Properties

Label 784.2.i.l.177.2
Level $784$
Weight $2$
Character 784.177
Analytic conductor $6.260$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [784,2,Mod(177,784)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(784, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("784.177");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 784 = 2^{4} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 784.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.26027151847\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{2}, \sqrt{-3})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 2x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 196)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 177.2
Root \(0.707107 + 1.22474i\) of defining polynomial
Character \(\chi\) \(=\) 784.177
Dual form 784.2.i.l.753.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.41421 + 2.44949i) q^{3} +(0.707107 - 1.22474i) q^{5} +(-2.50000 + 4.33013i) q^{9} +(2.00000 + 3.46410i) q^{11} -4.24264 q^{13} +4.00000 q^{15} +(0.707107 + 1.22474i) q^{17} +(-1.41421 + 2.44949i) q^{19} +(-2.00000 + 3.46410i) q^{23} +(1.50000 + 2.59808i) q^{25} -5.65685 q^{27} +8.00000 q^{29} +(-5.65685 + 9.79796i) q^{33} +(4.00000 - 6.92820i) q^{37} +(-6.00000 - 10.3923i) q^{39} +7.07107 q^{41} +4.00000 q^{43} +(3.53553 + 6.12372i) q^{45} +(-2.82843 + 4.89898i) q^{47} +(-2.00000 + 3.46410i) q^{51} +(-5.00000 - 8.66025i) q^{53} +5.65685 q^{55} -8.00000 q^{57} +(-7.07107 - 12.2474i) q^{59} +(-3.53553 + 6.12372i) q^{61} +(-3.00000 + 5.19615i) q^{65} -11.3137 q^{69} +(-3.53553 - 6.12372i) q^{73} +(-4.24264 + 7.34847i) q^{75} +(4.00000 - 6.92820i) q^{79} +(-0.500000 - 0.866025i) q^{81} -14.1421 q^{83} +2.00000 q^{85} +(11.3137 + 19.5959i) q^{87} +(3.53553 - 6.12372i) q^{89} +(2.00000 + 3.46410i) q^{95} +1.41421 q^{97} -20.0000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 10 q^{9} + 8 q^{11} + 16 q^{15} - 8 q^{23} + 6 q^{25} + 32 q^{29} + 16 q^{37} - 24 q^{39} + 16 q^{43} - 8 q^{51} - 20 q^{53} - 32 q^{57} - 12 q^{65} + 16 q^{79} - 2 q^{81} + 8 q^{85} + 8 q^{95} - 80 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/784\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(687\) \(689\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.41421 + 2.44949i 0.816497 + 1.41421i 0.908248 + 0.418432i \(0.137420\pi\)
−0.0917517 + 0.995782i \(0.529247\pi\)
\(4\) 0 0
\(5\) 0.707107 1.22474i 0.316228 0.547723i −0.663470 0.748203i \(-0.730917\pi\)
0.979698 + 0.200480i \(0.0642503\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) −2.50000 + 4.33013i −0.833333 + 1.44338i
\(10\) 0 0
\(11\) 2.00000 + 3.46410i 0.603023 + 1.04447i 0.992361 + 0.123371i \(0.0393705\pi\)
−0.389338 + 0.921095i \(0.627296\pi\)
\(12\) 0 0
\(13\) −4.24264 −1.17670 −0.588348 0.808608i \(-0.700222\pi\)
−0.588348 + 0.808608i \(0.700222\pi\)
\(14\) 0 0
\(15\) 4.00000 1.03280
\(16\) 0 0
\(17\) 0.707107 + 1.22474i 0.171499 + 0.297044i 0.938944 0.344070i \(-0.111806\pi\)
−0.767445 + 0.641114i \(0.778472\pi\)
\(18\) 0 0
\(19\) −1.41421 + 2.44949i −0.324443 + 0.561951i −0.981399 0.191977i \(-0.938510\pi\)
0.656957 + 0.753928i \(0.271843\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −2.00000 + 3.46410i −0.417029 + 0.722315i −0.995639 0.0932891i \(-0.970262\pi\)
0.578610 + 0.815604i \(0.303595\pi\)
\(24\) 0 0
\(25\) 1.50000 + 2.59808i 0.300000 + 0.519615i
\(26\) 0 0
\(27\) −5.65685 −1.08866
\(28\) 0 0
\(29\) 8.00000 1.48556 0.742781 0.669534i \(-0.233506\pi\)
0.742781 + 0.669534i \(0.233506\pi\)
\(30\) 0 0
\(31\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(32\) 0 0
\(33\) −5.65685 + 9.79796i −0.984732 + 1.70561i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 4.00000 6.92820i 0.657596 1.13899i −0.323640 0.946180i \(-0.604907\pi\)
0.981236 0.192809i \(-0.0617599\pi\)
\(38\) 0 0
\(39\) −6.00000 10.3923i −0.960769 1.66410i
\(40\) 0 0
\(41\) 7.07107 1.10432 0.552158 0.833740i \(-0.313805\pi\)
0.552158 + 0.833740i \(0.313805\pi\)
\(42\) 0 0
\(43\) 4.00000 0.609994 0.304997 0.952353i \(-0.401344\pi\)
0.304997 + 0.952353i \(0.401344\pi\)
\(44\) 0 0
\(45\) 3.53553 + 6.12372i 0.527046 + 0.912871i
\(46\) 0 0
\(47\) −2.82843 + 4.89898i −0.412568 + 0.714590i −0.995170 0.0981685i \(-0.968702\pi\)
0.582601 + 0.812758i \(0.302035\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) −2.00000 + 3.46410i −0.280056 + 0.485071i
\(52\) 0 0
\(53\) −5.00000 8.66025i −0.686803 1.18958i −0.972867 0.231367i \(-0.925680\pi\)
0.286064 0.958211i \(-0.407653\pi\)
\(54\) 0 0
\(55\) 5.65685 0.762770
\(56\) 0 0
\(57\) −8.00000 −1.05963
\(58\) 0 0
\(59\) −7.07107 12.2474i −0.920575 1.59448i −0.798528 0.601958i \(-0.794388\pi\)
−0.122047 0.992524i \(-0.538946\pi\)
\(60\) 0 0
\(61\) −3.53553 + 6.12372i −0.452679 + 0.784063i −0.998551 0.0538056i \(-0.982865\pi\)
0.545873 + 0.837868i \(0.316198\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −3.00000 + 5.19615i −0.372104 + 0.644503i
\(66\) 0 0
\(67\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(68\) 0 0
\(69\) −11.3137 −1.36201
\(70\) 0 0
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) 0 0
\(73\) −3.53553 6.12372i −0.413803 0.716728i 0.581499 0.813547i \(-0.302466\pi\)
−0.995302 + 0.0968194i \(0.969133\pi\)
\(74\) 0 0
\(75\) −4.24264 + 7.34847i −0.489898 + 0.848528i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 4.00000 6.92820i 0.450035 0.779484i −0.548352 0.836247i \(-0.684745\pi\)
0.998388 + 0.0567635i \(0.0180781\pi\)
\(80\) 0 0
\(81\) −0.500000 0.866025i −0.0555556 0.0962250i
\(82\) 0 0
\(83\) −14.1421 −1.55230 −0.776151 0.630548i \(-0.782830\pi\)
−0.776151 + 0.630548i \(0.782830\pi\)
\(84\) 0 0
\(85\) 2.00000 0.216930
\(86\) 0 0
\(87\) 11.3137 + 19.5959i 1.21296 + 2.10090i
\(88\) 0 0
\(89\) 3.53553 6.12372i 0.374766 0.649113i −0.615526 0.788116i \(-0.711056\pi\)
0.990292 + 0.139003i \(0.0443898\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 2.00000 + 3.46410i 0.205196 + 0.355409i
\(96\) 0 0
\(97\) 1.41421 0.143592 0.0717958 0.997419i \(-0.477127\pi\)
0.0717958 + 0.997419i \(0.477127\pi\)
\(98\) 0 0
\(99\) −20.0000 −2.01008
\(100\) 0 0
\(101\) −6.36396 11.0227i −0.633238 1.09680i −0.986886 0.161421i \(-0.948392\pi\)
0.353648 0.935379i \(-0.384941\pi\)
\(102\) 0 0
\(103\) 5.65685 9.79796i 0.557386 0.965422i −0.440327 0.897837i \(-0.645138\pi\)
0.997714 0.0675842i \(-0.0215291\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 4.00000 6.92820i 0.386695 0.669775i −0.605308 0.795991i \(-0.706950\pi\)
0.992003 + 0.126217i \(0.0402834\pi\)
\(108\) 0 0
\(109\) 4.00000 + 6.92820i 0.383131 + 0.663602i 0.991508 0.130046i \(-0.0415126\pi\)
−0.608377 + 0.793648i \(0.708179\pi\)
\(110\) 0 0
\(111\) 22.6274 2.14770
\(112\) 0 0
\(113\) 6.00000 0.564433 0.282216 0.959351i \(-0.408930\pi\)
0.282216 + 0.959351i \(0.408930\pi\)
\(114\) 0 0
\(115\) 2.82843 + 4.89898i 0.263752 + 0.456832i
\(116\) 0 0
\(117\) 10.6066 18.3712i 0.980581 1.69842i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −2.50000 + 4.33013i −0.227273 + 0.393648i
\(122\) 0 0
\(123\) 10.0000 + 17.3205i 0.901670 + 1.56174i
\(124\) 0 0
\(125\) 11.3137 1.01193
\(126\) 0 0
\(127\) 20.0000 1.77471 0.887357 0.461084i \(-0.152539\pi\)
0.887357 + 0.461084i \(0.152539\pi\)
\(128\) 0 0
\(129\) 5.65685 + 9.79796i 0.498058 + 0.862662i
\(130\) 0 0
\(131\) 4.24264 7.34847i 0.370681 0.642039i −0.618989 0.785399i \(-0.712458\pi\)
0.989671 + 0.143361i \(0.0457909\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −4.00000 + 6.92820i −0.344265 + 0.596285i
\(136\) 0 0
\(137\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(138\) 0 0
\(139\) 2.82843 0.239904 0.119952 0.992780i \(-0.461726\pi\)
0.119952 + 0.992780i \(0.461726\pi\)
\(140\) 0 0
\(141\) −16.0000 −1.34744
\(142\) 0 0
\(143\) −8.48528 14.6969i −0.709575 1.22902i
\(144\) 0 0
\(145\) 5.65685 9.79796i 0.469776 0.813676i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −5.00000 + 8.66025i −0.409616 + 0.709476i −0.994847 0.101391i \(-0.967671\pi\)
0.585231 + 0.810867i \(0.301004\pi\)
\(150\) 0 0
\(151\) −2.00000 3.46410i −0.162758 0.281905i 0.773099 0.634285i \(-0.218706\pi\)
−0.935857 + 0.352381i \(0.885372\pi\)
\(152\) 0 0
\(153\) −7.07107 −0.571662
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 3.53553 + 6.12372i 0.282166 + 0.488726i 0.971918 0.235320i \(-0.0756137\pi\)
−0.689752 + 0.724046i \(0.742280\pi\)
\(158\) 0 0
\(159\) 14.1421 24.4949i 1.12154 1.94257i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 2.00000 3.46410i 0.156652 0.271329i −0.777007 0.629492i \(-0.783263\pi\)
0.933659 + 0.358162i \(0.116597\pi\)
\(164\) 0 0
\(165\) 8.00000 + 13.8564i 0.622799 + 1.07872i
\(166\) 0 0
\(167\) −5.65685 −0.437741 −0.218870 0.975754i \(-0.570237\pi\)
−0.218870 + 0.975754i \(0.570237\pi\)
\(168\) 0 0
\(169\) 5.00000 0.384615
\(170\) 0 0
\(171\) −7.07107 12.2474i −0.540738 0.936586i
\(172\) 0 0
\(173\) −2.12132 + 3.67423i −0.161281 + 0.279347i −0.935328 0.353781i \(-0.884896\pi\)
0.774047 + 0.633128i \(0.218229\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 20.0000 34.6410i 1.50329 2.60378i
\(178\) 0 0
\(179\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(180\) 0 0
\(181\) 21.2132 1.57676 0.788382 0.615185i \(-0.210919\pi\)
0.788382 + 0.615185i \(0.210919\pi\)
\(182\) 0 0
\(183\) −20.0000 −1.47844
\(184\) 0 0
\(185\) −5.65685 9.79796i −0.415900 0.720360i
\(186\) 0 0
\(187\) −2.82843 + 4.89898i −0.206835 + 0.358249i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −8.00000 + 13.8564i −0.578860 + 1.00261i 0.416751 + 0.909021i \(0.363169\pi\)
−0.995610 + 0.0935936i \(0.970165\pi\)
\(192\) 0 0
\(193\) 5.00000 + 8.66025i 0.359908 + 0.623379i 0.987945 0.154805i \(-0.0494748\pi\)
−0.628037 + 0.778183i \(0.716141\pi\)
\(194\) 0 0
\(195\) −16.9706 −1.21529
\(196\) 0 0
\(197\) −10.0000 −0.712470 −0.356235 0.934396i \(-0.615940\pi\)
−0.356235 + 0.934396i \(0.615940\pi\)
\(198\) 0 0
\(199\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 5.00000 8.66025i 0.349215 0.604858i
\(206\) 0 0
\(207\) −10.0000 17.3205i −0.695048 1.20386i
\(208\) 0 0
\(209\) −11.3137 −0.782586
\(210\) 0 0
\(211\) −24.0000 −1.65223 −0.826114 0.563503i \(-0.809453\pi\)
−0.826114 + 0.563503i \(0.809453\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 2.82843 4.89898i 0.192897 0.334108i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 10.0000 17.3205i 0.675737 1.17041i
\(220\) 0 0
\(221\) −3.00000 5.19615i −0.201802 0.349531i
\(222\) 0 0
\(223\) 16.9706 1.13643 0.568216 0.822879i \(-0.307634\pi\)
0.568216 + 0.822879i \(0.307634\pi\)
\(224\) 0 0
\(225\) −15.0000 −1.00000
\(226\) 0 0
\(227\) −4.24264 7.34847i −0.281594 0.487735i 0.690184 0.723634i \(-0.257530\pi\)
−0.971778 + 0.235899i \(0.924196\pi\)
\(228\) 0 0
\(229\) −10.6066 + 18.3712i −0.700904 + 1.21400i 0.267246 + 0.963628i \(0.413887\pi\)
−0.968149 + 0.250373i \(0.919447\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(234\) 0 0
\(235\) 4.00000 + 6.92820i 0.260931 + 0.451946i
\(236\) 0 0
\(237\) 22.6274 1.46981
\(238\) 0 0
\(239\) 12.0000 0.776215 0.388108 0.921614i \(-0.373129\pi\)
0.388108 + 0.921614i \(0.373129\pi\)
\(240\) 0 0
\(241\) 6.36396 + 11.0227i 0.409939 + 0.710035i 0.994882 0.101039i \(-0.0322167\pi\)
−0.584944 + 0.811074i \(0.698883\pi\)
\(242\) 0 0
\(243\) −7.07107 + 12.2474i −0.453609 + 0.785674i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 6.00000 10.3923i 0.381771 0.661247i
\(248\) 0 0
\(249\) −20.0000 34.6410i −1.26745 2.19529i
\(250\) 0 0
\(251\) 19.7990 1.24970 0.624851 0.780744i \(-0.285160\pi\)
0.624851 + 0.780744i \(0.285160\pi\)
\(252\) 0 0
\(253\) −16.0000 −1.00591
\(254\) 0 0
\(255\) 2.82843 + 4.89898i 0.177123 + 0.306786i
\(256\) 0 0
\(257\) 10.6066 18.3712i 0.661622 1.14596i −0.318568 0.947900i \(-0.603202\pi\)
0.980189 0.198062i \(-0.0634648\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −20.0000 + 34.6410i −1.23797 + 2.14423i
\(262\) 0 0
\(263\) −12.0000 20.7846i −0.739952 1.28163i −0.952517 0.304487i \(-0.901515\pi\)
0.212565 0.977147i \(-0.431818\pi\)
\(264\) 0 0
\(265\) −14.1421 −0.868744
\(266\) 0 0
\(267\) 20.0000 1.22398
\(268\) 0 0
\(269\) −9.19239 15.9217i −0.560470 0.970762i −0.997455 0.0712937i \(-0.977287\pi\)
0.436986 0.899469i \(-0.356046\pi\)
\(270\) 0 0
\(271\) −14.1421 + 24.4949i −0.859074 + 1.48796i 0.0137402 + 0.999906i \(0.495626\pi\)
−0.872814 + 0.488053i \(0.837707\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −6.00000 + 10.3923i −0.361814 + 0.626680i
\(276\) 0 0
\(277\) −11.0000 19.0526i −0.660926 1.14476i −0.980373 0.197153i \(-0.936830\pi\)
0.319447 0.947604i \(-0.396503\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 16.0000 0.954480 0.477240 0.878773i \(-0.341637\pi\)
0.477240 + 0.878773i \(0.341637\pi\)
\(282\) 0 0
\(283\) 1.41421 + 2.44949i 0.0840663 + 0.145607i 0.904993 0.425427i \(-0.139876\pi\)
−0.820927 + 0.571034i \(0.806543\pi\)
\(284\) 0 0
\(285\) −5.65685 + 9.79796i −0.335083 + 0.580381i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 7.50000 12.9904i 0.441176 0.764140i
\(290\) 0 0
\(291\) 2.00000 + 3.46410i 0.117242 + 0.203069i
\(292\) 0 0
\(293\) −32.5269 −1.90024 −0.950121 0.311881i \(-0.899041\pi\)
−0.950121 + 0.311881i \(0.899041\pi\)
\(294\) 0 0
\(295\) −20.0000 −1.16445
\(296\) 0 0
\(297\) −11.3137 19.5959i −0.656488 1.13707i
\(298\) 0 0
\(299\) 8.48528 14.6969i 0.490716 0.849946i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 18.0000 31.1769i 1.03407 1.79107i
\(304\) 0 0
\(305\) 5.00000 + 8.66025i 0.286299 + 0.495885i
\(306\) 0 0
\(307\) −19.7990 −1.12999 −0.564994 0.825095i \(-0.691122\pi\)
−0.564994 + 0.825095i \(0.691122\pi\)
\(308\) 0 0
\(309\) 32.0000 1.82042
\(310\) 0 0
\(311\) 11.3137 + 19.5959i 0.641542 + 1.11118i 0.985089 + 0.172047i \(0.0550381\pi\)
−0.343547 + 0.939135i \(0.611629\pi\)
\(312\) 0 0
\(313\) 2.12132 3.67423i 0.119904 0.207680i −0.799825 0.600233i \(-0.795075\pi\)
0.919730 + 0.392553i \(0.128408\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 1.00000 1.73205i 0.0561656 0.0972817i −0.836576 0.547852i \(-0.815446\pi\)
0.892741 + 0.450570i \(0.148779\pi\)
\(318\) 0 0
\(319\) 16.0000 + 27.7128i 0.895828 + 1.55162i
\(320\) 0 0
\(321\) 22.6274 1.26294
\(322\) 0 0
\(323\) −4.00000 −0.222566
\(324\) 0 0
\(325\) −6.36396 11.0227i −0.353009 0.611430i
\(326\) 0 0
\(327\) −11.3137 + 19.5959i −0.625650 + 1.08366i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −10.0000 + 17.3205i −0.549650 + 0.952021i 0.448649 + 0.893708i \(0.351905\pi\)
−0.998298 + 0.0583130i \(0.981428\pi\)
\(332\) 0 0
\(333\) 20.0000 + 34.6410i 1.09599 + 1.89832i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 8.00000 0.435788 0.217894 0.975972i \(-0.430081\pi\)
0.217894 + 0.975972i \(0.430081\pi\)
\(338\) 0 0
\(339\) 8.48528 + 14.6969i 0.460857 + 0.798228i
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) −8.00000 + 13.8564i −0.430706 + 0.746004i
\(346\) 0 0
\(347\) −6.00000 10.3923i −0.322097 0.557888i 0.658824 0.752297i \(-0.271054\pi\)
−0.980921 + 0.194409i \(0.937721\pi\)
\(348\) 0 0
\(349\) 4.24264 0.227103 0.113552 0.993532i \(-0.463777\pi\)
0.113552 + 0.993532i \(0.463777\pi\)
\(350\) 0 0
\(351\) 24.0000 1.28103
\(352\) 0 0
\(353\) 4.94975 + 8.57321i 0.263448 + 0.456306i 0.967156 0.254184i \(-0.0818068\pi\)
−0.703707 + 0.710490i \(0.748473\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −10.0000 + 17.3205i −0.527780 + 0.914141i 0.471696 + 0.881761i \(0.343642\pi\)
−0.999476 + 0.0323801i \(0.989691\pi\)
\(360\) 0 0
\(361\) 5.50000 + 9.52628i 0.289474 + 0.501383i
\(362\) 0 0
\(363\) −14.1421 −0.742270
\(364\) 0 0
\(365\) −10.0000 −0.523424
\(366\) 0 0
\(367\) −2.82843 4.89898i −0.147643 0.255725i 0.782713 0.622383i \(-0.213835\pi\)
−0.930356 + 0.366658i \(0.880502\pi\)
\(368\) 0 0
\(369\) −17.6777 + 30.6186i −0.920263 + 1.59394i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −5.00000 + 8.66025i −0.258890 + 0.448411i −0.965945 0.258748i \(-0.916690\pi\)
0.707055 + 0.707159i \(0.250023\pi\)
\(374\) 0 0
\(375\) 16.0000 + 27.7128i 0.826236 + 1.43108i
\(376\) 0 0
\(377\) −33.9411 −1.74806
\(378\) 0 0
\(379\) 20.0000 1.02733 0.513665 0.857991i \(-0.328287\pi\)
0.513665 + 0.857991i \(0.328287\pi\)
\(380\) 0 0
\(381\) 28.2843 + 48.9898i 1.44905 + 2.50982i
\(382\) 0 0
\(383\) 2.82843 4.89898i 0.144526 0.250326i −0.784670 0.619914i \(-0.787168\pi\)
0.929196 + 0.369587i \(0.120501\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −10.0000 + 17.3205i −0.508329 + 0.880451i
\(388\) 0 0
\(389\) −4.00000 6.92820i −0.202808 0.351274i 0.746624 0.665246i \(-0.231673\pi\)
−0.949432 + 0.313972i \(0.898340\pi\)
\(390\) 0 0
\(391\) −5.65685 −0.286079
\(392\) 0 0
\(393\) 24.0000 1.21064
\(394\) 0 0
\(395\) −5.65685 9.79796i −0.284627 0.492989i
\(396\) 0 0
\(397\) 7.77817 13.4722i 0.390375 0.676150i −0.602124 0.798403i \(-0.705679\pi\)
0.992499 + 0.122253i \(0.0390119\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −12.0000 + 20.7846i −0.599251 + 1.03793i 0.393680 + 0.919247i \(0.371202\pi\)
−0.992932 + 0.118686i \(0.962132\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) −1.41421 −0.0702728
\(406\) 0 0
\(407\) 32.0000 1.58618
\(408\) 0 0
\(409\) 19.0919 + 33.0681i 0.944033 + 1.63511i 0.757676 + 0.652631i \(0.226335\pi\)
0.186357 + 0.982482i \(0.440332\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −10.0000 + 17.3205i −0.490881 + 0.850230i
\(416\) 0 0
\(417\) 4.00000 + 6.92820i 0.195881 + 0.339276i
\(418\) 0 0
\(419\) 14.1421 0.690889 0.345444 0.938439i \(-0.387728\pi\)
0.345444 + 0.938439i \(0.387728\pi\)
\(420\) 0 0
\(421\) 6.00000 0.292422 0.146211 0.989253i \(-0.453292\pi\)
0.146211 + 0.989253i \(0.453292\pi\)
\(422\) 0 0
\(423\) −14.1421 24.4949i −0.687614 1.19098i
\(424\) 0 0
\(425\) −2.12132 + 3.67423i −0.102899 + 0.178227i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 24.0000 41.5692i 1.15873 2.00698i
\(430\) 0 0
\(431\) −18.0000 31.1769i −0.867029 1.50174i −0.865018 0.501741i \(-0.832693\pi\)
−0.00201168 0.999998i \(-0.500640\pi\)
\(432\) 0 0
\(433\) 21.2132 1.01944 0.509721 0.860340i \(-0.329749\pi\)
0.509721 + 0.860340i \(0.329749\pi\)
\(434\) 0 0
\(435\) 32.0000 1.53428
\(436\) 0 0
\(437\) −5.65685 9.79796i −0.270604 0.468700i
\(438\) 0 0
\(439\) 8.48528 14.6969i 0.404980 0.701447i −0.589339 0.807886i \(-0.700612\pi\)
0.994319 + 0.106439i \(0.0339450\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −8.00000 + 13.8564i −0.380091 + 0.658338i −0.991075 0.133306i \(-0.957441\pi\)
0.610984 + 0.791643i \(0.290774\pi\)
\(444\) 0 0
\(445\) −5.00000 8.66025i −0.237023 0.410535i
\(446\) 0 0
\(447\) −28.2843 −1.33780
\(448\) 0 0
\(449\) −18.0000 −0.849473 −0.424736 0.905317i \(-0.639633\pi\)
−0.424736 + 0.905317i \(0.639633\pi\)
\(450\) 0 0
\(451\) 14.1421 + 24.4949i 0.665927 + 1.15342i
\(452\) 0 0
\(453\) 5.65685 9.79796i 0.265782 0.460348i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −15.0000 + 25.9808i −0.701670 + 1.21533i 0.266209 + 0.963915i \(0.414229\pi\)
−0.967880 + 0.251414i \(0.919105\pi\)
\(458\) 0 0
\(459\) −4.00000 6.92820i −0.186704 0.323381i
\(460\) 0 0
\(461\) −7.07107 −0.329332 −0.164666 0.986349i \(-0.552655\pi\)
−0.164666 + 0.986349i \(0.552655\pi\)
\(462\) 0 0
\(463\) −40.0000 −1.85896 −0.929479 0.368875i \(-0.879743\pi\)
−0.929479 + 0.368875i \(0.879743\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 9.89949 17.1464i 0.458094 0.793442i −0.540766 0.841173i \(-0.681866\pi\)
0.998860 + 0.0477308i \(0.0151990\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) −10.0000 + 17.3205i −0.460776 + 0.798087i
\(472\) 0 0
\(473\) 8.00000 + 13.8564i 0.367840 + 0.637118i
\(474\) 0 0
\(475\) −8.48528 −0.389331
\(476\) 0 0
\(477\) 50.0000 2.28934
\(478\) 0 0
\(479\) 5.65685 + 9.79796i 0.258468 + 0.447680i 0.965832 0.259170i \(-0.0834489\pi\)
−0.707364 + 0.706850i \(0.750116\pi\)
\(480\) 0 0
\(481\) −16.9706 + 29.3939i −0.773791 + 1.34025i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 1.00000 1.73205i 0.0454077 0.0786484i
\(486\) 0 0
\(487\) −6.00000 10.3923i −0.271886 0.470920i 0.697459 0.716625i \(-0.254314\pi\)
−0.969345 + 0.245705i \(0.920981\pi\)
\(488\) 0 0
\(489\) 11.3137 0.511624
\(490\) 0 0
\(491\) −24.0000 −1.08310 −0.541552 0.840667i \(-0.682163\pi\)
−0.541552 + 0.840667i \(0.682163\pi\)
\(492\) 0 0
\(493\) 5.65685 + 9.79796i 0.254772 + 0.441278i
\(494\) 0 0
\(495\) −14.1421 + 24.4949i −0.635642 + 1.10096i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 16.0000 27.7128i 0.716258 1.24060i −0.246214 0.969216i \(-0.579187\pi\)
0.962472 0.271380i \(-0.0874801\pi\)
\(500\) 0 0
\(501\) −8.00000 13.8564i −0.357414 0.619059i
\(502\) 0 0
\(503\) −39.5980 −1.76559 −0.882793 0.469762i \(-0.844340\pi\)
−0.882793 + 0.469762i \(0.844340\pi\)
\(504\) 0 0
\(505\) −18.0000 −0.800989
\(506\) 0 0
\(507\) 7.07107 + 12.2474i 0.314037 + 0.543928i
\(508\) 0 0
\(509\) −9.19239 + 15.9217i −0.407445 + 0.705716i −0.994603 0.103757i \(-0.966914\pi\)
0.587157 + 0.809473i \(0.300247\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 8.00000 13.8564i 0.353209 0.611775i
\(514\) 0 0
\(515\) −8.00000 13.8564i −0.352522 0.610586i
\(516\) 0 0
\(517\) −22.6274 −0.995153
\(518\) 0 0
\(519\) −12.0000 −0.526742
\(520\) 0 0
\(521\) −20.5061 35.5176i −0.898388 1.55605i −0.829554 0.558426i \(-0.811405\pi\)
−0.0688342 0.997628i \(-0.521928\pi\)
\(522\) 0 0
\(523\) −21.2132 + 36.7423i −0.927589 + 1.60663i −0.140244 + 0.990117i \(0.544789\pi\)
−0.787344 + 0.616514i \(0.788544\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 3.50000 + 6.06218i 0.152174 + 0.263573i
\(530\) 0 0
\(531\) 70.7107 3.06858
\(532\) 0 0
\(533\) −30.0000 −1.29944
\(534\) 0 0
\(535\) −5.65685 9.79796i −0.244567 0.423603i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 7.00000 12.1244i 0.300954 0.521267i −0.675399 0.737453i \(-0.736028\pi\)
0.976352 + 0.216186i \(0.0693618\pi\)
\(542\) 0 0
\(543\) 30.0000 + 51.9615i 1.28742 + 2.22988i
\(544\) 0 0
\(545\) 11.3137 0.484626
\(546\) 0 0
\(547\) 20.0000 0.855138 0.427569 0.903983i \(-0.359370\pi\)
0.427569 + 0.903983i \(0.359370\pi\)
\(548\) 0 0
\(549\) −17.6777 30.6186i −0.754465 1.30677i
\(550\) 0 0
\(551\) −11.3137 + 19.5959i −0.481980 + 0.834814i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 16.0000 27.7128i 0.679162 1.17634i
\(556\) 0 0
\(557\) −15.0000 25.9808i −0.635570 1.10084i −0.986394 0.164399i \(-0.947432\pi\)
0.350824 0.936442i \(-0.385902\pi\)
\(558\) 0 0
\(559\) −16.9706 −0.717778
\(560\) 0 0
\(561\) −16.0000 −0.675521
\(562\) 0 0
\(563\) −7.07107 12.2474i −0.298010 0.516168i 0.677671 0.735366i \(-0.262990\pi\)
−0.975681 + 0.219197i \(0.929656\pi\)
\(564\) 0 0
\(565\) 4.24264 7.34847i 0.178489 0.309152i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −20.0000 + 34.6410i −0.838444 + 1.45223i 0.0527519 + 0.998608i \(0.483201\pi\)
−0.891196 + 0.453619i \(0.850133\pi\)
\(570\) 0 0
\(571\) −10.0000 17.3205i −0.418487 0.724841i 0.577301 0.816532i \(-0.304106\pi\)
−0.995788 + 0.0916910i \(0.970773\pi\)
\(572\) 0 0
\(573\) −45.2548 −1.89055
\(574\) 0 0
\(575\) −12.0000 −0.500435
\(576\) 0 0
\(577\) 6.36396 + 11.0227i 0.264935 + 0.458881i 0.967547 0.252693i \(-0.0813161\pi\)
−0.702611 + 0.711574i \(0.747983\pi\)
\(578\) 0 0
\(579\) −14.1421 + 24.4949i −0.587727 + 1.01797i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 20.0000 34.6410i 0.828315 1.43468i
\(584\) 0 0
\(585\) −15.0000 25.9808i −0.620174 1.07417i
\(586\) 0 0
\(587\) 25.4558 1.05068 0.525338 0.850894i \(-0.323939\pi\)
0.525338 + 0.850894i \(0.323939\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) −14.1421 24.4949i −0.581730 1.00759i
\(592\) 0 0
\(593\) −4.94975 + 8.57321i −0.203262 + 0.352060i −0.949578 0.313532i \(-0.898488\pi\)
0.746316 + 0.665592i \(0.231821\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 4.00000 + 6.92820i 0.163436 + 0.283079i 0.936099 0.351738i \(-0.114409\pi\)
−0.772663 + 0.634816i \(0.781076\pi\)
\(600\) 0 0
\(601\) 29.6985 1.21143 0.605713 0.795683i \(-0.292888\pi\)
0.605713 + 0.795683i \(0.292888\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 3.53553 + 6.12372i 0.143740 + 0.248965i
\(606\) 0 0
\(607\) 16.9706 29.3939i 0.688814 1.19306i −0.283408 0.958999i \(-0.591465\pi\)
0.972222 0.234061i \(-0.0752016\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 12.0000 20.7846i 0.485468 0.840855i
\(612\) 0 0
\(613\) −12.0000 20.7846i −0.484675 0.839482i 0.515170 0.857088i \(-0.327729\pi\)
−0.999845 + 0.0176058i \(0.994396\pi\)
\(614\) 0 0
\(615\) 28.2843 1.14053
\(616\) 0 0
\(617\) −8.00000 −0.322068 −0.161034 0.986949i \(-0.551483\pi\)
−0.161034 + 0.986949i \(0.551483\pi\)
\(618\) 0 0
\(619\) 15.5563 + 26.9444i 0.625262 + 1.08299i 0.988490 + 0.151286i \(0.0483414\pi\)
−0.363228 + 0.931700i \(0.618325\pi\)
\(620\) 0 0
\(621\) 11.3137 19.5959i 0.454003 0.786357i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 0.500000 0.866025i 0.0200000 0.0346410i
\(626\) 0 0
\(627\) −16.0000 27.7128i −0.638978 1.10674i
\(628\) 0 0
\(629\) 11.3137 0.451107
\(630\) 0 0
\(631\) 16.0000 0.636950 0.318475 0.947931i \(-0.396829\pi\)
0.318475 + 0.947931i \(0.396829\pi\)
\(632\) 0 0
\(633\) −33.9411 58.7878i −1.34904 2.33660i
\(634\) 0 0
\(635\) 14.1421 24.4949i 0.561214 0.972050i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −4.00000 6.92820i −0.157991 0.273648i 0.776153 0.630544i \(-0.217168\pi\)
−0.934144 + 0.356897i \(0.883835\pi\)
\(642\) 0 0
\(643\) 2.82843 0.111542 0.0557711 0.998444i \(-0.482238\pi\)
0.0557711 + 0.998444i \(0.482238\pi\)
\(644\) 0 0
\(645\) 16.0000 0.629999
\(646\) 0 0
\(647\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(648\) 0 0
\(649\) 28.2843 48.9898i 1.11025 1.92302i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 12.0000 20.7846i 0.469596 0.813365i −0.529799 0.848123i \(-0.677733\pi\)
0.999396 + 0.0347583i \(0.0110661\pi\)
\(654\) 0 0
\(655\) −6.00000 10.3923i −0.234439 0.406061i
\(656\) 0 0
\(657\) 35.3553 1.37934
\(658\) 0 0
\(659\) −12.0000 −0.467454 −0.233727 0.972302i \(-0.575092\pi\)
−0.233727 + 0.972302i \(0.575092\pi\)
\(660\) 0 0
\(661\) −10.6066 18.3712i −0.412549 0.714556i 0.582619 0.812746i \(-0.302028\pi\)
−0.995168 + 0.0981898i \(0.968695\pi\)
\(662\) 0 0
\(663\) 8.48528 14.6969i 0.329541 0.570782i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −16.0000 + 27.7128i −0.619522 + 1.07304i
\(668\) 0 0
\(669\) 24.0000 + 41.5692i 0.927894 + 1.60716i
\(670\) 0 0
\(671\) −28.2843 −1.09190
\(672\) 0 0
\(673\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(674\) 0 0
\(675\) −8.48528 14.6969i −0.326599 0.565685i
\(676\) 0 0
\(677\) 6.36396 11.0227i 0.244587 0.423637i −0.717428 0.696632i \(-0.754681\pi\)
0.962015 + 0.272995i \(0.0880143\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 12.0000 20.7846i 0.459841 0.796468i
\(682\) 0 0
\(683\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) −60.0000 −2.28914
\(688\) 0 0
\(689\) 21.2132 + 36.7423i 0.808159 + 1.39977i
\(690\) 0 0
\(691\) 21.2132 36.7423i 0.806988 1.39774i −0.107952 0.994156i \(-0.534429\pi\)
0.914941 0.403589i \(-0.132237\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 2.00000 3.46410i 0.0758643 0.131401i
\(696\) 0 0
\(697\) 5.00000 + 8.66025i 0.189389 + 0.328031i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 24.0000 0.906467 0.453234 0.891392i \(-0.350270\pi\)
0.453234 + 0.891392i \(0.350270\pi\)
\(702\) 0 0
\(703\) 11.3137 + 19.5959i 0.426705 + 0.739074i
\(704\) 0 0
\(705\) −11.3137 + 19.5959i −0.426099 + 0.738025i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 4.00000 6.92820i 0.150223 0.260194i −0.781086 0.624423i \(-0.785334\pi\)
0.931309 + 0.364229i \(0.118667\pi\)
\(710\) 0 0
\(711\) 20.0000 + 34.6410i 0.750059 + 1.29914i
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) −24.0000 −0.897549
\(716\) 0 0
\(717\) 16.9706 + 29.3939i 0.633777 + 1.09773i
\(718\) 0 0
\(719\) −19.7990 + 34.2929i −0.738378 + 1.27891i 0.214848 + 0.976648i \(0.431074\pi\)
−0.953225 + 0.302260i \(0.902259\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) −18.0000 + 31.1769i −0.669427 + 1.15948i
\(724\) 0 0
\(725\) 12.0000 + 20.7846i 0.445669 + 0.771921i
\(726\) 0 0
\(727\) 28.2843 1.04901 0.524503 0.851409i \(-0.324251\pi\)
0.524503 + 0.851409i \(0.324251\pi\)
\(728\) 0 0
\(729\) −43.0000 −1.59259
\(730\) 0 0
\(731\) 2.82843 + 4.89898i 0.104613 + 0.181195i
\(732\) 0 0
\(733\) −19.0919 + 33.0681i −0.705175 + 1.22140i 0.261454 + 0.965216i \(0.415798\pi\)
−0.966628 + 0.256183i \(0.917535\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) −6.00000 10.3923i −0.220714 0.382287i 0.734311 0.678813i \(-0.237505\pi\)
−0.955025 + 0.296526i \(0.904172\pi\)
\(740\) 0 0
\(741\) 33.9411 1.24686
\(742\) 0 0
\(743\) 20.0000 0.733729 0.366864 0.930274i \(-0.380431\pi\)
0.366864 + 0.930274i \(0.380431\pi\)
\(744\) 0 0
\(745\) 7.07107 + 12.2474i 0.259064 + 0.448712i
\(746\) 0 0
\(747\) 35.3553 61.2372i 1.29358 2.24055i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −2.00000 + 3.46410i −0.0729810 + 0.126407i −0.900207 0.435463i \(-0.856585\pi\)
0.827225 + 0.561870i \(0.189918\pi\)
\(752\) 0 0
\(753\) 28.0000 + 48.4974i 1.02038 + 1.76734i
\(754\) 0 0
\(755\) −5.65685 −0.205874
\(756\) 0 0
\(757\) −40.0000 −1.45382 −0.726912 0.686730i \(-0.759045\pi\)
−0.726912 + 0.686730i \(0.759045\pi\)
\(758\) 0 0
\(759\) −22.6274 39.1918i −0.821323 1.42257i
\(760\) 0 0
\(761\) 20.5061 35.5176i 0.743345 1.28751i −0.207618 0.978210i \(-0.566571\pi\)
0.950964 0.309302i \(-0.100095\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) −5.00000 + 8.66025i −0.180775 + 0.313112i
\(766\) 0 0
\(767\) 30.0000 + 51.9615i 1.08324 + 1.87622i
\(768\) 0 0
\(769\) −46.6690 −1.68293 −0.841464 0.540312i \(-0.818306\pi\)
−0.841464 + 0.540312i \(0.818306\pi\)
\(770\) 0 0
\(771\) 60.0000 2.16085
\(772\) 0 0
\(773\) 12.0208 + 20.8207i 0.432359 + 0.748867i 0.997076 0.0764173i \(-0.0243481\pi\)
−0.564717 + 0.825284i \(0.691015\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −10.0000 + 17.3205i −0.358287 + 0.620572i
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) −45.2548 −1.61728
\(784\) 0 0
\(785\) 10.0000 0.356915
\(786\) 0 0
\(787\) −24.0416 41.6413i −0.856992 1.48435i −0.874785 0.484511i \(-0.838997\pi\)
0.0177934 0.999842i \(-0.494336\pi\)
\(788\) 0 0
\(789\) 33.9411 58.7878i 1.20834 2.09290i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 15.0000 25.9808i 0.532666 0.922604i
\(794\) 0 0
\(795\) −20.0000 34.6410i −0.709327 1.22859i
\(796\) 0 0
\(797\) 29.6985 1.05197 0.525987 0.850493i \(-0.323696\pi\)
0.525987 + 0.850493i \(0.323696\pi\)
\(798\) 0 0
\(799\) −8.00000 −0.283020
\(800\) 0 0
\(801\) 17.6777 + 30.6186i 0.624610 + 1.08186i
\(802\) 0 0
\(803\) 14.1421 24.4949i 0.499065 0.864406i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 26.0000 45.0333i 0.915243 1.58525i
\(808\) 0 0
\(809\) −1.00000 1.73205i −0.0351581 0.0608957i 0.847911 0.530139i \(-0.177860\pi\)
−0.883069 + 0.469243i \(0.844527\pi\)
\(810\) 0 0
\(811\) 8.48528 0.297959 0.148979 0.988840i \(-0.452401\pi\)
0.148979 + 0.988840i \(0.452401\pi\)
\(812\) 0 0
\(813\) −80.0000 −2.80572
\(814\) 0 0
\(815\) −2.82843 4.89898i −0.0990755 0.171604i
\(816\) 0 0
\(817\) −5.65685 + 9.79796i −0.197908 + 0.342787i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −3.00000 + 5.19615i −0.104701 + 0.181347i −0.913616 0.406578i \(-0.866722\pi\)
0.808915 + 0.587925i \(0.200055\pi\)
\(822\) 0 0
\(823\) 20.0000 + 34.6410i 0.697156 + 1.20751i 0.969448 + 0.245295i \(0.0788849\pi\)
−0.272292 + 0.962215i \(0.587782\pi\)
\(824\) 0 0
\(825\) −33.9411 −1.18168
\(826\) 0 0
\(827\) −48.0000 −1.66912 −0.834562 0.550914i \(-0.814279\pi\)
−0.834562 + 0.550914i \(0.814279\pi\)
\(828\) 0 0
\(829\) −3.53553 6.12372i −0.122794 0.212686i 0.798074 0.602559i \(-0.205852\pi\)
−0.920869 + 0.389873i \(0.872519\pi\)
\(830\) 0 0
\(831\) 31.1127 53.8888i 1.07929 1.86938i
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −4.00000 + 6.92820i −0.138426 + 0.239760i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −11.3137 −0.390593 −0.195296 0.980744i \(-0.562567\pi\)
−0.195296 + 0.980744i \(0.562567\pi\)
\(840\) 0 0
\(841\) 35.0000 1.20690
\(842\) 0 0
\(843\) 22.6274 + 39.1918i 0.779330 + 1.34984i
\(844\) 0 0
\(845\) 3.53553 6.12372i 0.121626 0.210663i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −4.00000 + 6.92820i −0.137280 + 0.237775i
\(850\) 0 0
\(851\) 16.0000 + 27.7128i 0.548473 + 0.949983i
\(852\) 0 0
\(853\) −12.7279 −0.435796 −0.217898 0.975972i \(-0.569920\pi\)
−0.217898 + 0.975972i \(0.569920\pi\)
\(854\) 0 0
\(855\) −20.0000 −0.683986
\(856\) 0 0
\(857\) 3.53553 + 6.12372i 0.120772 + 0.209182i 0.920072 0.391749i \(-0.128130\pi\)
−0.799301 + 0.600931i \(0.794796\pi\)
\(858\) 0 0
\(859\) −7.07107 + 12.2474i −0.241262 + 0.417878i −0.961074 0.276291i \(-0.910895\pi\)
0.719812 + 0.694169i \(0.244228\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −20.0000 + 34.6410i −0.680808 + 1.17919i 0.293927 + 0.955828i \(0.405038\pi\)
−0.974735 + 0.223366i \(0.928296\pi\)
\(864\) 0 0
\(865\) 3.00000 + 5.19615i 0.102003 + 0.176674i
\(866\) 0 0
\(867\) 42.4264 1.44088
\(868\) 0 0
\(869\) 32.0000 1.08553
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) −3.53553 + 6.12372i −0.119660 + 0.207257i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −4.00000 + 6.92820i −0.135070 + 0.233949i −0.925624 0.378444i \(-0.876459\pi\)
0.790554 + 0.612392i \(0.209793\pi\)
\(878\) 0 0
\(879\) −46.0000 79.6743i −1.55154 2.68735i
\(880\) 0 0
\(881\) 21.2132 0.714691 0.357345 0.933972i \(-0.383682\pi\)
0.357345 + 0.933972i \(0.383682\pi\)
\(882\) 0 0
\(883\) 40.0000 1.34611 0.673054 0.739594i \(-0.264982\pi\)
0.673054 + 0.739594i \(0.264982\pi\)
\(884\) 0 0
\(885\) −28.2843 48.9898i −0.950765 1.64677i
\(886\) 0 0
\(887\) −14.1421 + 24.4949i −0.474846 + 0.822458i −0.999585 0.0288053i \(-0.990830\pi\)
0.524739 + 0.851263i \(0.324163\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 2.00000 3.46410i 0.0670025 0.116052i
\(892\) 0 0
\(893\) −8.00000 13.8564i −0.267710 0.463687i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 48.0000 1.60267
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 7.07107 12.2474i 0.235571 0.408022i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 15.0000 25.9808i 0.498617 0.863630i
\(906\) 0 0
\(907\) −4.00000 6.92820i −0.132818 0.230047i 0.791944 0.610594i \(-0.209069\pi\)
−0.924762 + 0.380547i \(0.875736\pi\)
\(908\) 0 0
\(909\) 63.6396 2.11079
\(910\) 0 0
\(911\) −20.0000 −0.662630 −0.331315 0.943520i \(-0.607492\pi\)
−0.331315 + 0.943520i \(0.607492\pi\)
\(912\) 0 0
\(913\) −28.2843 48.9898i −0.936073 1.62133i
\(914\) 0 0
\(915\) −14.1421 + 24.4949i −0.467525 + 0.809776i
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −4.00000 + 6.92820i −0.131948 + 0.228540i −0.924427 0.381358i \(-0.875456\pi\)
0.792480 + 0.609898i \(0.208790\pi\)
\(920\) 0 0
\(921\) −28.0000 48.4974i −0.922631 1.59804i
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 24.0000 0.789115
\(926\) 0 0
\(927\) 28.2843 + 48.9898i 0.928977 + 1.60904i
\(928\) 0 0
\(929\) 17.6777 30.6186i 0.579986 1.00456i −0.415495 0.909596i \(-0.636392\pi\)
0.995480 0.0949688i \(-0.0302751\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) −32.0000 + 55.4256i −1.04763 + 1.81455i
\(934\) 0 0
\(935\) 4.00000 + 6.92820i 0.130814 + 0.226576i
\(936\) 0 0
\(937\) −15.5563 −0.508204 −0.254102 0.967177i \(-0.581780\pi\)
−0.254102 + 0.967177i \(0.581780\pi\)
\(938\) 0 0
\(939\) 12.0000 0.391605
\(940\) 0 0
\(941\) −3.53553 6.12372i −0.115255 0.199628i 0.802627 0.596482i \(-0.203435\pi\)
−0.917882 + 0.396854i \(0.870102\pi\)
\(942\) 0 0
\(943\) −14.1421 + 24.4949i −0.460531 + 0.797664i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 30.0000 51.9615i 0.974869 1.68852i 0.294502 0.955651i \(-0.404846\pi\)
0.680367 0.732872i \(-0.261821\pi\)
\(948\) 0 0
\(949\) 15.0000 + 25.9808i 0.486921 + 0.843371i
\(950\) 0 0
\(951\) 5.65685 0.183436
\(952\) 0 0
\(953\) 10.0000 0.323932 0.161966 0.986796i \(-0.448217\pi\)
0.161966 + 0.986796i \(0.448217\pi\)
\(954\) 0 0
\(955\) 11.3137 + 19.5959i 0.366103 + 0.634109i
\(956\) 0 0
\(957\) −45.2548 + 78.3837i −1.46288 + 2.53378i
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 15.5000 26.8468i 0.500000 0.866025i
\(962\) 0 0
\(963\) 20.0000 + 34.6410i 0.644491 + 1.11629i
\(964\) 0 0
\(965\) 14.1421 0.455251
\(966\) 0 0
\(967\) −12.0000 −0.385894 −0.192947 0.981209i \(-0.561805\pi\)
−0.192947 + 0.981209i \(0.561805\pi\)
\(968\) 0 0
\(969\) −5.65685 9.79796i −0.181724 0.314756i
\(970\) 0 0
\(971\) −7.07107 + 12.2474i −0.226921 + 0.393039i −0.956894 0.290437i \(-0.906199\pi\)
0.729973 + 0.683476i \(0.239533\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 18.0000 31.1769i 0.576461 0.998460i
\(976\) 0 0
\(977\) −24.0000 41.5692i −0.767828 1.32992i −0.938738 0.344631i \(-0.888004\pi\)
0.170910 0.985287i \(-0.445329\pi\)
\(978\) 0 0
\(979\) 28.2843 0.903969
\(980\) 0 0
\(981\) −40.0000 −1.27710
\(982\) 0 0
\(983\) −22.6274 39.1918i −0.721703 1.25003i −0.960317 0.278911i \(-0.910027\pi\)
0.238614 0.971114i \(-0.423307\pi\)
\(984\) 0 0
\(985\) −7.07107 + 12.2474i −0.225303 + 0.390236i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −8.00000 + 13.8564i −0.254385 + 0.440608i
\(990\) 0 0
\(991\) −20.0000 34.6410i −0.635321 1.10041i −0.986447 0.164080i \(-0.947534\pi\)
0.351126 0.936328i \(-0.385799\pi\)
\(992\) 0 0
\(993\) −56.5685 −1.79515
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 0.707107 + 1.22474i 0.0223943 + 0.0387881i 0.877005 0.480481i \(-0.159538\pi\)
−0.854611 + 0.519269i \(0.826204\pi\)
\(998\) 0 0
\(999\) −22.6274 + 39.1918i −0.715900 + 1.23997i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 784.2.i.l.177.2 4
4.3 odd 2 196.2.e.b.177.1 4
7.2 even 3 784.2.a.m.1.1 2
7.3 odd 6 inner 784.2.i.l.753.1 4
7.4 even 3 inner 784.2.i.l.753.2 4
7.5 odd 6 784.2.a.m.1.2 2
7.6 odd 2 inner 784.2.i.l.177.1 4
12.11 even 2 1764.2.k.l.1549.1 4
21.2 odd 6 7056.2.a.cr.1.2 2
21.5 even 6 7056.2.a.cr.1.1 2
28.3 even 6 196.2.e.b.165.2 4
28.11 odd 6 196.2.e.b.165.1 4
28.19 even 6 196.2.a.c.1.1 2
28.23 odd 6 196.2.a.c.1.2 yes 2
28.27 even 2 196.2.e.b.177.2 4
56.5 odd 6 3136.2.a.bs.1.1 2
56.19 even 6 3136.2.a.br.1.2 2
56.37 even 6 3136.2.a.bs.1.2 2
56.51 odd 6 3136.2.a.br.1.1 2
84.11 even 6 1764.2.k.l.361.1 4
84.23 even 6 1764.2.a.l.1.2 2
84.47 odd 6 1764.2.a.l.1.1 2
84.59 odd 6 1764.2.k.l.361.2 4
84.83 odd 2 1764.2.k.l.1549.2 4
140.19 even 6 4900.2.a.y.1.2 2
140.23 even 12 4900.2.e.p.2549.4 4
140.47 odd 12 4900.2.e.p.2549.3 4
140.79 odd 6 4900.2.a.y.1.1 2
140.103 odd 12 4900.2.e.p.2549.1 4
140.107 even 12 4900.2.e.p.2549.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
196.2.a.c.1.1 2 28.19 even 6
196.2.a.c.1.2 yes 2 28.23 odd 6
196.2.e.b.165.1 4 28.11 odd 6
196.2.e.b.165.2 4 28.3 even 6
196.2.e.b.177.1 4 4.3 odd 2
196.2.e.b.177.2 4 28.27 even 2
784.2.a.m.1.1 2 7.2 even 3
784.2.a.m.1.2 2 7.5 odd 6
784.2.i.l.177.1 4 7.6 odd 2 inner
784.2.i.l.177.2 4 1.1 even 1 trivial
784.2.i.l.753.1 4 7.3 odd 6 inner
784.2.i.l.753.2 4 7.4 even 3 inner
1764.2.a.l.1.1 2 84.47 odd 6
1764.2.a.l.1.2 2 84.23 even 6
1764.2.k.l.361.1 4 84.11 even 6
1764.2.k.l.361.2 4 84.59 odd 6
1764.2.k.l.1549.1 4 12.11 even 2
1764.2.k.l.1549.2 4 84.83 odd 2
3136.2.a.br.1.1 2 56.51 odd 6
3136.2.a.br.1.2 2 56.19 even 6
3136.2.a.bs.1.1 2 56.5 odd 6
3136.2.a.bs.1.2 2 56.37 even 6
4900.2.a.y.1.1 2 140.79 odd 6
4900.2.a.y.1.2 2 140.19 even 6
4900.2.e.p.2549.1 4 140.103 odd 12
4900.2.e.p.2549.2 4 140.107 even 12
4900.2.e.p.2549.3 4 140.47 odd 12
4900.2.e.p.2549.4 4 140.23 even 12
7056.2.a.cr.1.1 2 21.5 even 6
7056.2.a.cr.1.2 2 21.2 odd 6