.679673\pi\)
−0.534958 + 0.844879i \(0.679673\pi\)
\(812\) −2.15778 −0.0757233
\(813\) 0 0
\(814\) 16.6974 0.585245
\(815\) 9.67191 0.338792
\(816\) 0 0
\(817\) −5.62828 −0.196909
\(818\) −22.7713 −0.796180
\(819\) 0 0
\(820\) −22.4319 −0.783356
\(821\) −1.90102 −0.0663460 −0.0331730 0.999450i \(-0.510561\pi\)
−0.0331730 + 0.999450i \(0.510561\pi\)
\(822\) 0 0
\(823\) −22.0410 −0.768302 −0.384151 0.923270i \(-0.625506\pi\)
−0.384151 + 0.923270i \(0.625506\pi\)
\(824\) −12.7465 −0.444045
\(825\) 0 0
\(826\) −35.6158 −1.23923
\(827\) 48.4976 1.68643 0.843213 0.537579i \(-0.180661\pi\)
0.843213 + 0.537579i \(0.180661\pi\)
\(828\) 0 0
\(829\) −20.3186 −0.705693 −0.352846 0.935681i \(-0.614786\pi\)
−0.352846 + 0.935681i \(0.614786\pi\)
\(830\) −9.81616 −0.340724
\(831\) 0 0
\(832\) 3.10027 0.107483
\(833\) 11.3633 0.393714
\(834\) 0 0
\(835\) −12.9931 −0.449643
\(836\) 7.75734 0.268293
\(837\) 0 0
\(838\) −4.92276 −0.170054
\(839\) −5.06635 −0.174910 −0.0874549 0.996168i \(-0.527873\pi\)
−0.0874549 + 0.996168i \(0.527873\pi\)
\(840\) 0 0
\(841\) −28.6573 −0.988181
\(842\) 19.7176 0.679514
\(843\) 0 0
\(844\) −18.9883 −0.653604
\(845\) −10.7345 −0.369278
\(846\) 0 0
\(847\) −21.2978 −0.731801
\(848\) −2.58267 −0.0886893
\(849\) 0 0
\(850\) 8.69255 0.298152
\(851\) 24.5017 0.839907
\(852\) 0 0
\(853\) 26.4679 0.906242 0.453121 0.891449i \(-0.350311\pi\)
0.453121 + 0.891449i \(0.350311\pi\)
\(854\) 48.2510 1.65112
\(855\) 0 0
\(856\) 6.09894 0.208457
\(857\) −18.3116 −0.625514 −0.312757 0.949833i \(-0.601252\pi\)
−0.312757 + 0.949833i \(0.601252\pi\)
\(858\) 0 0
\(859\) −9.43937 −0.322067 −0.161034 0.986949i \(-0.551483\pi\)
−0.161034 + 0.986949i \(0.551483\pi\)
\(860\) 5.25247 0.179108
\(861\) 0 0
\(862\) −6.16323 −0.209921
\(863\) −14.2154 −0.483898 −0.241949 0.970289i \(-0.577787\pi\)
−0.241949 + 0.970289i \(0.577787\pi\)
\(864\) 0 0
\(865\) −53.9438 −1.83414
\(866\) −14.7838 −0.502375
\(867\) 0 0
\(868\) −17.0943 −0.580217
\(869\) −32.2039 −1.09244
\(870\) 0 0
\(871\) −26.6895 −0.904340
\(872\) 11.2390 0.380600
\(873\) 0 0
\(874\) 11.3831 0.385038
\(875\) 0.431509 0.0145877
\(876\) 0 0
\(877\) 39.1054 1.32050 0.660248 0.751047i \(-0.270451\pi\)
0.660248 + 0.751047i \(0.270451\pi\)
\(878\) 29.7670 1.00459
\(879\) 0 0
\(880\) −7.23936 −0.244039
\(881\) −22.8938 −0.771313 −0.385657 0.922642i \(-0.626025\pi\)
−0.385657 + 0.922642i \(0.626025\pi\)
\(882\) 0 0
\(883\) −17.1509 −0.577174 −0.288587 0.957454i \(-0.593185\pi\)
−0.288587 + 0.957454i \(0.593185\pi\)
\(884\) 5.35032 0.179951
\(885\) 0 0
\(886\) 30.4744 1.02381
\(887\) 18.2570 0.613011 0.306506 0.951869i \(-0.400840\pi\)
0.306506 + 0.951869i \(0.400840\pi\)
\(888\) 0 0
\(889\) 22.0590 0.739835
\(890\) −54.9541 −1.84207
\(891\) 0 0
\(892\) −7.25436 −0.242894
\(893\) 13.0767 0.437595
\(894\) 0 0
\(895\) −46.1152 −1.54146
\(896\) 3.68572 0.123131
\(897\) 0 0
\(898\) 11.8411 0.395143
\(899\) 2.71527 0.0905595
\(900\) 0 0
\(901\) −4.45706 −0.148486
\(902\) 16.1795 0.538717
\(903\) 0 0
\(904\) −7.03695 −0.234046
\(905\) −41.2609 −1.37156
\(906\) 0 0
\(907\) 29.1916 0.969293 0.484646 0.874710i \(-0.338948\pi\)
0.484646 + 0.874710i \(0.338948\pi\)
\(908\) −28.5272 −0.946708
\(909\) 0 0
\(910\) 36.2012 1.20006
\(911\) 54.6359 1.81017 0.905084 0.425233i \(-0.139808\pi\)
0.905084 + 0.425233i \(0.139808\pi\)
\(912\) 0 0
\(913\) 7.08010 0.234317
\(914\) −0.186393 −0.00616533
\(915\) 0 0
\(916\) 1.85538 0.0613036
\(917\) 60.5012 1.99793
\(918\) 0 0
\(919\) 41.0995 1.35575 0.677873 0.735179i \(-0.262902\pi\)
0.677873 + 0.735179i \(0.262902\pi\)
\(920\) −10.6230 −0.350229
\(921\) 0 0
\(922\) 10.4054 0.342682
\(923\) 6.16168 0.202814
\(924\) 0 0
\(925\) −36.8060 −1.21017
\(926\) 25.7884 0.847460
\(927\) 0 0
\(928\) −0.585444 −0.0192181
\(929\) 14.5961 0.478882 0.239441 0.970911i \(-0.423036\pi\)
0.239441 + 0.970911i \(0.423036\pi\)
\(930\) 0 0
\(931\) −22.3531 −0.732594
\(932\) 8.53469 0.279563
\(933\) 0 0
\(934\) 21.7011 0.710083
\(935\) −12.4934 −0.408576
\(936\) 0 0
\(937\) 24.9282 0.814370 0.407185 0.913346i \(-0.366511\pi\)
0.407185 + 0.913346i \(0.366511\pi\)
\(938\) −31.7295 −1.03600
\(939\) 0 0
\(940\) −12.2035 −0.398035
\(941\) 20.8443 0.679506 0.339753 0.940515i \(-0.389657\pi\)
0.339753 + 0.940515i \(0.389657\pi\)
\(942\) 0 0
\(943\) 23.7416 0.773133
\(944\) −9.66319 −0.314510
\(945\) 0 0
\(946\) −3.78845 −0.123173
\(947\) 35.9130 1.16702 0.583508 0.812107i \(-0.301680\pi\)
0.583508 + 0.812107i \(0.301680\pi\)
\(948\) 0 0
\(949\) 33.0100 1.07155
\(950\) −17.0994 −0.554779
\(951\) 0 0
\(952\) 6.36065 0.206150
\(953\) 5.80207 0.187947 0.0939737 0.995575i \(-0.470043\pi\)
0.0939737 + 0.995575i \(0.470043\pi\)
\(954\) 0 0
\(955\) 11.4143 0.369359
\(956\) −7.28796 −0.235710
\(957\) 0 0
\(958\) −39.1212 −1.26395
\(959\) −0.778271 −0.0251317
\(960\) 0 0
\(961\) −9.48919 −0.306103
\(962\) −22.6543 −0.730405
\(963\) 0 0
\(964\) −1.33492 −0.0429948
\(965\) 4.67256 0.150415
\(966\) 0 0
\(967\) 29.6589 0.953766 0.476883 0.878967i \(-0.341767\pi\)
0.476883 + 0.878967i \(0.341767\pi\)
\(968\) −5.77847 −0.185727
\(969\) 0 0
\(970\) 29.1187 0.934944
\(971\) 47.1522 1.51318 0.756592 0.653887i \(-0.226863\pi\)
0.756592 + 0.653887i \(0.226863\pi\)
\(972\) 0 0
\(973\) 13.5322 0.433821
\(974\) −10.4833 −0.335906
\(975\) 0 0
\(976\) 13.0913 0.419044
\(977\) −23.8029 −0.761524 −0.380762 0.924673i \(-0.624338\pi\)
−0.380762 + 0.924673i \(0.624338\pi\)
\(978\) 0 0
\(979\) 39.6368 1.26680
\(980\) 20.8605 0.666365
\(981\) 0 0
\(982\) 6.85702 0.218816
\(983\) 11.0823 0.353469 0.176734 0.984259i \(-0.443447\pi\)
0.176734 + 0.984259i \(0.443447\pi\)
\(984\) 0 0
\(985\) 8.04264 0.256260
\(986\) −1.01033 −0.0321756
\(987\) 0 0
\(988\) −10.5248 −0.334839
\(989\) −5.55913 −0.176770
\(990\) 0 0
\(991\) 11.4369 0.363306 0.181653 0.983363i \(-0.441855\pi\)
0.181653 + 0.983363i \(0.441855\pi\)
\(992\) −4.63798 −0.147256
\(993\) 0 0
\(994\) 7.32523 0.232342
\(995\) −5.86666 −0.185986
\(996\) 0 0
\(997\) −27.8945 −0.883428 −0.441714 0.897156i \(-0.645629\pi\)
−0.441714 + 0.897156i \(0.645629\pi\)
\(998\) 18.7737 0.594271
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1458.2.a.g.1.5 6
3.2 odd 2 1458.2.a.f.1.2 6
9.2 odd 6 1458.2.c.g.973.5 12
9.4 even 3 1458.2.c.f.487.2 12
9.5 odd 6 1458.2.c.g.487.5 12
9.7 even 3 1458.2.c.f.973.2 12
27.2 odd 18 486.2.e.g.433.1 12
27.4 even 9 486.2.e.h.379.1 12
27.5 odd 18 162.2.e.b.73.1 12
27.7 even 9 486.2.e.h.109.1 12
27.11 odd 18 162.2.e.b.91.1 12
27.13 even 9 486.2.e.f.55.2 12
27.14 odd 18 486.2.e.g.55.1 12
27.16 even 9 54.2.e.b.13.1 12
27.20 odd 18 486.2.e.e.109.2 12
27.22 even 9 54.2.e.b.25.1 yes 12
27.23 odd 18 486.2.e.e.379.2 12
27.25 even 9 486.2.e.f.433.2 12
108.43 odd 18 432.2.u.b.337.2 12
108.103 odd 18 432.2.u.b.241.2 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
54.2.e.b.13.1 12 27.16 even 9
54.2.e.b.25.1 yes 12 27.22 even 9
162.2.e.b.73.1 12 27.5 odd 18
162.2.e.b.91.1 12 27.11 odd 18
432.2.u.b.241.2 12 108.103 odd 18
432.2.u.b.337.2 12 108.43 odd 18
486.2.e.e.109.2 12 27.20 odd 18
486.2.e.e.379.2 12 27.23 odd 18
486.2.e.f.55.2 12 27.13 even 9
486.2.e.f.433.2 12 27.25 even 9
486.2.e.g.55.1 12 27.14 odd 18
486.2.e.g.433.1 12 27.2 odd 18
486.2.e.h.109.1 12 27.7 even 9
486.2.e.h.379.1 12 27.4 even 9
1458.2.a.f.1.2 6 3.2 odd 2
1458.2.a.g.1.5 6 1.1 even 1 trivial
1458.2.c.f.487.2 12 9.4 even 3
1458.2.c.f.973.2 12 9.7 even 3
1458.2.c.g.487.5 12 9.5 odd 6
1458.2.c.g.973.5 12 9.2 odd 6