Properties

Label 4-495e2-1.1-c2e2-0-1
Degree $4$
Conductor $245025$
Sign $1$
Analytic cond. $181.920$
Root an. cond. $3.67257$
Motivic weight $2$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·4-s − 10·5-s + 22·11-s − 7·16-s + 30·20-s + 75·25-s + 36·31-s − 66·44-s − 78·49-s − 220·55-s + 204·59-s + 69·64-s + 156·71-s + 70·80-s − 4·89-s − 225·100-s + 363·121-s − 108·124-s − 500·125-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s − 360·155-s + 157-s + ⋯
L(s)  = 1  − 3/4·4-s − 2·5-s + 2·11-s − 0.437·16-s + 3/2·20-s + 3·25-s + 1.16·31-s − 3/2·44-s − 1.59·49-s − 4·55-s + 3.45·59-s + 1.07·64-s + 2.19·71-s + 7/8·80-s − 0.0449·89-s − 9/4·100-s + 3·121-s − 0.870·124-s − 4·125-s + 0.00787·127-s + 0.00763·131-s + 0.00729·137-s + 0.00719·139-s + 0.00671·149-s + 0.00662·151-s − 2.32·155-s + 0.00636·157-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 245025 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 245025 ^{s/2} \, \Gamma_{\C}(s+1)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(245025\)    =    \(3^{4} \cdot 5^{2} \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(181.920\)
Root analytic conductor: \(3.67257\)
Motivic weight: \(2\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 245025,\ (\ :1, 1),\ 1)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(1.184435535\)
\(L(\frac12)\) \(\approx\) \(1.184435535\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3 \( 1 \)
5$C_1$ \( ( 1 + p T )^{2} \)
11$C_1$ \( ( 1 - p T )^{2} \)
good2$C_2^2$ \( 1 + 3 T^{2} + p^{4} T^{4} \)
7$C_2^2$ \( 1 + 78 T^{2} + p^{4} T^{4} \)
13$C_2^2$ \( 1 - 162 T^{2} + p^{4} T^{4} \)
17$C_2^2$ \( 1 - 402 T^{2} + p^{4} T^{4} \)
19$C_1$$\times$$C_1$ \( ( 1 - p T )^{2}( 1 + p T )^{2} \)
23$C_1$$\times$$C_1$ \( ( 1 - p T )^{2}( 1 + p T )^{2} \)
29$C_1$$\times$$C_1$ \( ( 1 - p T )^{2}( 1 + p T )^{2} \)
31$C_2$ \( ( 1 - 18 T + p^{2} T^{2} )^{2} \)
37$C_1$$\times$$C_1$ \( ( 1 - p T )^{2}( 1 + p T )^{2} \)
41$C_1$$\times$$C_1$ \( ( 1 - p T )^{2}( 1 + p T )^{2} \)
43$C_2^2$ \( 1 - 3522 T^{2} + p^{4} T^{4} \)
47$C_1$$\times$$C_1$ \( ( 1 - p T )^{2}( 1 + p T )^{2} \)
53$C_1$$\times$$C_1$ \( ( 1 - p T )^{2}( 1 + p T )^{2} \)
59$C_2$ \( ( 1 - 102 T + p^{2} T^{2} )^{2} \)
61$C_1$$\times$$C_1$ \( ( 1 - p T )^{2}( 1 + p T )^{2} \)
67$C_1$$\times$$C_1$ \( ( 1 - p T )^{2}( 1 + p T )^{2} \)
71$C_2$ \( ( 1 - 78 T + p^{2} T^{2} )^{2} \)
73$C_2^2$ \( 1 + 10638 T^{2} + p^{4} T^{4} \)
79$C_1$$\times$$C_1$ \( ( 1 - p T )^{2}( 1 + p T )^{2} \)
83$C_2^2$ \( 1 - 13602 T^{2} + p^{4} T^{4} \)
89$C_2$ \( ( 1 + 2 T + p^{2} T^{2} )^{2} \)
97$C_1$$\times$$C_1$ \( ( 1 - p T )^{2}( 1 + p T )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.25946579749753796905904202857, −10.61414615836775017677238830271, −9.931119631226211048762280334786, −9.580161549977617725825212824531, −9.084163100437264029272454974741, −8.662474599469984518573554130797, −8.159345742428135514450714262116, −8.152450871173124757084201175585, −7.20968898667823856517125185813, −6.84795390293104492097642295673, −6.63300945157482431724516193468, −5.88659291936216063069131394204, −4.88280687063990011902003605870, −4.78709964565121954169614645242, −4.00857876958298732717803296327, −3.83898473998158960902208696932, −3.34477470609688061775631436523, −2.38696157012541458771915640738, −1.16057423029661443238809608699, −0.53589133734196648335068086781, 0.53589133734196648335068086781, 1.16057423029661443238809608699, 2.38696157012541458771915640738, 3.34477470609688061775631436523, 3.83898473998158960902208696932, 4.00857876958298732717803296327, 4.78709964565121954169614645242, 4.88280687063990011902003605870, 5.88659291936216063069131394204, 6.63300945157482431724516193468, 6.84795390293104492097642295673, 7.20968898667823856517125185813, 8.152450871173124757084201175585, 8.159345742428135514450714262116, 8.662474599469984518573554130797, 9.084163100437264029272454974741, 9.580161549977617725825212824531, 9.931119631226211048762280334786, 10.61414615836775017677238830271, 11.25946579749753796905904202857

Graph of the $Z$-function along the critical line