Properties

Label 495.3.h.b
Level $495$
Weight $3$
Character orbit 495.h
Self dual yes
Analytic conductor $13.488$
Analytic rank $0$
Dimension $2$
CM discriminant -55
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [495,3,Mod(109,495)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(495, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("495.109");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 495 = 3^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 495.h (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(13.4877730858\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{5}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 55)
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{5}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta q^{2} + q^{4} - 5 q^{5} - 2 \beta q^{7} + 3 \beta q^{8} +O(q^{10}) \) Copy content Toggle raw display \( q - \beta q^{2} + q^{4} - 5 q^{5} - 2 \beta q^{7} + 3 \beta q^{8} + 5 \beta q^{10} + 11 q^{11} - 10 \beta q^{13} + 10 q^{14} - 19 q^{16} - 14 \beta q^{17} - 5 q^{20} - 11 \beta q^{22} + 25 q^{25} + 50 q^{26} - 2 \beta q^{28} + 18 q^{31} + 7 \beta q^{32} + 70 q^{34} + 10 \beta q^{35} - 15 \beta q^{40} + 38 \beta q^{43} + 11 q^{44} - 29 q^{49} - 25 \beta q^{50} - 10 \beta q^{52} - 55 q^{55} - 30 q^{56} + 102 q^{59} - 18 \beta q^{62} + 41 q^{64} + 50 \beta q^{65} - 14 \beta q^{68} - 50 q^{70} + 78 q^{71} - 2 \beta q^{73} - 22 \beta q^{77} + 95 q^{80} + 74 \beta q^{83} + 70 \beta q^{85} - 190 q^{86} + 33 \beta q^{88} - 2 q^{89} + 100 q^{91} + 29 \beta q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{4} - 10 q^{5}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 2 q^{4} - 10 q^{5} + 22 q^{11} + 20 q^{14} - 38 q^{16} - 10 q^{20} + 50 q^{25} + 100 q^{26} + 36 q^{31} + 140 q^{34} + 22 q^{44} - 58 q^{49} - 110 q^{55} - 60 q^{56} + 204 q^{59} + 82 q^{64} - 100 q^{70} + 156 q^{71} + 190 q^{80} - 380 q^{86} - 4 q^{89} + 200 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/495\mathbb{Z}\right)^\times\).

\(n\) \(46\) \(56\) \(397\)
\(\chi(n)\) \(-1\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
109.1
1.61803
−0.618034
−2.23607 0 1.00000 −5.00000 0 −4.47214 6.70820 0 11.1803
109.2 2.23607 0 1.00000 −5.00000 0 4.47214 −6.70820 0 −11.1803
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
55.d odd 2 1 CM by \(\Q(\sqrt{-55}) \)
5.b even 2 1 inner
11.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 495.3.h.b 2
3.b odd 2 1 55.3.d.b 2
5.b even 2 1 inner 495.3.h.b 2
11.b odd 2 1 inner 495.3.h.b 2
12.b even 2 1 880.3.i.c 2
15.d odd 2 1 55.3.d.b 2
15.e even 4 2 275.3.c.c 2
33.d even 2 1 55.3.d.b 2
55.d odd 2 1 CM 495.3.h.b 2
60.h even 2 1 880.3.i.c 2
132.d odd 2 1 880.3.i.c 2
165.d even 2 1 55.3.d.b 2
165.l odd 4 2 275.3.c.c 2
660.g odd 2 1 880.3.i.c 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
55.3.d.b 2 3.b odd 2 1
55.3.d.b 2 15.d odd 2 1
55.3.d.b 2 33.d even 2 1
55.3.d.b 2 165.d even 2 1
275.3.c.c 2 15.e even 4 2
275.3.c.c 2 165.l odd 4 2
495.3.h.b 2 1.a even 1 1 trivial
495.3.h.b 2 5.b even 2 1 inner
495.3.h.b 2 11.b odd 2 1 inner
495.3.h.b 2 55.d odd 2 1 CM
880.3.i.c 2 12.b even 2 1
880.3.i.c 2 60.h even 2 1
880.3.i.c 2 132.d odd 2 1
880.3.i.c 2 660.g odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{3}^{\mathrm{new}}(495, [\chi])\):

\( T_{2}^{2} - 5 \) Copy content Toggle raw display
\( T_{7}^{2} - 20 \) Copy content Toggle raw display
\( T_{89} + 2 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} - 5 \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( (T + 5)^{2} \) Copy content Toggle raw display
$7$ \( T^{2} - 20 \) Copy content Toggle raw display
$11$ \( (T - 11)^{2} \) Copy content Toggle raw display
$13$ \( T^{2} - 500 \) Copy content Toggle raw display
$17$ \( T^{2} - 980 \) Copy content Toggle raw display
$19$ \( T^{2} \) Copy content Toggle raw display
$23$ \( T^{2} \) Copy content Toggle raw display
$29$ \( T^{2} \) Copy content Toggle raw display
$31$ \( (T - 18)^{2} \) Copy content Toggle raw display
$37$ \( T^{2} \) Copy content Toggle raw display
$41$ \( T^{2} \) Copy content Toggle raw display
$43$ \( T^{2} - 7220 \) Copy content Toggle raw display
$47$ \( T^{2} \) Copy content Toggle raw display
$53$ \( T^{2} \) Copy content Toggle raw display
$59$ \( (T - 102)^{2} \) Copy content Toggle raw display
$61$ \( T^{2} \) Copy content Toggle raw display
$67$ \( T^{2} \) Copy content Toggle raw display
$71$ \( (T - 78)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} - 20 \) Copy content Toggle raw display
$79$ \( T^{2} \) Copy content Toggle raw display
$83$ \( T^{2} - 27380 \) Copy content Toggle raw display
$89$ \( (T + 2)^{2} \) Copy content Toggle raw display
$97$ \( T^{2} \) Copy content Toggle raw display
show more
show less