L(s) = 1 | − 8·2-s + 20·3-s + 48·4-s − 50·5-s − 160·6-s − 256·8-s + 151·9-s + 400·10-s − 860·11-s + 960·12-s − 1.27e3·13-s − 1.00e3·15-s + 1.28e3·16-s + 250·17-s − 1.20e3·18-s + 460·19-s − 2.40e3·20-s + 6.88e3·22-s − 2.46e3·23-s − 5.12e3·24-s + 1.87e3·25-s + 1.01e4·26-s + 2.90e3·27-s + 682·29-s + 8.00e3·30-s − 5.74e3·31-s − 6.14e3·32-s + ⋯ |
L(s) = 1 | − 1.41·2-s + 1.28·3-s + 3/2·4-s − 0.894·5-s − 1.81·6-s − 1.41·8-s + 0.621·9-s + 1.26·10-s − 2.14·11-s + 1.92·12-s − 2.08·13-s − 1.14·15-s + 5/4·16-s + 0.209·17-s − 0.878·18-s + 0.292·19-s − 1.34·20-s + 3.03·22-s − 0.972·23-s − 1.81·24-s + 3/5·25-s + 2.94·26-s + 0.765·27-s + 0.150·29-s + 1.62·30-s − 1.07·31-s − 1.06·32-s + ⋯ |
Λ(s)=(=(240100s/2ΓC(s)2L(s)Λ(6−s)
Λ(s)=(=(240100s/2ΓC(s+5/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
240100
= 22⋅52⋅74
|
Sign: |
1
|
Analytic conductor: |
6176.08 |
Root analytic conductor: |
8.86499 |
Motivic weight: |
5 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 240100, ( :5/2,5/2), 1)
|
Particular Values
L(3) |
≈ |
0.3539330834 |
L(21) |
≈ |
0.3539330834 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C1 | (1+p2T)2 |
| 5 | C1 | (1+p2T)2 |
| 7 | | 1 |
good | 3 | D4 | 1−20T+83pT2−20p5T3+p10T4 |
| 11 | D4 | 1+860T+498577T2+860p5T3+p10T4 |
| 13 | D4 | 1+1270T+982703T2+1270p5T3+p10T4 |
| 17 | D4 | 1−250T+908827T2−250p5T3+p10T4 |
| 19 | D4 | 1−460T+3446810T2−460p5T3+p10T4 |
| 23 | D4 | 1+2468T+14361742T2+2468p5T3+p10T4 |
| 29 | D4 | 1−682T+40296079T2−682p5T3+p10T4 |
| 31 | D4 | 1+5740T+62389410T2+5740p5T3+p10T4 |
| 37 | D4 | 1−2532T+14892970T2−2532p5T3+p10T4 |
| 41 | D4 | 1−22560T+333650190T2−22560p5T3+p10T4 |
| 43 | D4 | 1−6484T+77928650T2−6484p5T3+p10T4 |
| 47 | D4 | 1−1840T+456985661T2−1840p5T3+p10T4 |
| 53 | D4 | 1−26508T+493888302T2−26508p5T3+p10T4 |
| 59 | D4 | 1−35520T+1379363730T2−35520p5T3+p10T4 |
| 61 | D4 | 1+68220T+2580926554T2+68220p5T3+p10T4 |
| 67 | D4 | 1+22640T+2718901314T2+22640p5T3+p10T4 |
| 71 | D4 | 1+33928T+2679665998T2+33928p5T3+p10T4 |
| 73 | D4 | 1+18140T+4108700294T2+18140p5T3+p10T4 |
| 79 | D4 | 1−23600T+475376373T2−23600p5T3+p10T4 |
| 83 | D4 | 1−67840T+5922418934T2−67840p5T3+p10T4 |
| 89 | D4 | 1+72380T+12375892498T2+72380p5T3+p10T4 |
| 97 | D4 | 1−143650T+22148969939T2−143650p5T3+p10T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.39292295567185967646553741417, −9.789295908146316657999734098261, −9.382001365891373833408912323967, −9.152985914903881167227496881989, −8.418520252542477435284001295318, −8.178936550783361417698883119005, −7.65144877939155309998701134570, −7.54303957321425461872275390644, −7.29323367223223959680224458252, −6.57223000940365173756931568105, −5.61013865495016099837504495520, −5.40239927517696686846148352877, −4.54708924608472828735729735832, −4.08882336135706820048642635112, −3.08451726578986814065936231090, −2.82410805426202497546245596384, −2.42211639003030909002763651877, −1.94142255598356978060036056076, −0.835814258779458793626324416181, −0.19790564121808778296996891475,
0.19790564121808778296996891475, 0.835814258779458793626324416181, 1.94142255598356978060036056076, 2.42211639003030909002763651877, 2.82410805426202497546245596384, 3.08451726578986814065936231090, 4.08882336135706820048642635112, 4.54708924608472828735729735832, 5.40239927517696686846148352877, 5.61013865495016099837504495520, 6.57223000940365173756931568105, 7.29323367223223959680224458252, 7.54303957321425461872275390644, 7.65144877939155309998701134570, 8.178936550783361417698883119005, 8.418520252542477435284001295318, 9.152985914903881167227496881989, 9.382001365891373833408912323967, 9.789295908146316657999734098261, 10.39292295567185967646553741417