L(s) = 1 | − 32i·2-s + 745. i·3-s − 1.02e3·4-s + 2.38e4·6-s + 7.14e4i·7-s + 3.27e4i·8-s − 3.78e5·9-s − 3.45e5·11-s − 7.63e5i·12-s + 1.50e6i·13-s + 2.28e6·14-s + 1.04e6·16-s + 5.39e6i·17-s + 1.21e7i·18-s + 1.11e7·19-s + ⋯ |
L(s) = 1 | − 0.707i·2-s + 1.77i·3-s − 0.5·4-s + 1.25·6-s + 1.60i·7-s + 0.353i·8-s − 2.13·9-s − 0.647·11-s − 0.885i·12-s + 1.12i·13-s + 1.13·14-s + 0.250·16-s + 0.921i·17-s + 1.51i·18-s + 1.03·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 50 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.894 + 0.447i)\, \overline{\Lambda}(12-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 50 ^{s/2} \, \Gamma_{\C}(s+11/2) \, L(s)\cr =\mathstrut & (-0.894 + 0.447i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(6)\) |
\(\approx\) |
\(0.240328 - 1.01804i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.240328 - 1.01804i\) |
\(L(\frac{13}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + 32iT \) |
| 5 | \( 1 \) |
good | 3 | \( 1 - 745. iT - 1.77e5T^{2} \) |
| 7 | \( 1 - 7.14e4iT - 1.97e9T^{2} \) |
| 11 | \( 1 + 3.45e5T + 2.85e11T^{2} \) |
| 13 | \( 1 - 1.50e6iT - 1.79e12T^{2} \) |
| 17 | \( 1 - 5.39e6iT - 3.42e13T^{2} \) |
| 19 | \( 1 - 1.11e7T + 1.16e14T^{2} \) |
| 23 | \( 1 + 5.27e6iT - 9.52e14T^{2} \) |
| 29 | \( 1 - 1.86e7T + 1.22e16T^{2} \) |
| 31 | \( 1 - 7.10e7T + 2.54e16T^{2} \) |
| 37 | \( 1 + 3.23e8iT - 1.77e17T^{2} \) |
| 41 | \( 1 + 9.11e8T + 5.50e17T^{2} \) |
| 43 | \( 1 + 1.16e9iT - 9.29e17T^{2} \) |
| 47 | \( 1 + 2.81e8iT - 2.47e18T^{2} \) |
| 53 | \( 1 - 4.05e9iT - 9.26e18T^{2} \) |
| 59 | \( 1 + 4.89e9T + 3.01e19T^{2} \) |
| 61 | \( 1 - 1.07e10T + 4.35e19T^{2} \) |
| 67 | \( 1 + 3.70e9iT - 1.22e20T^{2} \) |
| 71 | \( 1 - 3.45e9T + 2.31e20T^{2} \) |
| 73 | \( 1 + 2.21e10iT - 3.13e20T^{2} \) |
| 79 | \( 1 + 7.02e9T + 7.47e20T^{2} \) |
| 83 | \( 1 - 5.55e10iT - 1.28e21T^{2} \) |
| 89 | \( 1 - 9.29e9T + 2.77e21T^{2} \) |
| 97 | \( 1 + 4.71e10iT - 7.15e21T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.99830448292698566440189635156, −12.25665570660114406785752868026, −11.37248795467662721994527872286, −10.25529370831909468972350033212, −9.279574880116980799509611916173, −8.543019520393921364632640709745, −5.74915873154231172816765285241, −4.79316006670890400928285490097, −3.47556467703925050798453300776, −2.25881700101800446779129339675,
0.34147618556170258148670321114, 1.12535313185064251576717722925, 3.07731742982426718278088511284, 5.19477420731705977830571333726, 6.65124482350148246988307924686, 7.49434008307918100866338133063, 8.115067441271984359358289477985, 10.08520845354184800385455531280, 11.58059262766115651982256367465, 13.02415444758528316551736186276