Properties

Label 490.6.a.r
Level $490$
Weight $6$
Character orbit 490.a
Self dual yes
Analytic conductor $78.588$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [490,6,Mod(1,490)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(490, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("490.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 490 = 2 \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 490.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(78.5880717084\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{337}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 84 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{337}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 4 q^{2} + ( - \beta + 10) q^{3} + 16 q^{4} - 25 q^{5} + (4 \beta - 40) q^{6} - 64 q^{8} + ( - 20 \beta + 194) q^{9} + 100 q^{10} + (5 \beta - 430) q^{11} + ( - 16 \beta + 160) q^{12} + (22 \beta - 635) q^{13}+ \cdots + (9570 \beta - 117120) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 8 q^{2} + 20 q^{3} + 32 q^{4} - 50 q^{5} - 80 q^{6} - 128 q^{8} + 388 q^{9} + 200 q^{10} - 860 q^{11} + 320 q^{12} - 1270 q^{13} - 500 q^{15} + 512 q^{16} + 250 q^{17} - 1552 q^{18} + 460 q^{19} - 800 q^{20}+ \cdots - 234240 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
9.67878
−8.67878
−4.00000 −8.35756 16.0000 −25.0000 33.4302 0 −64.0000 −173.151 100.000
1.2 −4.00000 28.3576 16.0000 −25.0000 −113.430 0 −64.0000 561.151 100.000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(5\) \( +1 \)
\(7\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 490.6.a.r yes 2
7.b odd 2 1 490.6.a.o 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
490.6.a.o 2 7.b odd 2 1
490.6.a.r yes 2 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{2} - 20T_{3} - 237 \) acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(490))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 4)^{2} \) Copy content Toggle raw display
$3$ \( T^{2} - 20T - 237 \) Copy content Toggle raw display
$5$ \( (T + 25)^{2} \) Copy content Toggle raw display
$7$ \( T^{2} \) Copy content Toggle raw display
$11$ \( T^{2} + 860T + 176475 \) Copy content Toggle raw display
$13$ \( T^{2} + 1270 T + 240117 \) Copy content Toggle raw display
$17$ \( T^{2} - 250 T - 1930887 \) Copy content Toggle raw display
$19$ \( T^{2} - 460 T - 1505388 \) Copy content Toggle raw display
$23$ \( T^{2} + 2468 T + 1489056 \) Copy content Toggle raw display
$29$ \( T^{2} - 682T - 726219 \) Copy content Toggle raw display
$31$ \( T^{2} + 5740 T + 5131108 \) Copy content Toggle raw display
$37$ \( T^{2} - 2532 T - 123794944 \) Copy content Toggle raw display
$41$ \( T^{2} - 22560 T + 101937788 \) Copy content Toggle raw display
$43$ \( T^{2} - 6484 T - 216088236 \) Copy content Toggle raw display
$47$ \( T^{2} - 1840 T - 1704353 \) Copy content Toggle raw display
$53$ \( T^{2} - 26508 T - 342502684 \) Copy content Toggle raw display
$59$ \( T^{2} - 35520 T - 50484868 \) Copy content Toggle raw display
$61$ \( T^{2} + 68220 T + 891733952 \) Copy content Toggle raw display
$67$ \( T^{2} + 22640 T + 18651100 \) Copy content Toggle raw display
$71$ \( T^{2} + 33928 T - 928792704 \) Copy content Toggle raw display
$73$ \( T^{2} + 18140 T - 37442892 \) Copy content Toggle raw display
$79$ \( T^{2} + \cdots - 5678736425 \) Copy content Toggle raw display
$83$ \( T^{2} + \cdots - 1955662352 \) Copy content Toggle raw display
$89$ \( T^{2} + \cdots + 1207773600 \) Copy content Toggle raw display
$97$ \( T^{2} + \cdots + 4974289425 \) Copy content Toggle raw display
show more
show less