gp: [N,k,chi] = [495,3,Mod(109,495)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(495, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 1, 1]))
N = Newforms(chi, 3, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("495.109");
S:= CuspForms(chi, 3);
N := Newforms(S);
Newform invariants
sage: traces = [2,0,0,2,-10]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of β = 5 \beta = \sqrt{5} β = 5 .
We also show the integral q q q -expansion of the trace form .
Character values
We give the values of χ \chi χ on generators for ( Z / 495 Z ) × \left(\mathbb{Z}/495\mathbb{Z}\right)^\times ( Z / 4 9 5 Z ) × .
n n n
46 46 4 6
56 56 5 6
397 397 3 9 7
χ ( n ) \chi(n) χ ( n )
− 1 -1 − 1
1 1 1
− 1 -1 − 1
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 3 n e w ( 495 , [ χ ] ) S_{3}^{\mathrm{new}}(495, [\chi]) S 3 n e w ( 4 9 5 , [ χ ] ) :
T 2 2 − 5 T_{2}^{2} - 5 T 2 2 − 5
T2^2 - 5
T 7 2 − 20 T_{7}^{2} - 20 T 7 2 − 2 0
T7^2 - 20
T 89 + 2 T_{89} + 2 T 8 9 + 2
T89 + 2
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 2 − 5 T^{2} - 5 T 2 − 5
T^2 - 5
3 3 3
T 2 T^{2} T 2
T^2
5 5 5
( T + 5 ) 2 (T + 5)^{2} ( T + 5 ) 2
(T + 5)^2
7 7 7
T 2 − 20 T^{2} - 20 T 2 − 2 0
T^2 - 20
11 11 1 1
( T − 11 ) 2 (T - 11)^{2} ( T − 1 1 ) 2
(T - 11)^2
13 13 1 3
T 2 − 500 T^{2} - 500 T 2 − 5 0 0
T^2 - 500
17 17 1 7
T 2 − 980 T^{2} - 980 T 2 − 9 8 0
T^2 - 980
19 19 1 9
T 2 T^{2} T 2
T^2
23 23 2 3
T 2 T^{2} T 2
T^2
29 29 2 9
T 2 T^{2} T 2
T^2
31 31 3 1
( T − 18 ) 2 (T - 18)^{2} ( T − 1 8 ) 2
(T - 18)^2
37 37 3 7
T 2 T^{2} T 2
T^2
41 41 4 1
T 2 T^{2} T 2
T^2
43 43 4 3
T 2 − 7220 T^{2} - 7220 T 2 − 7 2 2 0
T^2 - 7220
47 47 4 7
T 2 T^{2} T 2
T^2
53 53 5 3
T 2 T^{2} T 2
T^2
59 59 5 9
( T − 102 ) 2 (T - 102)^{2} ( T − 1 0 2 ) 2
(T - 102)^2
61 61 6 1
T 2 T^{2} T 2
T^2
67 67 6 7
T 2 T^{2} T 2
T^2
71 71 7 1
( T − 78 ) 2 (T - 78)^{2} ( T − 7 8 ) 2
(T - 78)^2
73 73 7 3
T 2 − 20 T^{2} - 20 T 2 − 2 0
T^2 - 20
79 79 7 9
T 2 T^{2} T 2
T^2
83 83 8 3
T 2 − 27380 T^{2} - 27380 T 2 − 2 7 3 8 0
T^2 - 27380
89 89 8 9
( T + 2 ) 2 (T + 2)^{2} ( T + 2 ) 2
(T + 2)^2
97 97 9 7
T 2 T^{2} T 2
T^2
show more
show less