Properties

Label 4900.2.e.p.2549.3
Level 49004900
Weight 22
Character 4900.2549
Analytic conductor 39.12739.127
Analytic rank 00
Dimension 44
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4900,2,Mod(2549,4900)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4900, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4900.2549");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 4900=225272 4900 = 2^{2} \cdot 5^{2} \cdot 7^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 4900.e (of order 22, degree 11, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 39.126696990439.1266969904
Analytic rank: 00
Dimension: 44
Coefficient field: Q(ζ8)\Q(\zeta_{8})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4+1 x^{4} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a41]\Z[a_1, \ldots, a_{41}]
Coefficient ring index: 22 2^{2}
Twist minimal: no (minimal twist has level 196)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

Embedding invariants

Embedding label 2549.3
Root 0.7071070.707107i-0.707107 - 0.707107i of defining polynomial
Character χ\chi == 4900.2549
Dual form 4900.2.e.p.2549.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+2.82843iq35.00000q9+4.00000q114.24264iq13+1.41421iq172.82843q19+4.00000iq235.65685iq278.00000q29+11.3137iq338.00000iq37+12.0000q397.07107q41+4.00000iq43+5.65685iq474.00000q5110.0000iq538.00000iq5714.1421q597.07107q6111.3137q69+7.07107iq738.00000q79+1.00000q81+14.1421iq8322.6274iq877.07107q891.41421iq9720.0000q99+O(q100)q+2.82843i q^{3} -5.00000 q^{9} +4.00000 q^{11} -4.24264i q^{13} +1.41421i q^{17} -2.82843 q^{19} +4.00000i q^{23} -5.65685i q^{27} -8.00000 q^{29} +11.3137i q^{33} -8.00000i q^{37} +12.0000 q^{39} -7.07107 q^{41} +4.00000i q^{43} +5.65685i q^{47} -4.00000 q^{51} -10.0000i q^{53} -8.00000i q^{57} -14.1421 q^{59} -7.07107 q^{61} -11.3137 q^{69} +7.07107i q^{73} -8.00000 q^{79} +1.00000 q^{81} +14.1421i q^{83} -22.6274i q^{87} -7.07107 q^{89} -1.41421i q^{97} -20.0000 q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q20q9+16q1132q29+48q3916q5132q79+4q8180q99+O(q100) 4 q - 20 q^{9} + 16 q^{11} - 32 q^{29} + 48 q^{39} - 16 q^{51} - 32 q^{79} + 4 q^{81} - 80 q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/4900Z)×\left(\mathbb{Z}/4900\mathbb{Z}\right)^\times.

nn 101101 11771177 24512451
χ(n)\chi(n) 11 1-1 11

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0 0
33 2.82843i 1.63299i 0.577350 + 0.816497i 0.304087π0.304087\pi
−0.577350 + 0.816497i 0.695913π0.695913\pi
44 0 0
55 0 0
66 0 0
77 0 0
88 0 0
99 −5.00000 −1.66667
1010 0 0
1111 4.00000 1.20605 0.603023 0.797724i 0.293963π-0.293963\pi
0.603023 + 0.797724i 0.293963π0.293963\pi
1212 0 0
1313 − 4.24264i − 1.17670i −0.808608 0.588348i 0.799778π-0.799778\pi
0.808608 0.588348i 0.200222π-0.200222\pi
1414 0 0
1515 0 0
1616 0 0
1717 1.41421i 0.342997i 0.985184 + 0.171499i 0.0548609π0.0548609\pi
−0.985184 + 0.171499i 0.945139π0.945139\pi
1818 0 0
1919 −2.82843 −0.648886 −0.324443 0.945905i 0.605177π-0.605177\pi
−0.324443 + 0.945905i 0.605177π0.605177\pi
2020 0 0
2121 0 0
2222 0 0
2323 4.00000i 0.834058i 0.908893 + 0.417029i 0.136929π0.136929\pi
−0.908893 + 0.417029i 0.863071π0.863071\pi
2424 0 0
2525 0 0
2626 0 0
2727 − 5.65685i − 1.08866i
2828 0 0
2929 −8.00000 −1.48556 −0.742781 0.669534i 0.766494π-0.766494\pi
−0.742781 + 0.669534i 0.766494π0.766494\pi
3030 0 0
3131 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
3232 0 0
3333 11.3137i 1.96946i
3434 0 0
3535 0 0
3636 0 0
3737 − 8.00000i − 1.31519i −0.753371 0.657596i 0.771573π-0.771573\pi
0.753371 0.657596i 0.228427π-0.228427\pi
3838 0 0
3939 12.0000 1.92154
4040 0 0
4141 −7.07107 −1.10432 −0.552158 0.833740i 0.686195π-0.686195\pi
−0.552158 + 0.833740i 0.686195π0.686195\pi
4242 0 0
4343 4.00000i 0.609994i 0.952353 + 0.304997i 0.0986555π0.0986555\pi
−0.952353 + 0.304997i 0.901344π0.901344\pi
4444 0 0
4545 0 0
4646 0 0
4747 5.65685i 0.825137i 0.910927 + 0.412568i 0.135368π0.135368\pi
−0.910927 + 0.412568i 0.864632π0.864632\pi
4848 0 0
4949 0 0
5050 0 0
5151 −4.00000 −0.560112
5252 0 0
5353 − 10.0000i − 1.37361i −0.726844 0.686803i 0.759014π-0.759014\pi
0.726844 0.686803i 0.240986π-0.240986\pi
5454 0 0
5555 0 0
5656 0 0
5757 − 8.00000i − 1.05963i
5858 0 0
5959 −14.1421 −1.84115 −0.920575 0.390567i 0.872279π-0.872279\pi
−0.920575 + 0.390567i 0.872279π0.872279\pi
6060 0 0
6161 −7.07107 −0.905357 −0.452679 0.891674i 0.649532π-0.649532\pi
−0.452679 + 0.891674i 0.649532π0.649532\pi
6262 0 0
6363 0 0
6464 0 0
6565 0 0
6666 0 0
6767 0 0 1.00000 00
−1.00000 π\pi
6868 0 0
6969 −11.3137 −1.36201
7070 0 0
7171 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
7272 0 0
7373 7.07107i 0.827606i 0.910366 + 0.413803i 0.135800π0.135800\pi
−0.910366 + 0.413803i 0.864200π0.864200\pi
7474 0 0
7575 0 0
7676 0 0
7777 0 0
7878 0 0
7979 −8.00000 −0.900070 −0.450035 0.893011i 0.648589π-0.648589\pi
−0.450035 + 0.893011i 0.648589π0.648589\pi
8080 0 0
8181 1.00000 0.111111
8282 0 0
8383 14.1421i 1.55230i 0.630548 + 0.776151i 0.282830π0.282830\pi
−0.630548 + 0.776151i 0.717170π0.717170\pi
8484 0 0
8585 0 0
8686 0 0
8787 − 22.6274i − 2.42591i
8888 0 0
8989 −7.07107 −0.749532 −0.374766 0.927119i 0.622277π-0.622277\pi
−0.374766 + 0.927119i 0.622277π0.622277\pi
9090 0 0
9191 0 0
9292 0 0
9393 0 0
9494 0 0
9595 0 0
9696 0 0
9797 − 1.41421i − 0.143592i −0.997419 0.0717958i 0.977127π-0.977127\pi
0.997419 0.0717958i 0.0228730π-0.0228730\pi
9898 0 0
9999 −20.0000 −2.01008
100100 0 0
101101 −12.7279 −1.26648 −0.633238 0.773957i 0.718274π-0.718274\pi
−0.633238 + 0.773957i 0.718274π0.718274\pi
102102 0 0
103103 11.3137i 1.11477i 0.830253 + 0.557386i 0.188196π0.188196\pi
−0.830253 + 0.557386i 0.811804π0.811804\pi
104104 0 0
105105 0 0
106106 0 0
107107 8.00000i 0.773389i 0.922208 + 0.386695i 0.126383π0.126383\pi
−0.922208 + 0.386695i 0.873617π0.873617\pi
108108 0 0
109109 8.00000 0.766261 0.383131 0.923694i 0.374846π-0.374846\pi
0.383131 + 0.923694i 0.374846π0.374846\pi
110110 0 0
111111 22.6274 2.14770
112112 0 0
113113 − 6.00000i − 0.564433i −0.959351 0.282216i 0.908930π-0.908930\pi
0.959351 0.282216i 0.0910696π-0.0910696\pi
114114 0 0
115115 0 0
116116 0 0
117117 21.2132i 1.96116i
118118 0 0
119119 0 0
120120 0 0
121121 5.00000 0.454545
122122 0 0
123123 − 20.0000i − 1.80334i
124124 0 0
125125 0 0
126126 0 0
127127 − 20.0000i − 1.77471i −0.461084 0.887357i 0.652539π-0.652539\pi
0.461084 0.887357i 0.347461π-0.347461\pi
128128 0 0
129129 −11.3137 −0.996116
130130 0 0
131131 −8.48528 −0.741362 −0.370681 0.928760i 0.620876π-0.620876\pi
−0.370681 + 0.928760i 0.620876π0.620876\pi
132132 0 0
133133 0 0
134134 0 0
135135 0 0
136136 0 0
137137 0 0 1.00000 00
−1.00000 π\pi
138138 0 0
139139 −2.82843 −0.239904 −0.119952 0.992780i 0.538274π-0.538274\pi
−0.119952 + 0.992780i 0.538274π0.538274\pi
140140 0 0
141141 −16.0000 −1.34744
142142 0 0
143143 − 16.9706i − 1.41915i
144144 0 0
145145 0 0
146146 0 0
147147 0 0
148148 0 0
149149 −10.0000 −0.819232 −0.409616 0.912258i 0.634337π-0.634337\pi
−0.409616 + 0.912258i 0.634337π0.634337\pi
150150 0 0
151151 −4.00000 −0.325515 −0.162758 0.986666i 0.552039π-0.552039\pi
−0.162758 + 0.986666i 0.552039π0.552039\pi
152152 0 0
153153 − 7.07107i − 0.571662i
154154 0 0
155155 0 0
156156 0 0
157157 7.07107i 0.564333i 0.959366 + 0.282166i 0.0910530π0.0910530\pi
−0.959366 + 0.282166i 0.908947π0.908947\pi
158158 0 0
159159 28.2843 2.24309
160160 0 0
161161 0 0
162162 0 0
163163 − 4.00000i − 0.313304i −0.987654 0.156652i 0.949930π-0.949930\pi
0.987654 0.156652i 0.0500701π-0.0500701\pi
164164 0 0
165165 0 0
166166 0 0
167167 − 5.65685i − 0.437741i −0.975754 0.218870i 0.929763π-0.929763\pi
0.975754 0.218870i 0.0702371π-0.0702371\pi
168168 0 0
169169 −5.00000 −0.384615
170170 0 0
171171 14.1421 1.08148
172172 0 0
173173 4.24264i 0.322562i 0.986909 + 0.161281i 0.0515625π0.0515625\pi
−0.986909 + 0.161281i 0.948437π0.948437\pi
174174 0 0
175175 0 0
176176 0 0
177177 − 40.0000i − 3.00658i
178178 0 0
179179 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
180180 0 0
181181 −21.2132 −1.57676 −0.788382 0.615185i 0.789081π-0.789081\pi
−0.788382 + 0.615185i 0.789081π0.789081\pi
182182 0 0
183183 − 20.0000i − 1.47844i
184184 0 0
185185 0 0
186186 0 0
187187 5.65685i 0.413670i
188188 0 0
189189 0 0
190190 0 0
191191 −16.0000 −1.15772 −0.578860 0.815427i 0.696502π-0.696502\pi
−0.578860 + 0.815427i 0.696502π0.696502\pi
192192 0 0
193193 10.0000i 0.719816i 0.932988 + 0.359908i 0.117192π0.117192\pi
−0.932988 + 0.359908i 0.882808π0.882808\pi
194194 0 0
195195 0 0
196196 0 0
197197 − 10.0000i − 0.712470i −0.934396 0.356235i 0.884060π-0.884060\pi
0.934396 0.356235i 0.115940π-0.115940\pi
198198 0 0
199199 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
200200 0 0
201201 0 0
202202 0 0
203203 0 0
204204 0 0
205205 0 0
206206 0 0
207207 − 20.0000i − 1.39010i
208208 0 0
209209 −11.3137 −0.782586
210210 0 0
211211 24.0000 1.65223 0.826114 0.563503i 0.190547π-0.190547\pi
0.826114 + 0.563503i 0.190547π0.190547\pi
212212 0 0
213213 0 0
214214 0 0
215215 0 0
216216 0 0
217217 0 0
218218 0 0
219219 −20.0000 −1.35147
220220 0 0
221221 6.00000 0.403604
222222 0 0
223223 − 16.9706i − 1.13643i −0.822879 0.568216i 0.807634π-0.807634\pi
0.822879 0.568216i 0.192366π-0.192366\pi
224224 0 0
225225 0 0
226226 0 0
227227 8.48528i 0.563188i 0.959534 + 0.281594i 0.0908631π0.0908631\pi
−0.959534 + 0.281594i 0.909137π0.909137\pi
228228 0 0
229229 21.2132 1.40181 0.700904 0.713256i 0.252780π-0.252780\pi
0.700904 + 0.713256i 0.252780π0.252780\pi
230230 0 0
231231 0 0
232232 0 0
233233 0 0 1.00000 00
−1.00000 π\pi
234234 0 0
235235 0 0
236236 0 0
237237 − 22.6274i − 1.46981i
238238 0 0
239239 12.0000 0.776215 0.388108 0.921614i 0.373129π-0.373129\pi
0.388108 + 0.921614i 0.373129π0.373129\pi
240240 0 0
241241 12.7279 0.819878 0.409939 0.912113i 0.365550π-0.365550\pi
0.409939 + 0.912113i 0.365550π0.365550\pi
242242 0 0
243243 − 14.1421i − 0.907218i
244244 0 0
245245 0 0
246246 0 0
247247 12.0000i 0.763542i
248248 0 0
249249 −40.0000 −2.53490
250250 0 0
251251 19.7990 1.24970 0.624851 0.780744i 0.285160π-0.285160\pi
0.624851 + 0.780744i 0.285160π0.285160\pi
252252 0 0
253253 16.0000i 1.00591i
254254 0 0
255255 0 0
256256 0 0
257257 21.2132i 1.32324i 0.749838 + 0.661622i 0.230131π0.230131\pi
−0.749838 + 0.661622i 0.769869π0.769869\pi
258258 0 0
259259 0 0
260260 0 0
261261 40.0000 2.47594
262262 0 0
263263 24.0000i 1.47990i 0.672660 + 0.739952i 0.265152π0.265152\pi
−0.672660 + 0.739952i 0.734848π0.734848\pi
264264 0 0
265265 0 0
266266 0 0
267267 − 20.0000i − 1.22398i
268268 0 0
269269 18.3848 1.12094 0.560470 0.828175i 0.310621π-0.310621\pi
0.560470 + 0.828175i 0.310621π0.310621\pi
270270 0 0
271271 28.2843 1.71815 0.859074 0.511852i 0.171040π-0.171040\pi
0.859074 + 0.511852i 0.171040π0.171040\pi
272272 0 0
273273 0 0
274274 0 0
275275 0 0
276276 0 0
277277 22.0000i 1.32185i 0.750451 + 0.660926i 0.229836π0.229836\pi
−0.750451 + 0.660926i 0.770164π0.770164\pi
278278 0 0
279279 0 0
280280 0 0
281281 16.0000 0.954480 0.477240 0.878773i 0.341637π-0.341637\pi
0.477240 + 0.878773i 0.341637π0.341637\pi
282282 0 0
283283 2.82843i 0.168133i 0.996460 + 0.0840663i 0.0267907π0.0267907\pi
−0.996460 + 0.0840663i 0.973209π0.973209\pi
284284 0 0
285285 0 0
286286 0 0
287287 0 0
288288 0 0
289289 15.0000 0.882353
290290 0 0
291291 4.00000 0.234484
292292 0 0
293293 − 32.5269i − 1.90024i −0.311881 0.950121i 0.600959π-0.600959\pi
0.311881 0.950121i 0.399041π-0.399041\pi
294294 0 0
295295 0 0
296296 0 0
297297 − 22.6274i − 1.31298i
298298 0 0
299299 16.9706 0.981433
300300 0 0
301301 0 0
302302 0 0
303303 − 36.0000i − 2.06815i
304304 0 0
305305 0 0
306306 0 0
307307 − 19.7990i − 1.12999i −0.825095 0.564994i 0.808878π-0.808878\pi
0.825095 0.564994i 0.191122π-0.191122\pi
308308 0 0
309309 −32.0000 −1.82042
310310 0 0
311311 −22.6274 −1.28308 −0.641542 0.767088i 0.721705π-0.721705\pi
−0.641542 + 0.767088i 0.721705π0.721705\pi
312312 0 0
313313 − 4.24264i − 0.239808i −0.992785 0.119904i 0.961741π-0.961741\pi
0.992785 0.119904i 0.0382587π-0.0382587\pi
314314 0 0
315315 0 0
316316 0 0
317317 − 2.00000i − 0.112331i −0.998421 0.0561656i 0.982113π-0.982113\pi
0.998421 0.0561656i 0.0178875π-0.0178875\pi
318318 0 0
319319 −32.0000 −1.79166
320320 0 0
321321 −22.6274 −1.26294
322322 0 0
323323 − 4.00000i − 0.222566i
324324 0 0
325325 0 0
326326 0 0
327327 22.6274i 1.25130i
328328 0 0
329329 0 0
330330 0 0
331331 −20.0000 −1.09930 −0.549650 0.835395i 0.685239π-0.685239\pi
−0.549650 + 0.835395i 0.685239π0.685239\pi
332332 0 0
333333 40.0000i 2.19199i
334334 0 0
335335 0 0
336336 0 0
337337 8.00000i 0.435788i 0.975972 + 0.217894i 0.0699187π0.0699187\pi
−0.975972 + 0.217894i 0.930081π0.930081\pi
338338 0 0
339339 16.9706 0.921714
340340 0 0
341341 0 0
342342 0 0
343343 0 0
344344 0 0
345345 0 0
346346 0 0
347347 − 12.0000i − 0.644194i −0.946707 0.322097i 0.895612π-0.895612\pi
0.946707 0.322097i 0.104388π-0.104388\pi
348348 0 0
349349 4.24264 0.227103 0.113552 0.993532i 0.463777π-0.463777\pi
0.113552 + 0.993532i 0.463777π0.463777\pi
350350 0 0
351351 −24.0000 −1.28103
352352 0 0
353353 − 9.89949i − 0.526897i −0.964673 0.263448i 0.915140π-0.915140\pi
0.964673 0.263448i 0.0848599π-0.0848599\pi
354354 0 0
355355 0 0
356356 0 0
357357 0 0
358358 0 0
359359 20.0000 1.05556 0.527780 0.849381i 0.323025π-0.323025\pi
0.527780 + 0.849381i 0.323025π0.323025\pi
360360 0 0
361361 −11.0000 −0.578947
362362 0 0
363363 14.1421i 0.742270i
364364 0 0
365365 0 0
366366 0 0
367367 5.65685i 0.295285i 0.989041 + 0.147643i 0.0471686π0.0471686\pi
−0.989041 + 0.147643i 0.952831π0.952831\pi
368368 0 0
369369 35.3553 1.84053
370370 0 0
371371 0 0
372372 0 0
373373 − 10.0000i − 0.517780i −0.965907 0.258890i 0.916643π-0.916643\pi
0.965907 0.258890i 0.0833568π-0.0833568\pi
374374 0 0
375375 0 0
376376 0 0
377377 33.9411i 1.74806i
378378 0 0
379379 20.0000 1.02733 0.513665 0.857991i 0.328287π-0.328287\pi
0.513665 + 0.857991i 0.328287π0.328287\pi
380380 0 0
381381 56.5685 2.89809
382382 0 0
383383 5.65685i 0.289052i 0.989501 + 0.144526i 0.0461657π0.0461657\pi
−0.989501 + 0.144526i 0.953834π0.953834\pi
384384 0 0
385385 0 0
386386 0 0
387387 − 20.0000i − 1.01666i
388388 0 0
389389 −8.00000 −0.405616 −0.202808 0.979219i 0.565007π-0.565007\pi
−0.202808 + 0.979219i 0.565007π0.565007\pi
390390 0 0
391391 −5.65685 −0.286079
392392 0 0
393393 − 24.0000i − 1.21064i
394394 0 0
395395 0 0
396396 0 0
397397 15.5563i 0.780751i 0.920656 + 0.390375i 0.127655π0.127655\pi
−0.920656 + 0.390375i 0.872345π0.872345\pi
398398 0 0
399399 0 0
400400 0 0
401401 24.0000 1.19850 0.599251 0.800561i 0.295465π-0.295465\pi
0.599251 + 0.800561i 0.295465π0.295465\pi
402402 0 0
403403 0 0
404404 0 0
405405 0 0
406406 0 0
407407 − 32.0000i − 1.58618i
408408 0 0
409409 −38.1838 −1.88807 −0.944033 0.329851i 0.893001π-0.893001\pi
−0.944033 + 0.329851i 0.893001π0.893001\pi
410410 0 0
411411 0 0
412412 0 0
413413 0 0
414414 0 0
415415 0 0
416416 0 0
417417 − 8.00000i − 0.391762i
418418 0 0
419419 −14.1421 −0.690889 −0.345444 0.938439i 0.612272π-0.612272\pi
−0.345444 + 0.938439i 0.612272π0.612272\pi
420420 0 0
421421 6.00000 0.292422 0.146211 0.989253i 0.453292π-0.453292\pi
0.146211 + 0.989253i 0.453292π0.453292\pi
422422 0 0
423423 − 28.2843i − 1.37523i
424424 0 0
425425 0 0
426426 0 0
427427 0 0
428428 0 0
429429 48.0000 2.31746
430430 0 0
431431 −36.0000 −1.73406 −0.867029 0.498257i 0.833974π-0.833974\pi
−0.867029 + 0.498257i 0.833974π0.833974\pi
432432 0 0
433433 21.2132i 1.01944i 0.860340 + 0.509721i 0.170251π0.170251\pi
−0.860340 + 0.509721i 0.829749π0.829749\pi
434434 0 0
435435 0 0
436436 0 0
437437 − 11.3137i − 0.541208i
438438 0 0
439439 16.9706 0.809961 0.404980 0.914325i 0.367278π-0.367278\pi
0.404980 + 0.914325i 0.367278π0.367278\pi
440440 0 0
441441 0 0
442442 0 0
443443 16.0000i 0.760183i 0.924949 + 0.380091i 0.124107π0.124107\pi
−0.924949 + 0.380091i 0.875893π0.875893\pi
444444 0 0
445445 0 0
446446 0 0
447447 − 28.2843i − 1.33780i
448448 0 0
449449 18.0000 0.849473 0.424736 0.905317i 0.360367π-0.360367\pi
0.424736 + 0.905317i 0.360367π0.360367\pi
450450 0 0
451451 −28.2843 −1.33185
452452 0 0
453453 − 11.3137i − 0.531564i
454454 0 0
455455 0 0
456456 0 0
457457 30.0000i 1.40334i 0.712502 + 0.701670i 0.247562π0.247562\pi
−0.712502 + 0.701670i 0.752438π0.752438\pi
458458 0 0
459459 8.00000 0.373408
460460 0 0
461461 7.07107 0.329332 0.164666 0.986349i 0.447345π-0.447345\pi
0.164666 + 0.986349i 0.447345π0.447345\pi
462462 0 0
463463 − 40.0000i − 1.85896i −0.368875 0.929479i 0.620257π-0.620257\pi
0.368875 0.929479i 0.379743π-0.379743\pi
464464 0 0
465465 0 0
466466 0 0
467467 − 19.7990i − 0.916188i −0.888904 0.458094i 0.848532π-0.848532\pi
0.888904 0.458094i 0.151468π-0.151468\pi
468468 0 0
469469 0 0
470470 0 0
471471 −20.0000 −0.921551
472472 0 0
473473 16.0000i 0.735681i
474474 0 0
475475 0 0
476476 0 0
477477 50.0000i 2.28934i
478478 0 0
479479 11.3137 0.516937 0.258468 0.966020i 0.416782π-0.416782\pi
0.258468 + 0.966020i 0.416782π0.416782\pi
480480 0 0
481481 −33.9411 −1.54758
482482 0 0
483483 0 0
484484 0 0
485485 0 0
486486 0 0
487487 − 12.0000i − 0.543772i −0.962329 0.271886i 0.912353π-0.912353\pi
0.962329 0.271886i 0.0876473π-0.0876473\pi
488488 0 0
489489 11.3137 0.511624
490490 0 0
491491 24.0000 1.08310 0.541552 0.840667i 0.317837π-0.317837\pi
0.541552 + 0.840667i 0.317837π0.317837\pi
492492 0 0
493493 − 11.3137i − 0.509544i
494494 0 0
495495 0 0
496496 0 0
497497 0 0
498498 0 0
499499 −32.0000 −1.43252 −0.716258 0.697835i 0.754147π-0.754147\pi
−0.716258 + 0.697835i 0.754147π0.754147\pi
500500 0 0
501501 16.0000 0.714827
502502 0 0
503503 39.5980i 1.76559i 0.469762 + 0.882793i 0.344340π0.344340\pi
−0.469762 + 0.882793i 0.655660π0.655660\pi
504504 0 0
505505 0 0
506506 0 0
507507 − 14.1421i − 0.628074i
508508 0 0
509509 18.3848 0.814891 0.407445 0.913230i 0.366420π-0.366420\pi
0.407445 + 0.913230i 0.366420π0.366420\pi
510510 0 0
511511 0 0
512512 0 0
513513 16.0000i 0.706417i
514514 0 0
515515 0 0
516516 0 0
517517 22.6274i 0.995153i
518518 0 0
519519 −12.0000 −0.526742
520520 0 0
521521 −41.0122 −1.79678 −0.898388 0.439202i 0.855261π-0.855261\pi
−0.898388 + 0.439202i 0.855261π0.855261\pi
522522 0 0
523523 − 42.4264i − 1.85518i −0.373603 0.927589i 0.621878π-0.621878\pi
0.373603 0.927589i 0.378122π-0.378122\pi
524524 0 0
525525 0 0
526526 0 0
527527 0 0
528528 0 0
529529 7.00000 0.304348
530530 0 0
531531 70.7107 3.06858
532532 0 0
533533 30.0000i 1.29944i
534534 0 0
535535 0 0
536536 0 0
537537 0 0
538538 0 0
539539 0 0
540540 0 0
541541 −14.0000 −0.601907 −0.300954 0.953639i 0.597305π-0.597305\pi
−0.300954 + 0.953639i 0.597305π0.597305\pi
542542 0 0
543543 − 60.0000i − 2.57485i
544544 0 0
545545 0 0
546546 0 0
547547 − 20.0000i − 0.855138i −0.903983 0.427569i 0.859370π-0.859370\pi
0.903983 0.427569i 0.140630π-0.140630\pi
548548 0 0
549549 35.3553 1.50893
550550 0 0
551551 22.6274 0.963960
552552 0 0
553553 0 0
554554 0 0
555555 0 0
556556 0 0
557557 30.0000i 1.27114i 0.772043 + 0.635570i 0.219235π0.219235\pi
−0.772043 + 0.635570i 0.780765π0.780765\pi
558558 0 0
559559 16.9706 0.717778
560560 0 0
561561 −16.0000 −0.675521
562562 0 0
563563 − 14.1421i − 0.596020i −0.954563 0.298010i 0.903677π-0.903677\pi
0.954563 0.298010i 0.0963229π-0.0963229\pi
564564 0 0
565565 0 0
566566 0 0
567567 0 0
568568 0 0
569569 −40.0000 −1.67689 −0.838444 0.544988i 0.816534π-0.816534\pi
−0.838444 + 0.544988i 0.816534π0.816534\pi
570570 0 0
571571 −20.0000 −0.836974 −0.418487 0.908223i 0.637439π-0.637439\pi
−0.418487 + 0.908223i 0.637439π0.637439\pi
572572 0 0
573573 − 45.2548i − 1.89055i
574574 0 0
575575 0 0
576576 0 0
577577 12.7279i 0.529870i 0.964266 + 0.264935i 0.0853506π0.0853506\pi
−0.964266 + 0.264935i 0.914649π0.914649\pi
578578 0 0
579579 −28.2843 −1.17545
580580 0 0
581581 0 0
582582 0 0
583583 − 40.0000i − 1.65663i
584584 0 0
585585 0 0
586586 0 0
587587 25.4558i 1.05068i 0.850894 + 0.525338i 0.176061π0.176061\pi
−0.850894 + 0.525338i 0.823939π0.823939\pi
588588 0 0
589589 0 0
590590 0 0
591591 28.2843 1.16346
592592 0 0
593593 9.89949i 0.406524i 0.979124 + 0.203262i 0.0651542π0.0651542\pi
−0.979124 + 0.203262i 0.934846π0.934846\pi
594594 0 0
595595 0 0
596596 0 0
597597 0 0
598598 0 0
599599 −8.00000 −0.326871 −0.163436 0.986554i 0.552258π-0.552258\pi
−0.163436 + 0.986554i 0.552258π0.552258\pi
600600 0 0
601601 −29.6985 −1.21143 −0.605713 0.795683i 0.707112π-0.707112\pi
−0.605713 + 0.795683i 0.707112π0.707112\pi
602602 0 0
603603 0 0
604604 0 0
605605 0 0
606606 0 0
607607 − 33.9411i − 1.37763i −0.724938 0.688814i 0.758132π-0.758132\pi
0.724938 0.688814i 0.241868π-0.241868\pi
608608 0 0
609609 0 0
610610 0 0
611611 24.0000 0.970936
612612 0 0
613613 − 24.0000i − 0.969351i −0.874694 0.484675i 0.838938π-0.838938\pi
0.874694 0.484675i 0.161062π-0.161062\pi
614614 0 0
615615 0 0
616616 0 0
617617 − 8.00000i − 0.322068i −0.986949 0.161034i 0.948517π-0.948517\pi
0.986949 0.161034i 0.0514829π-0.0514829\pi
618618 0 0
619619 31.1127 1.25052 0.625262 0.780415i 0.284992π-0.284992\pi
0.625262 + 0.780415i 0.284992π0.284992\pi
620620 0 0
621621 22.6274 0.908007
622622 0 0
623623 0 0
624624 0 0
625625 0 0
626626 0 0
627627 − 32.0000i − 1.27796i
628628 0 0
629629 11.3137 0.451107
630630 0 0
631631 −16.0000 −0.636950 −0.318475 0.947931i 0.603171π-0.603171\pi
−0.318475 + 0.947931i 0.603171π0.603171\pi
632632 0 0
633633 67.8823i 2.69808i
634634 0 0
635635 0 0
636636 0 0
637637 0 0
638638 0 0
639639 0 0
640640 0 0
641641 8.00000 0.315981 0.157991 0.987441i 0.449498π-0.449498\pi
0.157991 + 0.987441i 0.449498π0.449498\pi
642642 0 0
643643 − 2.82843i − 0.111542i −0.998444 0.0557711i 0.982238π-0.982238\pi
0.998444 0.0557711i 0.0177617π-0.0177617\pi
644644 0 0
645645 0 0
646646 0 0
647647 0 0 1.00000 00
−1.00000 π\pi
648648 0 0
649649 −56.5685 −2.22051
650650 0 0
651651 0 0
652652 0 0
653653 24.0000i 0.939193i 0.882881 + 0.469596i 0.155601π0.155601\pi
−0.882881 + 0.469596i 0.844399π0.844399\pi
654654 0 0
655655 0 0
656656 0 0
657657 − 35.3553i − 1.37934i
658658 0 0
659659 −12.0000 −0.467454 −0.233727 0.972302i 0.575092π-0.575092\pi
−0.233727 + 0.972302i 0.575092π0.575092\pi
660660 0 0
661661 −21.2132 −0.825098 −0.412549 0.910935i 0.635361π-0.635361\pi
−0.412549 + 0.910935i 0.635361π0.635361\pi
662662 0 0
663663 16.9706i 0.659082i
664664 0 0
665665 0 0
666666 0 0
667667 − 32.0000i − 1.23904i
668668 0 0
669669 48.0000 1.85579
670670 0 0
671671 −28.2843 −1.09190
672672 0 0
673673 0 0 1.00000 00
−1.00000 π\pi
674674 0 0
675675 0 0
676676 0 0
677677 12.7279i 0.489174i 0.969627 + 0.244587i 0.0786523π0.0786523\pi
−0.969627 + 0.244587i 0.921348π0.921348\pi
678678 0 0
679679 0 0
680680 0 0
681681 −24.0000 −0.919682
682682 0 0
683683 0 0 1.00000 00
−1.00000 π\pi
684684 0 0
685685 0 0
686686 0 0
687687 60.0000i 2.28914i
688688 0 0
689689 −42.4264 −1.61632
690690 0 0
691691 −42.4264 −1.61398 −0.806988 0.590567i 0.798904π-0.798904\pi
−0.806988 + 0.590567i 0.798904π0.798904\pi
692692 0 0
693693 0 0
694694 0 0
695695 0 0
696696 0 0
697697 − 10.0000i − 0.378777i
698698 0 0
699699 0 0
700700 0 0
701701 24.0000 0.906467 0.453234 0.891392i 0.350270π-0.350270\pi
0.453234 + 0.891392i 0.350270π0.350270\pi
702702 0 0
703703 22.6274i 0.853409i
704704 0 0
705705 0 0
706706 0 0
707707 0 0
708708 0 0
709709 8.00000 0.300446 0.150223 0.988652i 0.452001π-0.452001\pi
0.150223 + 0.988652i 0.452001π0.452001\pi
710710 0 0
711711 40.0000 1.50012
712712 0 0
713713 0 0
714714 0 0
715715 0 0
716716 0 0
717717 33.9411i 1.26755i
718718 0 0
719719 −39.5980 −1.47676 −0.738378 0.674387i 0.764408π-0.764408\pi
−0.738378 + 0.674387i 0.764408π0.764408\pi
720720 0 0
721721 0 0
722722 0 0
723723 36.0000i 1.33885i
724724 0 0
725725 0 0
726726 0 0
727727 28.2843i 1.04901i 0.851409 + 0.524503i 0.175749π0.175749\pi
−0.851409 + 0.524503i 0.824251π0.824251\pi
728728 0 0
729729 43.0000 1.59259
730730 0 0
731731 −5.65685 −0.209226
732732 0 0
733733 38.1838i 1.41035i 0.709034 + 0.705175i 0.249131π0.249131\pi
−0.709034 + 0.705175i 0.750869π0.750869\pi
734734 0 0
735735 0 0
736736 0 0
737737 0 0
738738 0 0
739739 12.0000 0.441427 0.220714 0.975339i 0.429161π-0.429161\pi
0.220714 + 0.975339i 0.429161π0.429161\pi
740740 0 0
741741 −33.9411 −1.24686
742742 0 0
743743 20.0000i 0.733729i 0.930274 + 0.366864i 0.119569π0.119569\pi
−0.930274 + 0.366864i 0.880431π0.880431\pi
744744 0 0
745745 0 0
746746 0 0
747747 − 70.7107i − 2.58717i
748748 0 0
749749 0 0
750750 0 0
751751 −4.00000 −0.145962 −0.0729810 0.997333i 0.523251π-0.523251\pi
−0.0729810 + 0.997333i 0.523251π0.523251\pi
752752 0 0
753753 56.0000i 2.04075i
754754 0 0
755755 0 0
756756 0 0
757757 − 40.0000i − 1.45382i −0.686730 0.726912i 0.740955π-0.740955\pi
0.686730 0.726912i 0.259045π-0.259045\pi
758758 0 0
759759 −45.2548 −1.64265
760760 0 0
761761 41.0122 1.48669 0.743345 0.668908i 0.233238π-0.233238\pi
0.743345 + 0.668908i 0.233238π0.233238\pi
762762 0 0
763763 0 0
764764 0 0
765765 0 0
766766 0 0
767767 60.0000i 2.16647i
768768 0 0
769769 −46.6690 −1.68293 −0.841464 0.540312i 0.818306π-0.818306\pi
−0.841464 + 0.540312i 0.818306π0.818306\pi
770770 0 0
771771 −60.0000 −2.16085
772772 0 0
773773 − 24.0416i − 0.864717i −0.901702 0.432359i 0.857681π-0.857681\pi
0.901702 0.432359i 0.142319π-0.142319\pi
774774 0 0
775775 0 0
776776 0 0
777777 0 0
778778 0 0
779779 20.0000 0.716574
780780 0 0
781781 0 0
782782 0 0
783783 45.2548i 1.61728i
784784 0 0
785785 0 0
786786 0 0
787787 48.0833i 1.71398i 0.515330 + 0.856992i 0.327669π0.327669\pi
−0.515330 + 0.856992i 0.672331π0.672331\pi
788788 0 0
789789 −67.8823 −2.41667
790790 0 0
791791 0 0
792792 0 0
793793 30.0000i 1.06533i
794794 0 0
795795 0 0
796796 0 0
797797 − 29.6985i − 1.05197i −0.850493 0.525987i 0.823696π-0.823696\pi
0.850493 0.525987i 0.176304π-0.176304\pi
798798 0 0
799799 −8.00000 −0.283020
800800 0 0
801801 35.3553 1.24922
802802 0 0
803803 28.2843i 0.998130i
804804 0 0
805805 0 0
806806 0 0
807807 52.0000i 1.83049i
808808 0 0
809809 −2.00000 −0.0703163 −0.0351581 0.999382i 0.511193π-0.511193\pi
−0.0351581 + 0.999382i 0.511193π0.511193\pi
810810 0 0
811811 8.48528 0.297959 0.148979 0.988840i 0.452401π-0.452401\pi
0.148979 + 0.988840i 0.452401π0.452401\pi
812812 0 0
813813 80.0000i 2.80572i
814814 0 0
815815 0 0
816816 0 0
817817 − 11.3137i − 0.395817i
818818 0 0
819819 0 0
820820 0 0
821821 6.00000 0.209401 0.104701 0.994504i 0.466612π-0.466612\pi
0.104701 + 0.994504i 0.466612π0.466612\pi
822822 0 0
823823 − 40.0000i − 1.39431i −0.716919 0.697156i 0.754448π-0.754448\pi
0.716919 0.697156i 0.245552π-0.245552\pi
824824 0 0
825825 0 0
826826 0 0
827827 48.0000i 1.66912i 0.550914 + 0.834562i 0.314279π0.314279\pi
−0.550914 + 0.834562i 0.685721π0.685721\pi
828828 0 0
829829 7.07107 0.245588 0.122794 0.992432i 0.460815π-0.460815\pi
0.122794 + 0.992432i 0.460815π0.460815\pi
830830 0 0
831831 −62.2254 −2.15858
832832 0 0
833833 0 0
834834 0 0
835835 0 0
836836 0 0
837837 0 0
838838 0 0
839839 11.3137 0.390593 0.195296 0.980744i 0.437433π-0.437433\pi
0.195296 + 0.980744i 0.437433π0.437433\pi
840840 0 0
841841 35.0000 1.20690
842842 0 0
843843 45.2548i 1.55866i
844844 0 0
845845 0 0
846846 0 0
847847 0 0
848848 0 0
849849 −8.00000 −0.274559
850850 0 0
851851 32.0000 1.09695
852852 0 0
853853 − 12.7279i − 0.435796i −0.975972 0.217898i 0.930080π-0.930080\pi
0.975972 0.217898i 0.0699200π-0.0699200\pi
854854 0 0
855855 0 0
856856 0 0
857857 7.07107i 0.241543i 0.992680 + 0.120772i 0.0385368π0.0385368\pi
−0.992680 + 0.120772i 0.961463π0.961463\pi
858858 0 0
859859 −14.1421 −0.482523 −0.241262 0.970460i 0.577561π-0.577561\pi
−0.241262 + 0.970460i 0.577561π0.577561\pi
860860 0 0
861861 0 0
862862 0 0
863863 40.0000i 1.36162i 0.732462 + 0.680808i 0.238371π0.238371\pi
−0.732462 + 0.680808i 0.761629π0.761629\pi
864864 0 0
865865 0 0
866866 0 0
867867 42.4264i 1.44088i
868868 0 0
869869 −32.0000 −1.08553
870870 0 0
871871 0 0
872872 0 0
873873 7.07107i 0.239319i
874874 0 0
875875 0 0
876876 0 0
877877 8.00000i 0.270141i 0.990836 + 0.135070i 0.0431261π0.0431261\pi
−0.990836 + 0.135070i 0.956874π0.956874\pi
878878 0 0
879879 92.0000 3.10308
880880 0 0
881881 −21.2132 −0.714691 −0.357345 0.933972i 0.616318π-0.616318\pi
−0.357345 + 0.933972i 0.616318π0.616318\pi
882882 0 0
883883 40.0000i 1.34611i 0.739594 + 0.673054i 0.235018π0.235018\pi
−0.739594 + 0.673054i 0.764982π0.764982\pi
884884 0 0
885885 0 0
886886 0 0
887887 28.2843i 0.949693i 0.880069 + 0.474846i 0.157496π0.157496\pi
−0.880069 + 0.474846i 0.842504π0.842504\pi
888888 0 0
889889 0 0
890890 0 0
891891 4.00000 0.134005
892892 0 0
893893 − 16.0000i − 0.535420i
894894 0 0
895895 0 0
896896 0 0
897897 48.0000i 1.60267i
898898 0 0
899899 0 0
900900 0 0
901901 14.1421 0.471143
902902 0 0
903903 0 0
904904 0 0
905905 0 0
906906 0 0
907907 − 8.00000i − 0.265636i −0.991140 0.132818i 0.957597π-0.957597\pi
0.991140 0.132818i 0.0424025π-0.0424025\pi
908908 0 0
909909 63.6396 2.11079
910910 0 0
911911 20.0000 0.662630 0.331315 0.943520i 0.392508π-0.392508\pi
0.331315 + 0.943520i 0.392508π0.392508\pi
912912 0 0
913913 56.5685i 1.87215i
914914 0 0
915915 0 0
916916 0 0
917917 0 0
918918 0 0
919919 8.00000 0.263896 0.131948 0.991257i 0.457877π-0.457877\pi
0.131948 + 0.991257i 0.457877π0.457877\pi
920920 0 0
921921 56.0000 1.84526
922922 0 0
923923 0 0
924924 0 0
925925 0 0
926926 0 0
927927 − 56.5685i − 1.85795i
928928 0 0
929929 −35.3553 −1.15997 −0.579986 0.814627i 0.696942π-0.696942\pi
−0.579986 + 0.814627i 0.696942π0.696942\pi
930930 0 0
931931 0 0
932932 0 0
933933 − 64.0000i − 2.09527i
934934 0 0
935935 0 0
936936 0 0
937937 15.5563i 0.508204i 0.967177 + 0.254102i 0.0817799π0.0817799\pi
−0.967177 + 0.254102i 0.918220π0.918220\pi
938938 0 0
939939 12.0000 0.391605
940940 0 0
941941 −7.07107 −0.230510 −0.115255 0.993336i 0.536769π-0.536769\pi
−0.115255 + 0.993336i 0.536769π0.536769\pi
942942 0 0
943943 − 28.2843i − 0.921063i
944944 0 0
945945 0 0
946946 0 0
947947 60.0000i 1.94974i 0.222779 + 0.974869i 0.428487π0.428487\pi
−0.222779 + 0.974869i 0.571513π0.571513\pi
948948 0 0
949949 30.0000 0.973841
950950 0 0
951951 5.65685 0.183436
952952 0 0
953953 − 10.0000i − 0.323932i −0.986796 0.161966i 0.948217π-0.948217\pi
0.986796 0.161966i 0.0517835π-0.0517835\pi
954954 0 0
955955 0 0
956956 0 0
957957 − 90.5097i − 2.92576i
958958 0 0
959959 0 0
960960 0 0
961961 −31.0000 −1.00000
962962 0 0
963963 − 40.0000i − 1.28898i
964964 0 0
965965 0 0
966966 0 0
967967 12.0000i 0.385894i 0.981209 + 0.192947i 0.0618045π0.0618045\pi
−0.981209 + 0.192947i 0.938195π0.938195\pi
968968 0 0
969969 11.3137 0.363449
970970 0 0
971971 14.1421 0.453843 0.226921 0.973913i 0.427134π-0.427134\pi
0.226921 + 0.973913i 0.427134π0.427134\pi
972972 0 0
973973 0 0
974974 0 0
975975 0 0
976976 0 0
977977 48.0000i 1.53566i 0.640656 + 0.767828i 0.278662π0.278662\pi
−0.640656 + 0.767828i 0.721338π0.721338\pi
978978 0 0
979979 −28.2843 −0.903969
980980 0 0
981981 −40.0000 −1.27710
982982 0 0
983983 − 45.2548i − 1.44341i −0.692203 0.721703i 0.743360π-0.743360\pi
0.692203 0.721703i 0.256640π-0.256640\pi
984984 0 0
985985 0 0
986986 0 0
987987 0 0
988988 0 0
989989 −16.0000 −0.508770
990990 0 0
991991 −40.0000 −1.27064 −0.635321 0.772248i 0.719132π-0.719132\pi
−0.635321 + 0.772248i 0.719132π0.719132\pi
992992 0 0
993993 − 56.5685i − 1.79515i
994994 0 0
995995 0 0
996996 0 0
997997 1.41421i 0.0447886i 0.999749 + 0.0223943i 0.00712892π0.00712892\pi
−0.999749 + 0.0223943i 0.992871π0.992871\pi
998998 0 0
999999 −45.2548 −1.43180
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4900.2.e.p.2549.3 4
5.2 odd 4 4900.2.a.y.1.2 2
5.3 odd 4 196.2.a.c.1.1 2
5.4 even 2 inner 4900.2.e.p.2549.1 4
7.6 odd 2 inner 4900.2.e.p.2549.2 4
15.8 even 4 1764.2.a.l.1.1 2
20.3 even 4 784.2.a.m.1.2 2
35.3 even 12 196.2.e.b.177.1 4
35.13 even 4 196.2.a.c.1.2 yes 2
35.18 odd 12 196.2.e.b.177.2 4
35.23 odd 12 196.2.e.b.165.2 4
35.27 even 4 4900.2.a.y.1.1 2
35.33 even 12 196.2.e.b.165.1 4
35.34 odd 2 inner 4900.2.e.p.2549.4 4
40.3 even 4 3136.2.a.bs.1.1 2
40.13 odd 4 3136.2.a.br.1.2 2
60.23 odd 4 7056.2.a.cr.1.1 2
105.23 even 12 1764.2.k.l.361.2 4
105.38 odd 12 1764.2.k.l.1549.1 4
105.53 even 12 1764.2.k.l.1549.2 4
105.68 odd 12 1764.2.k.l.361.1 4
105.83 odd 4 1764.2.a.l.1.2 2
140.3 odd 12 784.2.i.l.177.2 4
140.23 even 12 784.2.i.l.753.1 4
140.83 odd 4 784.2.a.m.1.1 2
140.103 odd 12 784.2.i.l.753.2 4
140.123 even 12 784.2.i.l.177.1 4
280.13 even 4 3136.2.a.br.1.1 2
280.83 odd 4 3136.2.a.bs.1.2 2
420.83 even 4 7056.2.a.cr.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
196.2.a.c.1.1 2 5.3 odd 4
196.2.a.c.1.2 yes 2 35.13 even 4
196.2.e.b.165.1 4 35.33 even 12
196.2.e.b.165.2 4 35.23 odd 12
196.2.e.b.177.1 4 35.3 even 12
196.2.e.b.177.2 4 35.18 odd 12
784.2.a.m.1.1 2 140.83 odd 4
784.2.a.m.1.2 2 20.3 even 4
784.2.i.l.177.1 4 140.123 even 12
784.2.i.l.177.2 4 140.3 odd 12
784.2.i.l.753.1 4 140.23 even 12
784.2.i.l.753.2 4 140.103 odd 12
1764.2.a.l.1.1 2 15.8 even 4
1764.2.a.l.1.2 2 105.83 odd 4
1764.2.k.l.361.1 4 105.68 odd 12
1764.2.k.l.361.2 4 105.23 even 12
1764.2.k.l.1549.1 4 105.38 odd 12
1764.2.k.l.1549.2 4 105.53 even 12
3136.2.a.br.1.1 2 280.13 even 4
3136.2.a.br.1.2 2 40.13 odd 4
3136.2.a.bs.1.1 2 40.3 even 4
3136.2.a.bs.1.2 2 280.83 odd 4
4900.2.a.y.1.1 2 35.27 even 4
4900.2.a.y.1.2 2 5.2 odd 4
4900.2.e.p.2549.1 4 5.4 even 2 inner
4900.2.e.p.2549.2 4 7.6 odd 2 inner
4900.2.e.p.2549.3 4 1.1 even 1 trivial
4900.2.e.p.2549.4 4 35.34 odd 2 inner
7056.2.a.cr.1.1 2 60.23 odd 4
7056.2.a.cr.1.2 2 420.83 even 4