L(s) = 1 | + 16·2-s − 40·3-s + 160·4-s + 100·5-s − 640·6-s + 1.28e3·8-s + 450·9-s + 1.60e3·10-s − 432·11-s − 6.40e3·12-s − 620·13-s − 4.00e3·15-s + 8.96e3·16-s − 2.26e3·17-s + 7.20e3·18-s − 1.48e3·19-s + 1.60e4·20-s − 6.91e3·22-s + 1.96e3·23-s − 5.12e4·24-s + 6.25e3·25-s − 9.92e3·26-s + 3.28e3·27-s − 564·29-s − 6.40e4·30-s − 1.02e4·31-s + 5.73e4·32-s + ⋯ |
L(s) = 1 | + 2.82·2-s − 2.56·3-s + 5·4-s + 1.78·5-s − 7.25·6-s + 7.07·8-s + 1.85·9-s + 5.05·10-s − 1.07·11-s − 12.8·12-s − 1.01·13-s − 4.59·15-s + 35/4·16-s − 1.89·17-s + 5.23·18-s − 0.940·19-s + 8.94·20-s − 3.04·22-s + 0.775·23-s − 18.1·24-s + 2·25-s − 2.87·26-s + 0.865·27-s − 0.124·29-s − 12.9·30-s − 1.91·31-s + 9.89·32-s + ⋯ |
Λ(s)=(=((24⋅54⋅78)s/2ΓC(s)4L(s)Λ(6−s)
Λ(s)=(=((24⋅54⋅78)s/2ΓC(s+5/2)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
24⋅54⋅78
|
Sign: |
1
|
Analytic conductor: |
3.81440×107 |
Root analytic conductor: |
8.86499 |
Motivic weight: |
5 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
4
|
Selberg data: |
(8, 24⋅54⋅78, ( :5/2,5/2,5/2,5/2), 1)
|
Particular Values
L(3) |
= |
0 |
L(21) |
= |
0 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C1 | (1−p2T)4 |
| 5 | C1 | (1−p2T)4 |
| 7 | | 1 |
good | 3 | (((C4×C2):C2):C2):C2 | 1+40T+1150T2+8240pT3+48803p2T4+8240p6T5+1150p10T6+40p15T7+p20T8 |
| 11 | (((C4×C2):C2):C2):C2 | 1+432T+424946T2+155685072T3+100205028739T4+155685072p5T5+424946p10T6+432p15T7+p20T8 |
| 13 | (((C4×C2):C2):C2):C2 | 1+620T+1364814T2+630975960T3+736096010131T4+630975960p5T5+1364814p10T6+620p15T7+p20T8 |
| 17 | (((C4×C2):C2):C2):C2 | 1+2260T+6689558T2+9325180360T3+14902549646075T4+9325180360p5T5+6689558p10T6+2260p15T7+p20T8 |
| 19 | (((C4×C2):C2):C2):C2 | 1+1480T+9396964T2+10144231720T3+34421947075670T4+10144231720p5T5+9396964p10T6+1480p15T7+p20T8 |
| 23 | (((C4×C2):C2):C2):C2 | 1−1968T+9987488T2−32046096912T3+52040993557570T4−32046096912p5T5+9987488p10T6−1968p15T7+p20T8 |
| 29 | (((C4×C2):C2):C2):C2 | 1+564T+69433474T2+9006757936T3+1994184496605979T4+9006757936p5T5+69433474p10T6+564p15T7+p20T8 |
| 31 | (((C4×C2):C2):C2):C2 | 1+10240T+148124560T2+29604903040pT3+6856056611517602T4+29604903040p6T5+148124560p10T6+10240p15T7+p20T8 |
| 37 | (((C4×C2):C2):C2):C2 | 1+1648T+161896744T2+101725654768T3+13339828319781218T4+101725654768p5T5+161896744p10T6+1648p15T7+p20T8 |
| 41 | (((C4×C2):C2):C2):C2 | 1+32320T+609845624T2+7548797241280T3+84857018876077202T4+7548797241280p5T5+609845624p10T6+32320p15T7+p20T8 |
| 43 | (((C4×C2):C2):C2):C2 | 1−19320T+647664324T2−8553439555800T3+147201745308735542T4−8553439555800p5T5+647664324p10T6−19320p15T7+p20T8 |
| 47 | (((C4×C2):C2):C2):C2 | 1+15600T+589104950T2+3062232126720T3+126459226732351027T4+3062232126720p5T5+589104950p10T6+15600p15T7+p20T8 |
| 53 | (((C4×C2):C2):C2):C2 | 1−28928T+1635333216T2−31852579536384T3+1005064993135837554T4−31852579536384p5T5+1635333216p10T6−28928p15T7+p20T8 |
| 59 | (((C4×C2):C2):C2):C2 | 1+5800T−228430544T2+9932648143800T3+786538339437354002T4+9932648143800p5T5−228430544p10T6+5800p15T7+p20T8 |
| 61 | (((C4×C2):C2):C2):C2 | 1+83720T+4627195636T2+172113870704120T3+5572286308486140470T4+172113870704120p5T5+4627195636p10T6+83720p15T7+p20T8 |
| 67 | (((C4×C2):C2):C2):C2 | 1+33000T+5259529240T2+125466399418200T3+10527764775076193698T4+125466399418200p5T5+5259529240p10T6+33000p15T7+p20T8 |
| 71 | (((C4×C2):C2):C2):C2 | 1−4112T+162751908T2−37355181830544T3+877858340675496870T4−37355181830544p5T5+162751908p10T6−4112p15T7+p20T8 |
| 73 | (((C4×C2):C2):C2):C2 | 1+84400T+8395914132T2+436767418008080T3+25012278932128479110T4+436767418008080p5T5+8395914132p10T6+84400p15T7+p20T8 |
| 79 | (((C4×C2):C2):C2):C2 | 1+44648T+3915859882T2+198304071878096T3+23368298036236933259T4+198304071878096p5T5+3915859882p10T6+44648p15T7+p20T8 |
| 83 | (((C4×C2):C2):C2):C2 | 1+129120T+20912281996T2+1580873942983520T3+13⋯02T4+1580873942983520p5T5+20912281996p10T6+129120p15T7+p20T8 |
| 89 | (((C4×C2):C2):C2):C2 | 1+309800T+51469973748T2+5970269052356280T3+51⋯02T4+5970269052356280p5T5+51469973748p10T6+309800p15T7+p20T8 |
| 97 | (((C4×C2):C2):C2):C2 | 1−5220T+27657295382T2+978769401240T3+32⋯79T4+978769401240p5T5+27657295382p10T6−5220p15T7+p20T8 |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.28413635820975987062670514036, −6.84157712582858095073167660077, −6.80543587330803708486577057578, −6.60067949523966819854660640013, −6.58491029432711012933765817567, −6.00794894804152440657068035185, −5.92647385097282771125121157206, −5.76521854140670405978798278322, −5.63813169990461271423590345064, −5.22052750822711979374558044446, −5.10117840994094939324189245453, −5.05137395462990635189800138691, −4.98446190867513019323673349323, −4.35522627729635474817724807778, −4.22847239940124644770689890196, −3.91800154982087090414175867425, −3.73275220912251184955501548713, −2.76152061352543979186966655918, −2.75085905274412054897301435172, −2.73275084334761361485536229703, −2.71102440614718416731050357358, −1.87764276777206850481614960163, −1.71985010280181465723176865392, −1.39689279777401256275828606329, −1.26596724798542388294792693606, 0, 0, 0, 0,
1.26596724798542388294792693606, 1.39689279777401256275828606329, 1.71985010280181465723176865392, 1.87764276777206850481614960163, 2.71102440614718416731050357358, 2.73275084334761361485536229703, 2.75085905274412054897301435172, 2.76152061352543979186966655918, 3.73275220912251184955501548713, 3.91800154982087090414175867425, 4.22847239940124644770689890196, 4.35522627729635474817724807778, 4.98446190867513019323673349323, 5.05137395462990635189800138691, 5.10117840994094939324189245453, 5.22052750822711979374558044446, 5.63813169990461271423590345064, 5.76521854140670405978798278322, 5.92647385097282771125121157206, 6.00794894804152440657068035185, 6.58491029432711012933765817567, 6.60067949523966819854660640013, 6.80543587330803708486577057578, 6.84157712582858095073167660077, 7.28413635820975987062670514036