L(s) = 1 | + 2.82i·3-s − 5.00·9-s + 4·11-s − 4.24i·13-s + 1.41i·17-s − 2.82·19-s + 4i·23-s − 5.65i·27-s − 8·29-s + 11.3i·33-s − 8i·37-s + 12·39-s − 7.07·41-s + 4i·43-s + 5.65i·47-s + ⋯ |
L(s) = 1 | + 1.63i·3-s − 1.66·9-s + 1.20·11-s − 1.17i·13-s + 0.342i·17-s − 0.648·19-s + 0.834i·23-s − 1.08i·27-s − 1.48·29-s + 1.96i·33-s − 1.31i·37-s + 1.92·39-s − 1.10·41-s + 0.609i·43-s + 0.825i·47-s + ⋯ |
Λ(s)=(=(4900s/2ΓC(s)L(s)(−0.447+0.894i)Λ(2−s)
Λ(s)=(=(4900s/2ΓC(s+1/2)L(s)(−0.447+0.894i)Λ(1−s)
Degree: |
2 |
Conductor: |
4900
= 22⋅52⋅72
|
Sign: |
−0.447+0.894i
|
Analytic conductor: |
39.1266 |
Root analytic conductor: |
6.25513 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ4900(2549,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 4900, ( :1/2), −0.447+0.894i)
|
Particular Values
L(1) |
≈ |
0.3131133548 |
L(21) |
≈ |
0.3131133548 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
| 7 | 1 |
good | 3 | 1−2.82iT−3T2 |
| 11 | 1−4T+11T2 |
| 13 | 1+4.24iT−13T2 |
| 17 | 1−1.41iT−17T2 |
| 19 | 1+2.82T+19T2 |
| 23 | 1−4iT−23T2 |
| 29 | 1+8T+29T2 |
| 31 | 1+31T2 |
| 37 | 1+8iT−37T2 |
| 41 | 1+7.07T+41T2 |
| 43 | 1−4iT−43T2 |
| 47 | 1−5.65iT−47T2 |
| 53 | 1+10iT−53T2 |
| 59 | 1+14.1T+59T2 |
| 61 | 1+7.07T+61T2 |
| 67 | 1−67T2 |
| 71 | 1+71T2 |
| 73 | 1−7.07iT−73T2 |
| 79 | 1+8T+79T2 |
| 83 | 1−14.1iT−83T2 |
| 89 | 1+7.07T+89T2 |
| 97 | 1+1.41iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.942949144713583328654271604924, −8.220167574700814972990053722298, −7.41185165531857206164805955055, −6.36707529886502573121713057223, −5.65753792160790125380238052392, −5.06976062792617716273536412873, −4.09728979793307579763019489131, −3.72010209563036582183174753313, −2.92175210995622052799884762283, −1.57704306069223156705182802513,
0.080210690097360517716299427673, 1.44360355215686755567363126337, 1.87788481119226131117908204868, 2.93852520467237842583407740284, 3.99692838396465194262923819338, 4.81463451341051355008519600060, 6.04994341538371532034286777114, 6.39026765219186827450966096276, 7.07249938614242741938636024113, 7.52548814642455141748723577550