Properties

Label 490.6.a.z
Level $490$
Weight $6$
Character orbit 490.a
Self dual yes
Analytic conductor $78.588$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [490,6,Mod(1,490)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(490, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("490.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 490 = 2 \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 490.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(78.5880717084\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{2}, \sqrt{193})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} - 99x^{2} + 100x + 2114 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{2}\cdot 7 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 4 q^{2} + ( - \beta_1 - 10) q^{3} + 16 q^{4} + 25 q^{5} + ( - 4 \beta_1 - 40) q^{6} + 64 q^{8} + ( - 6 \beta_{3} + 20 \beta_1 + 68) q^{9} + 100 q^{10} + (19 \beta_{3} + 5 \beta_1 - 108) q^{11} + ( - 16 \beta_1 - 160) q^{12}+ \cdots + (1340 \beta_{3} + 8750 \beta_{2} + \cdots - 30248) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 16 q^{2} - 40 q^{3} + 64 q^{4} + 100 q^{5} - 160 q^{6} + 256 q^{8} + 272 q^{9} + 400 q^{10} - 432 q^{11} - 640 q^{12} - 620 q^{13} - 1000 q^{15} + 1024 q^{16} - 2260 q^{17} + 1088 q^{18} - 1480 q^{19}+ \cdots - 120992 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 2x^{3} - 99x^{2} + 100x + 2114 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( 2\nu^{3} - 3\nu^{2} - 181\nu + 91 ) / 37 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -14\nu^{3} + 21\nu^{2} + 749\nu - 378 ) / 185 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{2} - \nu - 50 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( -5\beta_{2} - 7\beta _1 + 7 ) / 14 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( 14\beta_{3} - 5\beta_{2} - 7\beta _1 + 707 ) / 14 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 21\beta_{3} - 460\beta_{2} - 385\beta _1 + 1057 ) / 14 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−5.03201
−7.86044
8.86044
6.03201
4.00000 −28.1351 16.0000 25.0000 −112.540 0 64.0000 548.583 100.000
1.2 4.00000 −19.6498 16.0000 25.0000 −78.5992 0 64.0000 143.115 100.000
1.3 4.00000 −0.350197 16.0000 25.0000 −1.40079 0 64.0000 −242.877 100.000
1.4 4.00000 8.13508 16.0000 25.0000 32.5403 0 64.0000 −176.820 100.000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(5\) \( -1 \)
\(7\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 490.6.a.z 4
7.b odd 2 1 490.6.a.bc yes 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
490.6.a.z 4 1.a even 1 1 trivial
490.6.a.bc yes 4 7.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{4} + 40T_{3}^{3} + 178T_{3}^{2} - 4440T_{3} - 1575 \) acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(490))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 4)^{4} \) Copy content Toggle raw display
$3$ \( T^{4} + 40 T^{3} + \cdots - 1575 \) Copy content Toggle raw display
$5$ \( (T - 25)^{4} \) Copy content Toggle raw display
$7$ \( T^{4} \) Copy content Toggle raw display
$11$ \( T^{4} + \cdots + 15203921449 \) Copy content Toggle raw display
$13$ \( T^{4} + \cdots - 1678775175 \) Copy content Toggle raw display
$17$ \( T^{4} + \cdots - 61894059439 \) Copy content Toggle raw display
$19$ \( T^{4} + \cdots + 148453264400 \) Copy content Toggle raw display
$23$ \( T^{4} + \cdots + 6328219032100 \) Copy content Toggle raw display
$29$ \( T^{4} + \cdots - 12721698396871 \) Copy content Toggle raw display
$31$ \( T^{4} + \cdots + 13952395382084 \) Copy content Toggle raw display
$37$ \( T^{4} + \cdots + 503875355864900 \) Copy content Toggle raw display
$41$ \( T^{4} + \cdots - 29\!\cdots\!44 \) Copy content Toggle raw display
$43$ \( T^{4} + \cdots + 462219528976 \) Copy content Toggle raw display
$47$ \( T^{4} + \cdots - 38\!\cdots\!75 \) Copy content Toggle raw display
$53$ \( T^{4} + \cdots - 12\!\cdots\!24 \) Copy content Toggle raw display
$59$ \( T^{4} + \cdots + 21\!\cdots\!16 \) Copy content Toggle raw display
$61$ \( T^{4} + \cdots - 81\!\cdots\!00 \) Copy content Toggle raw display
$67$ \( T^{4} + \cdots - 28\!\cdots\!64 \) Copy content Toggle raw display
$71$ \( T^{4} + \cdots + 68\!\cdots\!56 \) Copy content Toggle raw display
$73$ \( T^{4} + \cdots - 12\!\cdots\!44 \) Copy content Toggle raw display
$79$ \( T^{4} + \cdots + 18\!\cdots\!25 \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots - 24\!\cdots\!56 \) Copy content Toggle raw display
$89$ \( T^{4} + \cdots + 25\!\cdots\!00 \) Copy content Toggle raw display
$97$ \( T^{4} + \cdots - 38\!\cdots\!71 \) Copy content Toggle raw display
show more
show less