L(s) = 1 | − 3·4-s − 10·5-s + 22·11-s − 7·16-s + 30·20-s + 75·25-s + 36·31-s − 66·44-s − 78·49-s − 220·55-s + 204·59-s + 69·64-s + 156·71-s + 70·80-s − 4·89-s − 225·100-s + 363·121-s − 108·124-s − 500·125-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s − 360·155-s + 157-s + ⋯ |
L(s) = 1 | − 3/4·4-s − 2·5-s + 2·11-s − 0.437·16-s + 3/2·20-s + 3·25-s + 1.16·31-s − 3/2·44-s − 1.59·49-s − 4·55-s + 3.45·59-s + 1.07·64-s + 2.19·71-s + 7/8·80-s − 0.0449·89-s − 9/4·100-s + 3·121-s − 0.870·124-s − 4·125-s + 0.00787·127-s + 0.00763·131-s + 0.00729·137-s + 0.00719·139-s + 0.00671·149-s + 0.00662·151-s − 2.32·155-s + 0.00636·157-s + ⋯ |
Λ(s)=(=(245025s/2ΓC(s)2L(s)Λ(3−s)
Λ(s)=(=(245025s/2ΓC(s+1)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
245025
= 34⋅52⋅112
|
Sign: |
1
|
Analytic conductor: |
181.920 |
Root analytic conductor: |
3.67257 |
Motivic weight: |
2 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 245025, ( :1,1), 1)
|
Particular Values
L(23) |
≈ |
1.184435535 |
L(21) |
≈ |
1.184435535 |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 3 | | 1 |
| 5 | C1 | (1+pT)2 |
| 11 | C1 | (1−pT)2 |
good | 2 | C22 | 1+3T2+p4T4 |
| 7 | C22 | 1+78T2+p4T4 |
| 13 | C22 | 1−162T2+p4T4 |
| 17 | C22 | 1−402T2+p4T4 |
| 19 | C1×C1 | (1−pT)2(1+pT)2 |
| 23 | C1×C1 | (1−pT)2(1+pT)2 |
| 29 | C1×C1 | (1−pT)2(1+pT)2 |
| 31 | C2 | (1−18T+p2T2)2 |
| 37 | C1×C1 | (1−pT)2(1+pT)2 |
| 41 | C1×C1 | (1−pT)2(1+pT)2 |
| 43 | C22 | 1−3522T2+p4T4 |
| 47 | C1×C1 | (1−pT)2(1+pT)2 |
| 53 | C1×C1 | (1−pT)2(1+pT)2 |
| 59 | C2 | (1−102T+p2T2)2 |
| 61 | C1×C1 | (1−pT)2(1+pT)2 |
| 67 | C1×C1 | (1−pT)2(1+pT)2 |
| 71 | C2 | (1−78T+p2T2)2 |
| 73 | C22 | 1+10638T2+p4T4 |
| 79 | C1×C1 | (1−pT)2(1+pT)2 |
| 83 | C22 | 1−13602T2+p4T4 |
| 89 | C2 | (1+2T+p2T2)2 |
| 97 | C1×C1 | (1−pT)2(1+pT)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.25946579749753796905904202857, −10.61414615836775017677238830271, −9.931119631226211048762280334786, −9.580161549977617725825212824531, −9.084163100437264029272454974741, −8.662474599469984518573554130797, −8.159345742428135514450714262116, −8.152450871173124757084201175585, −7.20968898667823856517125185813, −6.84795390293104492097642295673, −6.63300945157482431724516193468, −5.88659291936216063069131394204, −4.88280687063990011902003605870, −4.78709964565121954169614645242, −4.00857876958298732717803296327, −3.83898473998158960902208696932, −3.34477470609688061775631436523, −2.38696157012541458771915640738, −1.16057423029661443238809608699, −0.53589133734196648335068086781,
0.53589133734196648335068086781, 1.16057423029661443238809608699, 2.38696157012541458771915640738, 3.34477470609688061775631436523, 3.83898473998158960902208696932, 4.00857876958298732717803296327, 4.78709964565121954169614645242, 4.88280687063990011902003605870, 5.88659291936216063069131394204, 6.63300945157482431724516193468, 6.84795390293104492097642295673, 7.20968898667823856517125185813, 8.152450871173124757084201175585, 8.159345742428135514450714262116, 8.662474599469984518573554130797, 9.084163100437264029272454974741, 9.580161549977617725825212824531, 9.931119631226211048762280334786, 10.61414615836775017677238830271, 11.25946579749753796905904202857