Properties

Label 495.3.h.b
Level 495495
Weight 33
Character orbit 495.h
Self dual yes
Analytic conductor 13.48813.488
Analytic rank 00
Dimension 22
CM discriminant -55
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [495,3,Mod(109,495)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(495, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 1])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("495.109"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: N N == 495=32511 495 = 3^{2} \cdot 5 \cdot 11
Weight: k k == 3 3
Character orbit: [χ][\chi] == 495.h (of order 22, degree 11, minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,2,-10] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 13.487773085813.4877730858
Analytic rank: 00
Dimension: 22
Coefficient field: Q(5)\Q(\sqrt{5})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x2x1 x^{2} - x - 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 2 2
Twist minimal: no (minimal twist has level 55)
Sato-Tate group: U(1)[D2]\mathrm{U}(1)[D_{2}]

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of β=5\beta = \sqrt{5}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == qβq2+q45q52βq7+3βq8+5βq10+11q1110βq13+10q1419q1614βq175q2011βq22+25q25+50q26++29βq98+O(q100) q - \beta q^{2} + q^{4} - 5 q^{5} - 2 \beta q^{7} + 3 \beta q^{8} + 5 \beta q^{10} + 11 q^{11} - 10 \beta q^{13} + 10 q^{14} - 19 q^{16} - 14 \beta q^{17} - 5 q^{20} - 11 \beta q^{22} + 25 q^{25} + 50 q^{26} + \cdots + 29 \beta q^{98} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q+2q410q5+22q11+20q1438q1610q20+50q25+100q26+36q31+140q34+22q4458q49110q5560q56+204q59+82q64100q70++200q91+O(q100) 2 q + 2 q^{4} - 10 q^{5} + 22 q^{11} + 20 q^{14} - 38 q^{16} - 10 q^{20} + 50 q^{25} + 100 q^{26} + 36 q^{31} + 140 q^{34} + 22 q^{44} - 58 q^{49} - 110 q^{55} - 60 q^{56} + 204 q^{59} + 82 q^{64} - 100 q^{70}+ \cdots + 200 q^{91}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/495Z)×\left(\mathbb{Z}/495\mathbb{Z}\right)^\times.

nn 4646 5656 397397
χ(n)\chi(n) 1-1 11 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
109.1
1.61803
−0.618034
−2.23607 0 1.00000 −5.00000 0 −4.47214 6.70820 0 11.1803
109.2 2.23607 0 1.00000 −5.00000 0 4.47214 −6.70820 0 −11.1803
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
55.d odd 2 1 CM by Q(55)\Q(\sqrt{-55})
5.b even 2 1 inner
11.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 495.3.h.b 2
3.b odd 2 1 55.3.d.b 2
5.b even 2 1 inner 495.3.h.b 2
11.b odd 2 1 inner 495.3.h.b 2
12.b even 2 1 880.3.i.c 2
15.d odd 2 1 55.3.d.b 2
15.e even 4 2 275.3.c.c 2
33.d even 2 1 55.3.d.b 2
55.d odd 2 1 CM 495.3.h.b 2
60.h even 2 1 880.3.i.c 2
132.d odd 2 1 880.3.i.c 2
165.d even 2 1 55.3.d.b 2
165.l odd 4 2 275.3.c.c 2
660.g odd 2 1 880.3.i.c 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
55.3.d.b 2 3.b odd 2 1
55.3.d.b 2 15.d odd 2 1
55.3.d.b 2 33.d even 2 1
55.3.d.b 2 165.d even 2 1
275.3.c.c 2 15.e even 4 2
275.3.c.c 2 165.l odd 4 2
495.3.h.b 2 1.a even 1 1 trivial
495.3.h.b 2 5.b even 2 1 inner
495.3.h.b 2 11.b odd 2 1 inner
495.3.h.b 2 55.d odd 2 1 CM
880.3.i.c 2 12.b even 2 1
880.3.i.c 2 60.h even 2 1
880.3.i.c 2 132.d odd 2 1
880.3.i.c 2 660.g odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S3new(495,[χ])S_{3}^{\mathrm{new}}(495, [\chi]):

T225 T_{2}^{2} - 5 Copy content Toggle raw display
T7220 T_{7}^{2} - 20 Copy content Toggle raw display
T89+2 T_{89} + 2 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T25 T^{2} - 5 Copy content Toggle raw display
33 T2 T^{2} Copy content Toggle raw display
55 (T+5)2 (T + 5)^{2} Copy content Toggle raw display
77 T220 T^{2} - 20 Copy content Toggle raw display
1111 (T11)2 (T - 11)^{2} Copy content Toggle raw display
1313 T2500 T^{2} - 500 Copy content Toggle raw display
1717 T2980 T^{2} - 980 Copy content Toggle raw display
1919 T2 T^{2} Copy content Toggle raw display
2323 T2 T^{2} Copy content Toggle raw display
2929 T2 T^{2} Copy content Toggle raw display
3131 (T18)2 (T - 18)^{2} Copy content Toggle raw display
3737 T2 T^{2} Copy content Toggle raw display
4141 T2 T^{2} Copy content Toggle raw display
4343 T27220 T^{2} - 7220 Copy content Toggle raw display
4747 T2 T^{2} Copy content Toggle raw display
5353 T2 T^{2} Copy content Toggle raw display
5959 (T102)2 (T - 102)^{2} Copy content Toggle raw display
6161 T2 T^{2} Copy content Toggle raw display
6767 T2 T^{2} Copy content Toggle raw display
7171 (T78)2 (T - 78)^{2} Copy content Toggle raw display
7373 T220 T^{2} - 20 Copy content Toggle raw display
7979 T2 T^{2} Copy content Toggle raw display
8383 T227380 T^{2} - 27380 Copy content Toggle raw display
8989 (T+2)2 (T + 2)^{2} Copy content Toggle raw display
9797 T2 T^{2} Copy content Toggle raw display
show more
show less