Properties

Label 50.12.b.f.49.2
Level $50$
Weight $12$
Character 50.49
Analytic conductor $38.417$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [50,12,Mod(49,50)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(50, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 12, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("50.49");
 
S:= CuspForms(chi, 12);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 50 = 2 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 12 \)
Character orbit: \([\chi]\) \(=\) 50.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(38.4171590280\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{1969})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 985x^{2} + 242064 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{6}\cdot 5^{2} \)
Twist minimal: no (minimal twist has level 10)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 49.2
Root \(-22.6867i\) of defining polynomial
Character \(\chi\) \(=\) 50.49
Dual form 50.12.b.f.49.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-32.0000i q^{2} +745.734i q^{3} -1024.00 q^{4} +23863.5 q^{6} +71494.9i q^{7} +32768.0i q^{8} -378972. q^{9} -345651. q^{11} -763632. i q^{12} +1.50956e6i q^{13} +2.28784e6 q^{14} +1.04858e6 q^{16} +5.39291e6i q^{17} +1.21271e7i q^{18} +1.11633e7 q^{19} -5.33162e7 q^{21} +1.10608e7i q^{22} -5.27646e6i q^{23} -2.44362e7 q^{24} +4.83060e7 q^{26} -1.50508e8i q^{27} -7.32108e7i q^{28} +1.86291e7 q^{29} +7.10448e7 q^{31} -3.35544e7i q^{32} -2.57763e8i q^{33} +1.72573e8 q^{34} +3.88068e8 q^{36} -3.23164e8i q^{37} -3.57225e8i q^{38} -1.12573e9 q^{39} -9.11277e8 q^{41} +1.70612e9i q^{42} -1.16431e9i q^{43} +3.53946e8 q^{44} -1.68847e8 q^{46} -2.81949e8i q^{47} +7.81959e8i q^{48} -3.13420e9 q^{49} -4.02168e9 q^{51} -1.54579e9i q^{52} +4.05957e9i q^{53} -4.81626e9 q^{54} -2.34275e9 q^{56} +8.32485e9i q^{57} -5.96132e8i q^{58} -4.89828e9 q^{59} +1.07565e10 q^{61} -2.27343e9i q^{62} -2.70946e10i q^{63} -1.07374e9 q^{64} -8.24843e9 q^{66} -3.70812e9i q^{67} -5.52234e9i q^{68} +3.93484e9 q^{69} +3.45274e9 q^{71} -1.24182e10i q^{72} -2.21136e10i q^{73} -1.03413e10 q^{74} -1.14312e10 q^{76} -2.47123e10i q^{77} +3.60235e10i q^{78} -7.02672e9 q^{79} +4.51052e10 q^{81} +2.91609e10i q^{82} +5.55656e10i q^{83} +5.45958e10 q^{84} -3.72580e10 q^{86} +1.38924e10i q^{87} -1.13263e10i q^{88} +9.29706e9 q^{89} -1.07926e11 q^{91} +5.40310e9i q^{92} +5.29805e10i q^{93} -9.02235e9 q^{94} +2.50227e10 q^{96} -4.71888e10i q^{97} +1.00294e11i q^{98} +1.30992e11 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4096 q^{4} + 38656 q^{6} - 443828 q^{9} + 843168 q^{11} - 901888 q^{14} + 4194304 q^{16} + 57794800 q^{19} - 130893632 q^{21} - 39583744 q^{24} + 110753536 q^{26} - 116452440 q^{29} + 82826768 q^{31}+ \cdots + 502985449824 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/50\mathbb{Z}\right)^\times\).

\(n\) \(27\)
\(\chi(n)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 32.0000i − 0.707107i
\(3\) 745.734i 1.77181i 0.463867 + 0.885905i \(0.346462\pi\)
−0.463867 + 0.885905i \(0.653538\pi\)
\(4\) −1024.00 −0.500000
\(5\) 0 0
\(6\) 23863.5 1.25286
\(7\) 71494.9i 1.60782i 0.594754 + 0.803908i \(0.297249\pi\)
−0.594754 + 0.803908i \(0.702751\pi\)
\(8\) 32768.0i 0.353553i
\(9\) −378972. −2.13931
\(10\) 0 0
\(11\) −345651. −0.647109 −0.323555 0.946209i \(-0.604878\pi\)
−0.323555 + 0.946209i \(0.604878\pi\)
\(12\) − 763632.i − 0.885905i
\(13\) 1.50956e6i 1.12762i 0.825904 + 0.563810i \(0.190665\pi\)
−0.825904 + 0.563810i \(0.809335\pi\)
\(14\) 2.28784e6 1.13690
\(15\) 0 0
\(16\) 1.04858e6 0.250000
\(17\) 5.39291e6i 0.921200i 0.887608 + 0.460600i \(0.152366\pi\)
−0.887608 + 0.460600i \(0.847634\pi\)
\(18\) 1.21271e7i 1.51272i
\(19\) 1.11633e7 1.03430 0.517151 0.855894i \(-0.326993\pi\)
0.517151 + 0.855894i \(0.326993\pi\)
\(20\) 0 0
\(21\) −5.33162e7 −2.84874
\(22\) 1.10608e7i 0.457575i
\(23\) − 5.27646e6i − 0.170938i −0.996341 0.0854692i \(-0.972761\pi\)
0.996341 0.0854692i \(-0.0272389\pi\)
\(24\) −2.44362e7 −0.626429
\(25\) 0 0
\(26\) 4.83060e7 0.797348
\(27\) − 1.50508e8i − 2.01864i
\(28\) − 7.32108e7i − 0.803908i
\(29\) 1.86291e7 0.168657 0.0843284 0.996438i \(-0.473126\pi\)
0.0843284 + 0.996438i \(0.473126\pi\)
\(30\) 0 0
\(31\) 7.10448e7 0.445700 0.222850 0.974853i \(-0.428464\pi\)
0.222850 + 0.974853i \(0.428464\pi\)
\(32\) − 3.35544e7i − 0.176777i
\(33\) − 2.57763e8i − 1.14655i
\(34\) 1.72573e8 0.651387
\(35\) 0 0
\(36\) 3.88068e8 1.06966
\(37\) − 3.23164e8i − 0.766150i −0.923717 0.383075i \(-0.874865\pi\)
0.923717 0.383075i \(-0.125135\pi\)
\(38\) − 3.57225e8i − 0.731362i
\(39\) −1.12573e9 −1.99793
\(40\) 0 0
\(41\) −9.11277e8 −1.22840 −0.614199 0.789151i \(-0.710521\pi\)
−0.614199 + 0.789151i \(0.710521\pi\)
\(42\) 1.70612e9i 2.01437i
\(43\) − 1.16431e9i − 1.20779i −0.797063 0.603897i \(-0.793614\pi\)
0.797063 0.603897i \(-0.206386\pi\)
\(44\) 3.53946e8 0.323555
\(45\) 0 0
\(46\) −1.68847e8 −0.120872
\(47\) − 2.81949e8i − 0.179321i −0.995972 0.0896606i \(-0.971422\pi\)
0.995972 0.0896606i \(-0.0285782\pi\)
\(48\) 7.81959e8i 0.442952i
\(49\) −3.13420e9 −1.58507
\(50\) 0 0
\(51\) −4.02168e9 −1.63219
\(52\) − 1.54579e9i − 0.563810i
\(53\) 4.05957e9i 1.33341i 0.745323 + 0.666704i \(0.232295\pi\)
−0.745323 + 0.666704i \(0.767705\pi\)
\(54\) −4.81626e9 −1.42740
\(55\) 0 0
\(56\) −2.34275e9 −0.568449
\(57\) 8.32485e9i 1.83259i
\(58\) − 5.96132e8i − 0.119258i
\(59\) −4.89828e9 −0.891986 −0.445993 0.895036i \(-0.647149\pi\)
−0.445993 + 0.895036i \(0.647149\pi\)
\(60\) 0 0
\(61\) 1.07565e10 1.63064 0.815320 0.579011i \(-0.196561\pi\)
0.815320 + 0.579011i \(0.196561\pi\)
\(62\) − 2.27343e9i − 0.315158i
\(63\) − 2.70946e10i − 3.43962i
\(64\) −1.07374e9 −0.125000
\(65\) 0 0
\(66\) −8.24843e9 −0.810736
\(67\) − 3.70812e9i − 0.335539i −0.985826 0.167769i \(-0.946344\pi\)
0.985826 0.167769i \(-0.0536564\pi\)
\(68\) − 5.52234e9i − 0.460600i
\(69\) 3.93484e9 0.302870
\(70\) 0 0
\(71\) 3.45274e9 0.227113 0.113557 0.993532i \(-0.463776\pi\)
0.113557 + 0.993532i \(0.463776\pi\)
\(72\) − 1.24182e10i − 0.756360i
\(73\) − 2.21136e10i − 1.24848i −0.781231 0.624242i \(-0.785408\pi\)
0.781231 0.624242i \(-0.214592\pi\)
\(74\) −1.03413e10 −0.541750
\(75\) 0 0
\(76\) −1.14312e10 −0.517151
\(77\) − 2.47123e10i − 1.04043i
\(78\) 3.60235e10i 1.41275i
\(79\) −7.02672e9 −0.256923 −0.128462 0.991714i \(-0.541004\pi\)
−0.128462 + 0.991714i \(0.541004\pi\)
\(80\) 0 0
\(81\) 4.51052e10 1.43734
\(82\) 2.91609e10i 0.868609i
\(83\) 5.55656e10i 1.54838i 0.632956 + 0.774188i \(0.281841\pi\)
−0.632956 + 0.774188i \(0.718159\pi\)
\(84\) 5.45958e10 1.42437
\(85\) 0 0
\(86\) −3.72580e10 −0.854039
\(87\) 1.38924e10i 0.298828i
\(88\) − 1.13263e10i − 0.228788i
\(89\) 9.29706e9 0.176482 0.0882410 0.996099i \(-0.471875\pi\)
0.0882410 + 0.996099i \(0.471875\pi\)
\(90\) 0 0
\(91\) −1.07926e11 −1.81301
\(92\) 5.40310e9i 0.0854692i
\(93\) 5.29805e10i 0.789696i
\(94\) −9.02235e9 −0.126799
\(95\) 0 0
\(96\) 2.50227e10 0.313215
\(97\) − 4.71888e10i − 0.557949i −0.960298 0.278975i \(-0.910005\pi\)
0.960298 0.278975i \(-0.0899945\pi\)
\(98\) 1.00294e11i 1.12081i
\(99\) 1.30992e11 1.38437
\(100\) 0 0
\(101\) 1.61228e11 1.52642 0.763209 0.646151i \(-0.223622\pi\)
0.763209 + 0.646151i \(0.223622\pi\)
\(102\) 1.28694e11i 1.15413i
\(103\) − 1.85579e11i − 1.57733i −0.614822 0.788666i \(-0.710772\pi\)
0.614822 0.788666i \(-0.289228\pi\)
\(104\) −4.94654e10 −0.398674
\(105\) 0 0
\(106\) 1.29906e11 0.942861
\(107\) 5.45807e10i 0.376208i 0.982149 + 0.188104i \(0.0602343\pi\)
−0.982149 + 0.188104i \(0.939766\pi\)
\(108\) 1.54120e11i 1.00932i
\(109\) 3.54035e10 0.220394 0.110197 0.993910i \(-0.464852\pi\)
0.110197 + 0.993910i \(0.464852\pi\)
\(110\) 0 0
\(111\) 2.40995e11 1.35747
\(112\) 7.49679e10i 0.401954i
\(113\) 1.20314e11i 0.614308i 0.951660 + 0.307154i \(0.0993767\pi\)
−0.951660 + 0.307154i \(0.900623\pi\)
\(114\) 2.66395e11 1.29583
\(115\) 0 0
\(116\) −1.90762e10 −0.0843284
\(117\) − 5.72083e11i − 2.41233i
\(118\) 1.56745e11i 0.630729i
\(119\) −3.85566e11 −1.48112
\(120\) 0 0
\(121\) −1.65837e11 −0.581250
\(122\) − 3.44209e11i − 1.15304i
\(123\) − 6.79571e11i − 2.17649i
\(124\) −7.27499e10 −0.222850
\(125\) 0 0
\(126\) −8.67028e11 −2.43218
\(127\) 5.60687e11i 1.50591i 0.658070 + 0.752957i \(0.271373\pi\)
−0.658070 + 0.752957i \(0.728627\pi\)
\(128\) 3.43597e10i 0.0883883i
\(129\) 8.68267e11 2.13998
\(130\) 0 0
\(131\) 4.11999e11 0.933048 0.466524 0.884508i \(-0.345506\pi\)
0.466524 + 0.884508i \(0.345506\pi\)
\(132\) 2.63950e11i 0.573277i
\(133\) 7.98119e11i 1.66297i
\(134\) −1.18660e11 −0.237262
\(135\) 0 0
\(136\) −1.76715e11 −0.325693
\(137\) 7.86259e11i 1.39188i 0.718099 + 0.695941i \(0.245013\pi\)
−0.718099 + 0.695941i \(0.754987\pi\)
\(138\) − 1.25915e11i − 0.214162i
\(139\) −8.57152e11 −1.40112 −0.700562 0.713592i \(-0.747067\pi\)
−0.700562 + 0.713592i \(0.747067\pi\)
\(140\) 0 0
\(141\) 2.10259e11 0.317723
\(142\) − 1.10488e11i − 0.160593i
\(143\) − 5.21782e11i − 0.729694i
\(144\) −3.97381e11 −0.534828
\(145\) 0 0
\(146\) −7.07634e11 −0.882812
\(147\) − 2.33728e12i − 2.80844i
\(148\) 3.30920e11i 0.383075i
\(149\) 2.38606e11 0.266168 0.133084 0.991105i \(-0.457512\pi\)
0.133084 + 0.991105i \(0.457512\pi\)
\(150\) 0 0
\(151\) −9.57309e10 −0.0992382 −0.0496191 0.998768i \(-0.515801\pi\)
−0.0496191 + 0.998768i \(0.515801\pi\)
\(152\) 3.65799e11i 0.365681i
\(153\) − 2.04376e12i − 1.97073i
\(154\) −7.90793e11 −0.735697
\(155\) 0 0
\(156\) 1.15275e12 0.998965
\(157\) 1.79935e12i 1.50545i 0.658333 + 0.752727i \(0.271262\pi\)
−0.658333 + 0.752727i \(0.728738\pi\)
\(158\) 2.24855e11i 0.181672i
\(159\) −3.02736e12 −2.36254
\(160\) 0 0
\(161\) 3.77240e11 0.274837
\(162\) − 1.44337e12i − 1.01635i
\(163\) − 2.50619e12i − 1.70601i −0.521903 0.853005i \(-0.674778\pi\)
0.521903 0.853005i \(-0.325222\pi\)
\(164\) 9.33148e11 0.614199
\(165\) 0 0
\(166\) 1.77810e12 1.09487
\(167\) 2.69855e12i 1.60764i 0.594871 + 0.803822i \(0.297203\pi\)
−0.594871 + 0.803822i \(0.702797\pi\)
\(168\) − 1.74707e12i − 1.00718i
\(169\) −4.86623e11 −0.271529
\(170\) 0 0
\(171\) −4.23058e12 −2.21269
\(172\) 1.19225e12i 0.603897i
\(173\) 3.07796e12i 1.51011i 0.655659 + 0.755057i \(0.272391\pi\)
−0.655659 + 0.755057i \(0.727609\pi\)
\(174\) 4.44556e11 0.211303
\(175\) 0 0
\(176\) −3.62441e11 −0.161777
\(177\) − 3.65282e12i − 1.58043i
\(178\) − 2.97506e11i − 0.124792i
\(179\) −3.51154e11 −0.142826 −0.0714128 0.997447i \(-0.522751\pi\)
−0.0714128 + 0.997447i \(0.522751\pi\)
\(180\) 0 0
\(181\) 6.34106e11 0.242622 0.121311 0.992615i \(-0.461290\pi\)
0.121311 + 0.992615i \(0.461290\pi\)
\(182\) 3.45364e12i 1.28199i
\(183\) 8.02151e12i 2.88918i
\(184\) 1.72899e11 0.0604359
\(185\) 0 0
\(186\) 1.69538e12 0.558399
\(187\) − 1.86406e12i − 0.596117i
\(188\) 2.88715e11i 0.0896606i
\(189\) 1.07606e13 3.24560
\(190\) 0 0
\(191\) −2.61584e12 −0.744609 −0.372304 0.928111i \(-0.621432\pi\)
−0.372304 + 0.928111i \(0.621432\pi\)
\(192\) − 8.00726e11i − 0.221476i
\(193\) 1.59819e12i 0.429598i 0.976658 + 0.214799i \(0.0689097\pi\)
−0.976658 + 0.214799i \(0.931090\pi\)
\(194\) −1.51004e12 −0.394530
\(195\) 0 0
\(196\) 3.20942e12 0.792535
\(197\) 6.16281e10i 0.0147984i 0.999973 + 0.00739920i \(0.00235526\pi\)
−0.999973 + 0.00739920i \(0.997645\pi\)
\(198\) − 4.19175e12i − 0.978896i
\(199\) −2.36544e12 −0.537303 −0.268652 0.963237i \(-0.586578\pi\)
−0.268652 + 0.963237i \(0.586578\pi\)
\(200\) 0 0
\(201\) 2.76527e12 0.594510
\(202\) − 5.15931e12i − 1.07934i
\(203\) 1.33189e12i 0.271169i
\(204\) 4.11820e12 0.816096
\(205\) 0 0
\(206\) −5.93851e12 −1.11534
\(207\) 1.99963e12i 0.365690i
\(208\) 1.58289e12i 0.281905i
\(209\) −3.85860e12 −0.669307
\(210\) 0 0
\(211\) 5.39734e12 0.888436 0.444218 0.895919i \(-0.353482\pi\)
0.444218 + 0.895919i \(0.353482\pi\)
\(212\) − 4.15700e12i − 0.666704i
\(213\) 2.57482e12i 0.402402i
\(214\) 1.74658e12 0.266020
\(215\) 0 0
\(216\) 4.93185e12 0.713698
\(217\) 5.07934e12i 0.716604i
\(218\) − 1.13291e12i − 0.155842i
\(219\) 1.64908e13 2.21208
\(220\) 0 0
\(221\) −8.14094e12 −1.03876
\(222\) − 7.71183e12i − 0.959878i
\(223\) − 9.37124e12i − 1.13794i −0.822357 0.568971i \(-0.807342\pi\)
0.822357 0.568971i \(-0.192658\pi\)
\(224\) 2.39897e12 0.284224
\(225\) 0 0
\(226\) 3.85006e12 0.434382
\(227\) 6.51561e12i 0.717485i 0.933437 + 0.358742i \(0.116794\pi\)
−0.933437 + 0.358742i \(0.883206\pi\)
\(228\) − 8.52464e12i − 0.916294i
\(229\) 1.74808e12 0.183429 0.0917144 0.995785i \(-0.470765\pi\)
0.0917144 + 0.995785i \(0.470765\pi\)
\(230\) 0 0
\(231\) 1.84288e13 1.84345
\(232\) 6.10440e11i 0.0596292i
\(233\) 8.64493e12i 0.824715i 0.911022 + 0.412358i \(0.135295\pi\)
−0.911022 + 0.412358i \(0.864705\pi\)
\(234\) −1.83067e13 −1.70578
\(235\) 0 0
\(236\) 5.01584e12 0.445993
\(237\) − 5.24006e12i − 0.455219i
\(238\) 1.23381e13i 1.04731i
\(239\) −6.71025e12 −0.556609 −0.278304 0.960493i \(-0.589772\pi\)
−0.278304 + 0.960493i \(0.589772\pi\)
\(240\) 0 0
\(241\) −1.20329e13 −0.953404 −0.476702 0.879065i \(-0.658168\pi\)
−0.476702 + 0.879065i \(0.658168\pi\)
\(242\) 5.30679e12i 0.411006i
\(243\) 6.97444e12i 0.528050i
\(244\) −1.10147e13 −0.815320
\(245\) 0 0
\(246\) −2.17463e13 −1.53901
\(247\) 1.68517e13i 1.16630i
\(248\) 2.32800e12i 0.157579i
\(249\) −4.14371e13 −2.74343
\(250\) 0 0
\(251\) −2.23212e13 −1.41420 −0.707101 0.707113i \(-0.749997\pi\)
−0.707101 + 0.707113i \(0.749997\pi\)
\(252\) 2.77449e13i 1.71981i
\(253\) 1.82381e12i 0.110616i
\(254\) 1.79420e13 1.06484
\(255\) 0 0
\(256\) 1.09951e12 0.0625000
\(257\) − 1.80055e13i − 1.00178i −0.865511 0.500890i \(-0.833006\pi\)
0.865511 0.500890i \(-0.166994\pi\)
\(258\) − 2.77845e13i − 1.51319i
\(259\) 2.31046e13 1.23183
\(260\) 0 0
\(261\) −7.05993e12 −0.360809
\(262\) − 1.31840e13i − 0.659765i
\(263\) 1.38894e13i 0.680653i 0.940307 + 0.340326i \(0.110538\pi\)
−0.940307 + 0.340326i \(0.889462\pi\)
\(264\) 8.44639e12 0.405368
\(265\) 0 0
\(266\) 2.55398e13 1.17590
\(267\) 6.93313e12i 0.312693i
\(268\) 3.79711e12i 0.167769i
\(269\) −2.71611e13 −1.17574 −0.587868 0.808957i \(-0.700033\pi\)
−0.587868 + 0.808957i \(0.700033\pi\)
\(270\) 0 0
\(271\) −7.24542e12 −0.301115 −0.150558 0.988601i \(-0.548107\pi\)
−0.150558 + 0.988601i \(0.548107\pi\)
\(272\) 5.65488e12i 0.230300i
\(273\) − 8.04842e13i − 3.21230i
\(274\) 2.51603e13 0.984209
\(275\) 0 0
\(276\) −4.02928e12 −0.151435
\(277\) − 3.97300e13i − 1.46380i −0.681415 0.731898i \(-0.738635\pi\)
0.681415 0.731898i \(-0.261365\pi\)
\(278\) 2.74289e13i 0.990744i
\(279\) −2.69240e13 −0.953491
\(280\) 0 0
\(281\) 5.95255e12 0.202683 0.101342 0.994852i \(-0.467686\pi\)
0.101342 + 0.994852i \(0.467686\pi\)
\(282\) − 6.72828e12i − 0.224664i
\(283\) − 3.85782e13i − 1.26333i −0.775241 0.631665i \(-0.782372\pi\)
0.775241 0.631665i \(-0.217628\pi\)
\(284\) −3.53560e12 −0.113557
\(285\) 0 0
\(286\) −1.66970e13 −0.515971
\(287\) − 6.51517e13i − 1.97504i
\(288\) 1.27162e13i 0.378180i
\(289\) 5.18843e12 0.151390
\(290\) 0 0
\(291\) 3.51903e13 0.988580
\(292\) 2.26443e13i 0.624242i
\(293\) − 5.32529e13i − 1.44069i −0.693615 0.720346i \(-0.743983\pi\)
0.693615 0.720346i \(-0.256017\pi\)
\(294\) −7.47930e13 −1.98587
\(295\) 0 0
\(296\) 1.05895e13 0.270875
\(297\) 5.20232e13i 1.30628i
\(298\) − 7.63539e12i − 0.188210i
\(299\) 7.96516e12 0.192754
\(300\) 0 0
\(301\) 8.32424e13 1.94191
\(302\) 3.06339e12i 0.0701720i
\(303\) 1.20233e14i 2.70452i
\(304\) 1.17056e13 0.258576
\(305\) 0 0
\(306\) −6.54004e13 −1.39352
\(307\) 5.74336e13i 1.20200i 0.799249 + 0.601001i \(0.205231\pi\)
−0.799249 + 0.601001i \(0.794769\pi\)
\(308\) 2.53054e13i 0.520216i
\(309\) 1.38392e14 2.79473
\(310\) 0 0
\(311\) −2.58616e13 −0.504050 −0.252025 0.967721i \(-0.581097\pi\)
−0.252025 + 0.967721i \(0.581097\pi\)
\(312\) − 3.68880e13i − 0.706375i
\(313\) − 3.57307e13i − 0.672277i −0.941813 0.336138i \(-0.890879\pi\)
0.941813 0.336138i \(-0.109121\pi\)
\(314\) 5.75792e13 1.06452
\(315\) 0 0
\(316\) 7.19536e12 0.128462
\(317\) 1.78631e13i 0.313422i 0.987644 + 0.156711i \(0.0500892\pi\)
−0.987644 + 0.156711i \(0.949911\pi\)
\(318\) 9.68755e13i 1.67057i
\(319\) −6.43917e12 −0.109139
\(320\) 0 0
\(321\) −4.07027e13 −0.666570
\(322\) − 1.20717e13i − 0.194339i
\(323\) 6.02026e13i 0.952800i
\(324\) −4.61877e13 −0.718669
\(325\) 0 0
\(326\) −8.01980e13 −1.20633
\(327\) 2.64016e13i 0.390496i
\(328\) − 2.98607e13i − 0.434305i
\(329\) 2.01579e13 0.288315
\(330\) 0 0
\(331\) 7.78278e13 1.07667 0.538333 0.842732i \(-0.319054\pi\)
0.538333 + 0.842732i \(0.319054\pi\)
\(332\) − 5.68992e13i − 0.774188i
\(333\) 1.22470e14i 1.63903i
\(334\) 8.63535e13 1.13678
\(335\) 0 0
\(336\) −5.59061e13 −0.712186
\(337\) − 4.95598e12i − 0.0621105i −0.999518 0.0310552i \(-0.990113\pi\)
0.999518 0.0310552i \(-0.00988678\pi\)
\(338\) 1.55719e13i 0.192000i
\(339\) −8.97226e13 −1.08844
\(340\) 0 0
\(341\) −2.45567e13 −0.288417
\(342\) 1.35379e14i 1.56461i
\(343\) − 8.27106e13i − 0.940684i
\(344\) 3.81522e13 0.427019
\(345\) 0 0
\(346\) 9.84948e13 1.06781
\(347\) 6.55706e13i 0.699676i 0.936810 + 0.349838i \(0.113763\pi\)
−0.936810 + 0.349838i \(0.886237\pi\)
\(348\) − 1.42258e13i − 0.149414i
\(349\) −1.14750e14 −1.18635 −0.593177 0.805072i \(-0.702127\pi\)
−0.593177 + 0.805072i \(0.702127\pi\)
\(350\) 0 0
\(351\) 2.27202e14 2.27626
\(352\) 1.15981e13i 0.114394i
\(353\) − 5.10272e13i − 0.495497i −0.968824 0.247749i \(-0.920309\pi\)
0.968824 0.247749i \(-0.0796907\pi\)
\(354\) −1.16890e14 −1.11753
\(355\) 0 0
\(356\) −9.52019e12 −0.0882410
\(357\) − 2.87530e14i − 2.62426i
\(358\) 1.12369e13i 0.100993i
\(359\) 1.16657e14 1.03251 0.516253 0.856436i \(-0.327326\pi\)
0.516253 + 0.856436i \(0.327326\pi\)
\(360\) 0 0
\(361\) 8.12884e12 0.0697813
\(362\) − 2.02914e13i − 0.171559i
\(363\) − 1.23671e14i − 1.02986i
\(364\) 1.10516e14 0.906503
\(365\) 0 0
\(366\) 2.56688e14 2.04296
\(367\) − 1.44058e14i − 1.12947i −0.825274 0.564733i \(-0.808979\pi\)
0.825274 0.564733i \(-0.191021\pi\)
\(368\) − 5.53277e12i − 0.0427346i
\(369\) 3.45349e14 2.62793
\(370\) 0 0
\(371\) −2.90239e14 −2.14387
\(372\) − 5.42521e13i − 0.394848i
\(373\) 6.90594e13i 0.495250i 0.968856 + 0.247625i \(0.0796501\pi\)
−0.968856 + 0.247625i \(0.920350\pi\)
\(374\) −5.96500e13 −0.421518
\(375\) 0 0
\(376\) 9.23889e12 0.0633996
\(377\) 2.81219e13i 0.190181i
\(378\) − 3.44338e14i − 2.29499i
\(379\) −2.28579e14 −1.50149 −0.750743 0.660595i \(-0.770304\pi\)
−0.750743 + 0.660595i \(0.770304\pi\)
\(380\) 0 0
\(381\) −4.18123e14 −2.66819
\(382\) 8.37070e13i 0.526518i
\(383\) − 7.16725e13i − 0.444385i −0.975003 0.222192i \(-0.928679\pi\)
0.975003 0.222192i \(-0.0713213\pi\)
\(384\) −2.56232e13 −0.156607
\(385\) 0 0
\(386\) 5.11420e13 0.303772
\(387\) 4.41242e14i 2.58385i
\(388\) 4.83214e13i 0.278975i
\(389\) −5.31179e13 −0.302356 −0.151178 0.988507i \(-0.548307\pi\)
−0.151178 + 0.988507i \(0.548307\pi\)
\(390\) 0 0
\(391\) 2.84555e13 0.157469
\(392\) − 1.02701e14i − 0.560407i
\(393\) 3.07242e14i 1.65318i
\(394\) 1.97210e12 0.0104641
\(395\) 0 0
\(396\) −1.34136e14 −0.692184
\(397\) − 9.39721e12i − 0.0478246i −0.999714 0.0239123i \(-0.992388\pi\)
0.999714 0.0239123i \(-0.00761225\pi\)
\(398\) 7.56940e13i 0.379931i
\(399\) −5.95185e14 −2.94646
\(400\) 0 0
\(401\) 2.20216e14 1.06061 0.530303 0.847808i \(-0.322078\pi\)
0.530303 + 0.847808i \(0.322078\pi\)
\(402\) − 8.84887e13i − 0.420382i
\(403\) 1.07247e14i 0.502581i
\(404\) −1.65098e14 −0.763209
\(405\) 0 0
\(406\) 4.26204e13 0.191745
\(407\) 1.11702e14i 0.495783i
\(408\) − 1.31782e14i − 0.577067i
\(409\) 3.05103e14 1.31816 0.659080 0.752072i \(-0.270946\pi\)
0.659080 + 0.752072i \(0.270946\pi\)
\(410\) 0 0
\(411\) −5.86340e14 −2.46615
\(412\) 1.90032e14i 0.788666i
\(413\) − 3.50203e14i − 1.43415i
\(414\) 6.39883e13 0.258582
\(415\) 0 0
\(416\) 5.06526e13 0.199337
\(417\) − 6.39208e14i − 2.48253i
\(418\) 1.23475e14i 0.473271i
\(419\) −4.21440e14 −1.59426 −0.797130 0.603808i \(-0.793649\pi\)
−0.797130 + 0.603808i \(0.793649\pi\)
\(420\) 0 0
\(421\) 1.11120e12 0.00409487 0.00204744 0.999998i \(-0.499348\pi\)
0.00204744 + 0.999998i \(0.499348\pi\)
\(422\) − 1.72715e14i − 0.628219i
\(423\) 1.06851e14i 0.383624i
\(424\) −1.33024e14 −0.471431
\(425\) 0 0
\(426\) 8.23944e13 0.284541
\(427\) 7.69037e14i 2.62177i
\(428\) − 5.58907e13i − 0.188104i
\(429\) 3.89110e14 1.29288
\(430\) 0 0
\(431\) 2.29204e14 0.742332 0.371166 0.928567i \(-0.378958\pi\)
0.371166 + 0.928567i \(0.378958\pi\)
\(432\) − 1.57819e14i − 0.504660i
\(433\) 1.54032e14i 0.486325i 0.969986 + 0.243162i \(0.0781848\pi\)
−0.969986 + 0.243162i \(0.921815\pi\)
\(434\) 1.62539e14 0.506715
\(435\) 0 0
\(436\) −3.62531e13 −0.110197
\(437\) − 5.89027e13i − 0.176802i
\(438\) − 5.27707e14i − 1.56417i
\(439\) 1.25797e14 0.368227 0.184114 0.982905i \(-0.441059\pi\)
0.184114 + 0.982905i \(0.441059\pi\)
\(440\) 0 0
\(441\) 1.18778e15 3.39096
\(442\) 2.60510e14i 0.734517i
\(443\) − 1.34623e14i − 0.374885i −0.982276 0.187443i \(-0.939980\pi\)
0.982276 0.187443i \(-0.0600198\pi\)
\(444\) −2.46779e14 −0.678736
\(445\) 0 0
\(446\) −2.99880e14 −0.804647
\(447\) 1.77937e14i 0.471600i
\(448\) − 7.67671e13i − 0.200977i
\(449\) −4.28972e14 −1.10937 −0.554683 0.832062i \(-0.687160\pi\)
−0.554683 + 0.832062i \(0.687160\pi\)
\(450\) 0 0
\(451\) 3.14984e14 0.794908
\(452\) − 1.23202e14i − 0.307154i
\(453\) − 7.13898e13i − 0.175831i
\(454\) 2.08499e14 0.507338
\(455\) 0 0
\(456\) −2.72789e14 −0.647917
\(457\) 7.89196e14i 1.85202i 0.377497 + 0.926011i \(0.376785\pi\)
−0.377497 + 0.926011i \(0.623215\pi\)
\(458\) − 5.59387e13i − 0.129704i
\(459\) 8.11677e14 1.85957
\(460\) 0 0
\(461\) −6.01739e14 −1.34602 −0.673012 0.739632i \(-0.735000\pi\)
−0.673012 + 0.739632i \(0.735000\pi\)
\(462\) − 5.89721e14i − 1.30351i
\(463\) 2.36873e14i 0.517393i 0.965959 + 0.258696i \(0.0832929\pi\)
−0.965959 + 0.258696i \(0.916707\pi\)
\(464\) 1.95341e13 0.0421642
\(465\) 0 0
\(466\) 2.76638e14 0.583162
\(467\) − 8.17060e14i − 1.70220i −0.525002 0.851101i \(-0.675936\pi\)
0.525002 0.851101i \(-0.324064\pi\)
\(468\) 5.85813e14i 1.20617i
\(469\) 2.65112e14 0.539484
\(470\) 0 0
\(471\) −1.34184e15 −2.66738
\(472\) − 1.60507e14i − 0.315365i
\(473\) 4.02445e14i 0.781574i
\(474\) −1.67682e14 −0.321889
\(475\) 0 0
\(476\) 3.94819e14 0.740560
\(477\) − 1.53847e15i − 2.85257i
\(478\) 2.14728e14i 0.393582i
\(479\) −2.80917e14 −0.509018 −0.254509 0.967070i \(-0.581914\pi\)
−0.254509 + 0.967070i \(0.581914\pi\)
\(480\) 0 0
\(481\) 4.87837e14 0.863927
\(482\) 3.85053e14i 0.674159i
\(483\) 2.81321e14i 0.486960i
\(484\) 1.69817e14 0.290625
\(485\) 0 0
\(486\) 2.23182e14 0.373387
\(487\) 4.06414e14i 0.672294i 0.941810 + 0.336147i \(0.109124\pi\)
−0.941810 + 0.336147i \(0.890876\pi\)
\(488\) 3.52470e14i 0.576518i
\(489\) 1.86895e15 3.02273
\(490\) 0 0
\(491\) 1.02479e15 1.62065 0.810324 0.585982i \(-0.199291\pi\)
0.810324 + 0.585982i \(0.199291\pi\)
\(492\) 6.95880e14i 1.08824i
\(493\) 1.00465e14i 0.155367i
\(494\) 5.39255e14 0.824699
\(495\) 0 0
\(496\) 7.44959e13 0.111425
\(497\) 2.46853e14i 0.365156i
\(498\) 1.32599e15i 1.93990i
\(499\) −1.01593e14 −0.146997 −0.0734987 0.997295i \(-0.523416\pi\)
−0.0734987 + 0.997295i \(0.523416\pi\)
\(500\) 0 0
\(501\) −2.01240e15 −2.84844
\(502\) 7.14277e14i 0.999991i
\(503\) 9.67924e14i 1.34035i 0.742204 + 0.670174i \(0.233780\pi\)
−0.742204 + 0.670174i \(0.766220\pi\)
\(504\) 8.87836e14 1.21609
\(505\) 0 0
\(506\) 5.83620e13 0.0782172
\(507\) − 3.62891e14i − 0.481097i
\(508\) − 5.74143e14i − 0.752957i
\(509\) −9.40088e14 −1.21961 −0.609805 0.792552i \(-0.708752\pi\)
−0.609805 + 0.792552i \(0.708752\pi\)
\(510\) 0 0
\(511\) 1.58101e15 2.00733
\(512\) − 3.51844e13i − 0.0441942i
\(513\) − 1.68017e15i − 2.08789i
\(514\) −5.76175e14 −0.708365
\(515\) 0 0
\(516\) −8.89105e14 −1.06999
\(517\) 9.74557e13i 0.116040i
\(518\) − 7.39348e14i − 0.871034i
\(519\) −2.29534e15 −2.67564
\(520\) 0 0
\(521\) −1.00574e15 −1.14783 −0.573916 0.818914i \(-0.694576\pi\)
−0.573916 + 0.818914i \(0.694576\pi\)
\(522\) 2.25918e14i 0.255131i
\(523\) − 1.24911e15i − 1.39586i −0.716165 0.697931i \(-0.754104\pi\)
0.716165 0.697931i \(-0.245896\pi\)
\(524\) −4.21887e14 −0.466524
\(525\) 0 0
\(526\) 4.44460e14 0.481294
\(527\) 3.83138e14i 0.410579i
\(528\) − 2.70285e14i − 0.286639i
\(529\) 9.24969e14 0.970780
\(530\) 0 0
\(531\) 1.85631e15 1.90823
\(532\) − 8.17274e14i − 0.831483i
\(533\) − 1.37563e15i − 1.38517i
\(534\) 2.21860e14 0.221107
\(535\) 0 0
\(536\) 1.21508e14 0.118631
\(537\) − 2.61868e14i − 0.253060i
\(538\) 8.69155e14i 0.831371i
\(539\) 1.08334e15 1.02571
\(540\) 0 0
\(541\) 1.47684e15 1.37009 0.685046 0.728500i \(-0.259782\pi\)
0.685046 + 0.728500i \(0.259782\pi\)
\(542\) 2.31853e14i 0.212921i
\(543\) 4.72874e14i 0.429880i
\(544\) 1.80956e14 0.162847
\(545\) 0 0
\(546\) −2.57550e15 −2.27144
\(547\) 2.32000e14i 0.202562i 0.994858 + 0.101281i \(0.0322941\pi\)
−0.994858 + 0.101281i \(0.967706\pi\)
\(548\) − 8.05129e14i − 0.695941i
\(549\) −4.07643e15 −3.48844
\(550\) 0 0
\(551\) 2.07962e14 0.174442
\(552\) 1.28937e14i 0.107081i
\(553\) − 5.02375e14i − 0.413085i
\(554\) −1.27136e15 −1.03506
\(555\) 0 0
\(556\) 8.77724e14 0.700562
\(557\) − 2.34238e15i − 1.85120i −0.378498 0.925602i \(-0.623559\pi\)
0.378498 0.925602i \(-0.376441\pi\)
\(558\) 8.61568e14i 0.674220i
\(559\) 1.75760e15 1.36193
\(560\) 0 0
\(561\) 1.39010e15 1.05621
\(562\) − 1.90482e14i − 0.143319i
\(563\) 2.32309e15i 1.73089i 0.501002 + 0.865446i \(0.332965\pi\)
−0.501002 + 0.865446i \(0.667035\pi\)
\(564\) −2.15305e14 −0.158862
\(565\) 0 0
\(566\) −1.23450e15 −0.893309
\(567\) 3.22479e15i 2.31098i
\(568\) 1.13139e14i 0.0802967i
\(569\) 2.48598e14 0.174735 0.0873676 0.996176i \(-0.472155\pi\)
0.0873676 + 0.996176i \(0.472155\pi\)
\(570\) 0 0
\(571\) −2.44700e15 −1.68708 −0.843540 0.537066i \(-0.819533\pi\)
−0.843540 + 0.537066i \(0.819533\pi\)
\(572\) 5.34305e14i 0.364847i
\(573\) − 1.95072e15i − 1.31931i
\(574\) −2.08486e15 −1.39656
\(575\) 0 0
\(576\) 4.06919e14 0.267414
\(577\) 2.05338e15i 1.33660i 0.743890 + 0.668302i \(0.232979\pi\)
−0.743890 + 0.668302i \(0.767021\pi\)
\(578\) − 1.66030e14i − 0.107049i
\(579\) −1.19182e15 −0.761166
\(580\) 0 0
\(581\) −3.97266e15 −2.48950
\(582\) − 1.12609e15i − 0.699032i
\(583\) − 1.40319e15i − 0.862860i
\(584\) 7.24617e14 0.441406
\(585\) 0 0
\(586\) −1.70409e15 −1.01872
\(587\) − 3.00291e14i − 0.177841i −0.996039 0.0889207i \(-0.971658\pi\)
0.996039 0.0889207i \(-0.0283418\pi\)
\(588\) 2.39338e15i 1.40422i
\(589\) 7.93094e14 0.460989
\(590\) 0 0
\(591\) −4.59582e13 −0.0262200
\(592\) − 3.38862e14i − 0.191538i
\(593\) − 2.71460e15i − 1.52022i −0.649796 0.760108i \(-0.725146\pi\)
0.649796 0.760108i \(-0.274854\pi\)
\(594\) 1.66474e15 0.923681
\(595\) 0 0
\(596\) −2.44332e14 −0.133084
\(597\) − 1.76399e15i − 0.951999i
\(598\) − 2.54885e14i − 0.136298i
\(599\) 2.10006e15 1.11272 0.556358 0.830943i \(-0.312198\pi\)
0.556358 + 0.830943i \(0.312198\pi\)
\(600\) 0 0
\(601\) 2.84187e15 1.47841 0.739204 0.673481i \(-0.235202\pi\)
0.739204 + 0.673481i \(0.235202\pi\)
\(602\) − 2.66376e15i − 1.37314i
\(603\) 1.40528e15i 0.717821i
\(604\) 9.80284e13 0.0496191
\(605\) 0 0
\(606\) 3.84747e15 1.91239
\(607\) 3.78069e14i 0.186223i 0.995656 + 0.0931114i \(0.0296813\pi\)
−0.995656 + 0.0931114i \(0.970319\pi\)
\(608\) − 3.74578e14i − 0.182841i
\(609\) −9.93235e14 −0.480460
\(610\) 0 0
\(611\) 4.25619e14 0.202206
\(612\) 2.09281e15i 0.985367i
\(613\) 2.97141e15i 1.38653i 0.720681 + 0.693267i \(0.243829\pi\)
−0.720681 + 0.693267i \(0.756171\pi\)
\(614\) 1.83788e15 0.849943
\(615\) 0 0
\(616\) 8.09772e14 0.367848
\(617\) 1.19545e15i 0.538222i 0.963109 + 0.269111i \(0.0867299\pi\)
−0.963109 + 0.269111i \(0.913270\pi\)
\(618\) − 4.42855e15i − 1.97617i
\(619\) −3.17735e14 −0.140529 −0.0702645 0.997528i \(-0.522384\pi\)
−0.0702645 + 0.997528i \(0.522384\pi\)
\(620\) 0 0
\(621\) −7.94151e14 −0.345064
\(622\) 8.27572e14i 0.356417i
\(623\) 6.64693e14i 0.283750i
\(624\) −1.18042e15 −0.499482
\(625\) 0 0
\(626\) −1.14338e15 −0.475372
\(627\) − 2.87749e15i − 1.18588i
\(628\) − 1.84253e15i − 0.752727i
\(629\) 1.74280e15 0.705778
\(630\) 0 0
\(631\) −7.14141e14 −0.284199 −0.142099 0.989852i \(-0.545385\pi\)
−0.142099 + 0.989852i \(0.545385\pi\)
\(632\) − 2.30251e14i − 0.0908361i
\(633\) 4.02498e15i 1.57414i
\(634\) 5.71618e14 0.221623
\(635\) 0 0
\(636\) 3.10002e15 1.18127
\(637\) − 4.73128e15i − 1.78736i
\(638\) 2.06054e14i 0.0771732i
\(639\) −1.30849e15 −0.485866
\(640\) 0 0
\(641\) 3.74739e15 1.36776 0.683880 0.729594i \(-0.260291\pi\)
0.683880 + 0.729594i \(0.260291\pi\)
\(642\) 1.30249e15i 0.471336i
\(643\) 3.72691e14i 0.133718i 0.997762 + 0.0668588i \(0.0212977\pi\)
−0.997762 + 0.0668588i \(0.978702\pi\)
\(644\) −3.86294e14 −0.137419
\(645\) 0 0
\(646\) 1.92648e15 0.673731
\(647\) − 3.55565e15i − 1.23295i −0.787374 0.616475i \(-0.788560\pi\)
0.787374 0.616475i \(-0.211440\pi\)
\(648\) 1.47801e15i 0.508176i
\(649\) 1.69310e15 0.577212
\(650\) 0 0
\(651\) −3.78784e15 −1.26969
\(652\) 2.56633e15i 0.853005i
\(653\) 5.07282e15i 1.67196i 0.548757 + 0.835982i \(0.315101\pi\)
−0.548757 + 0.835982i \(0.684899\pi\)
\(654\) 8.44850e14 0.276123
\(655\) 0 0
\(656\) −9.55544e14 −0.307100
\(657\) 8.38043e15i 2.67090i
\(658\) − 6.45053e14i − 0.203870i
\(659\) −1.66566e15 −0.522054 −0.261027 0.965331i \(-0.584061\pi\)
−0.261027 + 0.965331i \(0.584061\pi\)
\(660\) 0 0
\(661\) 3.06978e14 0.0946235 0.0473118 0.998880i \(-0.484935\pi\)
0.0473118 + 0.998880i \(0.484935\pi\)
\(662\) − 2.49049e15i − 0.761318i
\(663\) − 6.07098e15i − 1.84049i
\(664\) −1.82077e15 −0.547433
\(665\) 0 0
\(666\) 3.91905e15 1.15897
\(667\) − 9.82960e13i − 0.0288299i
\(668\) − 2.76331e15i − 0.803822i
\(669\) 6.98845e15 2.01622
\(670\) 0 0
\(671\) −3.71800e15 −1.05520
\(672\) 1.78900e15i 0.503591i
\(673\) 3.20107e15i 0.893742i 0.894599 + 0.446871i \(0.147462\pi\)
−0.894599 + 0.446871i \(0.852538\pi\)
\(674\) −1.58591e14 −0.0439187
\(675\) 0 0
\(676\) 4.98302e14 0.135764
\(677\) 4.88443e15i 1.32001i 0.751262 + 0.660004i \(0.229445\pi\)
−0.751262 + 0.660004i \(0.770555\pi\)
\(678\) 2.87112e15i 0.769642i
\(679\) 3.37376e15 0.897079
\(680\) 0 0
\(681\) −4.85891e15 −1.27125
\(682\) 7.85814e14i 0.203941i
\(683\) 3.43048e15i 0.883163i 0.897221 + 0.441582i \(0.145582\pi\)
−0.897221 + 0.441582i \(0.854418\pi\)
\(684\) 4.33211e15 1.10635
\(685\) 0 0
\(686\) −2.64674e15 −0.665164
\(687\) 1.30361e15i 0.325001i
\(688\) − 1.22087e15i − 0.301948i
\(689\) −6.12818e15 −1.50358
\(690\) 0 0
\(691\) 1.26067e15 0.304420 0.152210 0.988348i \(-0.451361\pi\)
0.152210 + 0.988348i \(0.451361\pi\)
\(692\) − 3.15183e15i − 0.755057i
\(693\) 9.36527e15i 2.22581i
\(694\) 2.09826e15 0.494746
\(695\) 0 0
\(696\) −4.55226e14 −0.105652
\(697\) − 4.91444e15i − 1.13160i
\(698\) 3.67201e15i 0.838879i
\(699\) −6.44682e15 −1.46124
\(700\) 0 0
\(701\) −1.46416e15 −0.326693 −0.163347 0.986569i \(-0.552229\pi\)
−0.163347 + 0.986569i \(0.552229\pi\)
\(702\) − 7.27045e15i − 1.60956i
\(703\) − 3.60758e15i − 0.792431i
\(704\) 3.71140e14 0.0808887
\(705\) 0 0
\(706\) −1.63287e15 −0.350369
\(707\) 1.15270e16i 2.45420i
\(708\) 3.74049e15i 0.790215i
\(709\) 2.00407e15 0.420105 0.210053 0.977690i \(-0.432636\pi\)
0.210053 + 0.977690i \(0.432636\pi\)
\(710\) 0 0
\(711\) 2.66293e15 0.549639
\(712\) 3.04646e14i 0.0623958i
\(713\) − 3.74865e14i − 0.0761873i
\(714\) −9.20095e15 −1.85563
\(715\) 0 0
\(716\) 3.59582e14 0.0714128
\(717\) − 5.00406e15i − 0.986205i
\(718\) − 3.73303e15i − 0.730092i
\(719\) 6.94101e15 1.34714 0.673571 0.739122i \(-0.264759\pi\)
0.673571 + 0.739122i \(0.264759\pi\)
\(720\) 0 0
\(721\) 1.32679e16 2.53606
\(722\) − 2.60123e14i − 0.0493428i
\(723\) − 8.97336e15i − 1.68925i
\(724\) −6.49324e14 −0.121311
\(725\) 0 0
\(726\) −3.95746e15 −0.728224
\(727\) 8.96895e14i 0.163796i 0.996641 + 0.0818978i \(0.0260981\pi\)
−0.996641 + 0.0818978i \(0.973902\pi\)
\(728\) − 3.53653e15i − 0.640994i
\(729\) 2.78918e15 0.501735
\(730\) 0 0
\(731\) 6.27903e15 1.11262
\(732\) − 8.21403e15i − 1.44459i
\(733\) − 1.11078e16i − 1.93890i −0.245286 0.969451i \(-0.578882\pi\)
0.245286 0.969451i \(-0.421118\pi\)
\(734\) −4.60985e15 −0.798653
\(735\) 0 0
\(736\) −1.77049e14 −0.0302179
\(737\) 1.28171e15i 0.217130i
\(738\) − 1.10512e16i − 1.85822i
\(739\) −5.03625e15 −0.840548 −0.420274 0.907397i \(-0.638066\pi\)
−0.420274 + 0.907397i \(0.638066\pi\)
\(740\) 0 0
\(741\) −1.25669e16 −2.06646
\(742\) 9.28764e15i 1.51595i
\(743\) 1.36645e15i 0.221389i 0.993854 + 0.110695i \(0.0353075\pi\)
−0.993854 + 0.110695i \(0.964692\pi\)
\(744\) −1.73607e15 −0.279200
\(745\) 0 0
\(746\) 2.20990e15 0.350194
\(747\) − 2.10578e16i − 3.31246i
\(748\) 1.90880e15i 0.298059i
\(749\) −3.90225e15 −0.604874
\(750\) 0 0
\(751\) −9.78301e15 −1.49435 −0.747176 0.664627i \(-0.768591\pi\)
−0.747176 + 0.664627i \(0.768591\pi\)
\(752\) − 2.95644e14i − 0.0448303i
\(753\) − 1.66456e16i − 2.50570i
\(754\) 8.99900e14 0.134478
\(755\) 0 0
\(756\) −1.10188e16 −1.62280
\(757\) 1.39502e15i 0.203964i 0.994786 + 0.101982i \(0.0325184\pi\)
−0.994786 + 0.101982i \(0.967482\pi\)
\(758\) 7.31454e15i 1.06171i
\(759\) −1.36008e15 −0.195990
\(760\) 0 0
\(761\) 6.09995e15 0.866385 0.433192 0.901301i \(-0.357387\pi\)
0.433192 + 0.901301i \(0.357387\pi\)
\(762\) 1.33799e16i 1.88670i
\(763\) 2.53117e15i 0.354353i
\(764\) 2.67862e15 0.372304
\(765\) 0 0
\(766\) −2.29352e15 −0.314228
\(767\) − 7.39427e15i − 1.00582i
\(768\) 8.19943e14i 0.110738i
\(769\) −6.60626e15 −0.885851 −0.442925 0.896558i \(-0.646059\pi\)
−0.442925 + 0.896558i \(0.646059\pi\)
\(770\) 0 0
\(771\) 1.34273e16 1.77496
\(772\) − 1.63654e15i − 0.214799i
\(773\) 3.74520e15i 0.488076i 0.969766 + 0.244038i \(0.0784722\pi\)
−0.969766 + 0.244038i \(0.921528\pi\)
\(774\) 1.41197e16 1.82705
\(775\) 0 0
\(776\) 1.54628e15 0.197265
\(777\) 1.72299e16i 2.18257i
\(778\) 1.69977e15i 0.213798i
\(779\) −1.01729e16 −1.27054
\(780\) 0 0
\(781\) −1.19344e15 −0.146967
\(782\) − 9.10576e14i − 0.111347i
\(783\) − 2.80384e15i − 0.340458i
\(784\) −3.28645e15 −0.396267
\(785\) 0 0
\(786\) 9.83174e15 1.16898
\(787\) 1.01107e16i 1.19377i 0.802326 + 0.596885i \(0.203595\pi\)
−0.802326 + 0.596885i \(0.796405\pi\)
\(788\) − 6.31072e13i − 0.00739920i
\(789\) −1.03578e16 −1.20599
\(790\) 0 0
\(791\) −8.60188e15 −0.987694
\(792\) 4.29235e15i 0.489448i
\(793\) 1.62377e16i 1.83874i
\(794\) −3.00711e14 −0.0338171
\(795\) 0 0
\(796\) 2.42221e15 0.268652
\(797\) 1.40032e16i 1.54244i 0.636570 + 0.771219i \(0.280353\pi\)
−0.636570 + 0.771219i \(0.719647\pi\)
\(798\) 1.90459e16i 2.08346i
\(799\) 1.52052e15 0.165191
\(800\) 0 0
\(801\) −3.52333e15 −0.377550
\(802\) − 7.04691e15i − 0.749962i
\(803\) 7.64357e15i 0.807906i
\(804\) −2.83164e15 −0.297255
\(805\) 0 0
\(806\) 3.43189e15 0.355378
\(807\) − 2.02550e16i − 2.08318i
\(808\) 5.28313e15i 0.539671i
\(809\) −2.05016e15 −0.208004 −0.104002 0.994577i \(-0.533165\pi\)
−0.104002 + 0.994577i \(0.533165\pi\)
\(810\) 0 0
\(811\) −1.45631e16 −1.45760 −0.728801 0.684725i \(-0.759922\pi\)
−0.728801 + 0.684725i \(0.759922\pi\)
\(812\) − 1.36385e15i − 0.135584i
\(813\) − 5.40316e15i − 0.533519i
\(814\) 3.57446e15 0.350571
\(815\) 0 0
\(816\) −4.21703e15 −0.408048
\(817\) − 1.29975e16i − 1.24922i
\(818\) − 9.76330e15i − 0.932080i
\(819\) 4.09011e16 3.87858
\(820\) 0 0
\(821\) −5.13429e15 −0.480389 −0.240195 0.970725i \(-0.577211\pi\)
−0.240195 + 0.970725i \(0.577211\pi\)
\(822\) 1.87629e16i 1.74383i
\(823\) − 6.16638e15i − 0.569287i −0.958633 0.284643i \(-0.908125\pi\)
0.958633 0.284643i \(-0.0918752\pi\)
\(824\) 6.08104e15 0.557671
\(825\) 0 0
\(826\) −1.12065e16 −1.01410
\(827\) 2.77673e15i 0.249605i 0.992182 + 0.124803i \(0.0398298\pi\)
−0.992182 + 0.124803i \(0.960170\pi\)
\(828\) − 2.04763e15i − 0.182845i
\(829\) −1.33865e16 −1.18745 −0.593726 0.804667i \(-0.702344\pi\)
−0.593726 + 0.804667i \(0.702344\pi\)
\(830\) 0 0
\(831\) 2.96281e16 2.59357
\(832\) − 1.62088e15i − 0.140953i
\(833\) − 1.69025e16i − 1.46017i
\(834\) −2.04546e16 −1.75541
\(835\) 0 0
\(836\) 3.95121e15 0.334653
\(837\) − 1.06928e16i − 0.899709i
\(838\) 1.34861e16i 1.12731i
\(839\) −1.47887e16 −1.22812 −0.614059 0.789260i \(-0.710464\pi\)
−0.614059 + 0.789260i \(0.710464\pi\)
\(840\) 0 0
\(841\) −1.18535e16 −0.971555
\(842\) − 3.55584e13i − 0.00289551i
\(843\) 4.43902e15i 0.359116i
\(844\) −5.52687e15 −0.444218
\(845\) 0 0
\(846\) 3.41922e15 0.271263
\(847\) − 1.18565e16i − 0.934542i
\(848\) 4.25677e15i 0.333352i
\(849\) 2.87691e16 2.23838
\(850\) 0 0
\(851\) −1.70517e15 −0.130965
\(852\) − 2.63662e15i − 0.201201i
\(853\) 1.97554e16i 1.49784i 0.662658 + 0.748922i \(0.269428\pi\)
−0.662658 + 0.748922i \(0.730572\pi\)
\(854\) 2.46092e16 1.85387
\(855\) 0 0
\(856\) −1.78850e15 −0.133010
\(857\) 2.32233e16i 1.71605i 0.513612 + 0.858023i \(0.328307\pi\)
−0.513612 + 0.858023i \(0.671693\pi\)
\(858\) − 1.24515e16i − 0.914203i
\(859\) 1.67344e16 1.22081 0.610405 0.792089i \(-0.291007\pi\)
0.610405 + 0.792089i \(0.291007\pi\)
\(860\) 0 0
\(861\) 4.85859e16 3.49939
\(862\) − 7.33454e15i − 0.524908i
\(863\) − 2.46024e16i − 1.74951i −0.484563 0.874757i \(-0.661021\pi\)
0.484563 0.874757i \(-0.338979\pi\)
\(864\) −5.05021e15 −0.356849
\(865\) 0 0
\(866\) 4.92901e15 0.343883
\(867\) 3.86919e15i 0.268234i
\(868\) − 5.20125e15i − 0.358302i
\(869\) 2.42879e15 0.166257
\(870\) 0 0
\(871\) 5.59764e15 0.378360
\(872\) 1.16010e15i 0.0779211i
\(873\) 1.78833e16i 1.19363i
\(874\) −1.88489e15 −0.125018
\(875\) 0 0
\(876\) −1.68866e16 −1.10604
\(877\) 4.55865e15i 0.296714i 0.988934 + 0.148357i \(0.0473985\pi\)
−0.988934 + 0.148357i \(0.952601\pi\)
\(878\) − 4.02551e15i − 0.260376i
\(879\) 3.97125e16 2.55263
\(880\) 0 0
\(881\) 1.67834e16 1.06540 0.532701 0.846304i \(-0.321177\pi\)
0.532701 + 0.846304i \(0.321177\pi\)
\(882\) − 3.80088e16i − 2.39777i
\(883\) − 1.13628e16i − 0.712362i −0.934417 0.356181i \(-0.884079\pi\)
0.934417 0.356181i \(-0.115921\pi\)
\(884\) 8.33632e15 0.519382
\(885\) 0 0
\(886\) −4.30793e15 −0.265084
\(887\) − 1.55603e16i − 0.951563i −0.879563 0.475782i \(-0.842165\pi\)
0.879563 0.475782i \(-0.157835\pi\)
\(888\) 7.89691e15i 0.479939i
\(889\) −4.00863e16 −2.42123
\(890\) 0 0
\(891\) −1.55906e16 −0.930115
\(892\) 9.59615e15i 0.568971i
\(893\) − 3.14747e15i − 0.185472i
\(894\) 5.69397e15 0.333471
\(895\) 0 0
\(896\) −2.45655e15 −0.142112
\(897\) 5.93989e15i 0.341523i
\(898\) 1.37271e16i 0.784440i
\(899\) 1.32350e15 0.0751704
\(900\) 0 0
\(901\) −2.18929e16 −1.22834
\(902\) − 1.00795e16i − 0.562085i
\(903\) 6.20767e16i 3.44069i
\(904\) −3.94246e15 −0.217191
\(905\) 0 0
\(906\) −2.28447e15 −0.124331
\(907\) − 3.40764e16i − 1.84338i −0.387932 0.921688i \(-0.626811\pi\)
0.387932 0.921688i \(-0.373189\pi\)
\(908\) − 6.67198e15i − 0.358742i
\(909\) −6.11011e16 −3.26548
\(910\) 0 0
\(911\) 1.60732e16 0.848697 0.424348 0.905499i \(-0.360503\pi\)
0.424348 + 0.905499i \(0.360503\pi\)
\(912\) 8.72924e15i 0.458147i
\(913\) − 1.92063e16i − 1.00197i
\(914\) 2.52543e16 1.30958
\(915\) 0 0
\(916\) −1.79004e15 −0.0917144
\(917\) 2.94559e16i 1.50017i
\(918\) − 2.59737e16i − 1.31492i
\(919\) 7.32080e15 0.368403 0.184201 0.982889i \(-0.441030\pi\)
0.184201 + 0.982889i \(0.441030\pi\)
\(920\) 0 0
\(921\) −4.28302e16 −2.12972
\(922\) 1.92556e16i 0.951783i
\(923\) 5.21213e15i 0.256098i
\(924\) −1.88711e16 −0.921724
\(925\) 0 0
\(926\) 7.57994e15 0.365852
\(927\) 7.03292e16i 3.37440i
\(928\) − 6.25090e14i − 0.0298146i
\(929\) 1.41658e16 0.671666 0.335833 0.941922i \(-0.390982\pi\)
0.335833 + 0.941922i \(0.390982\pi\)
\(930\) 0 0
\(931\) −3.49880e16 −1.63944
\(932\) − 8.85241e15i − 0.412358i
\(933\) − 1.92859e16i − 0.893081i
\(934\) −2.61459e16 −1.20364
\(935\) 0 0
\(936\) 1.87460e16 0.852888
\(937\) − 1.51385e16i − 0.684721i −0.939569 0.342361i \(-0.888774\pi\)
0.939569 0.342361i \(-0.111226\pi\)
\(938\) − 8.48358e15i − 0.381473i
\(939\) 2.66456e16 1.19115
\(940\) 0 0
\(941\) 8.81297e15 0.389385 0.194693 0.980864i \(-0.437629\pi\)
0.194693 + 0.980864i \(0.437629\pi\)
\(942\) 4.29388e16i 1.88612i
\(943\) 4.80832e15i 0.209981i
\(944\) −5.13622e15 −0.222996
\(945\) 0 0
\(946\) 1.28782e16 0.552656
\(947\) − 6.85225e15i − 0.292353i −0.989258 0.146177i \(-0.953303\pi\)
0.989258 0.146177i \(-0.0466968\pi\)
\(948\) 5.36582e15i 0.227610i
\(949\) 3.33818e16 1.40782
\(950\) 0 0
\(951\) −1.33211e16 −0.555325
\(952\) − 1.26342e16i − 0.523655i
\(953\) 3.21185e16i 1.32356i 0.749697 + 0.661781i \(0.230199\pi\)
−0.749697 + 0.661781i \(0.769801\pi\)
\(954\) −4.92309e16 −2.01707
\(955\) 0 0
\(956\) 6.87129e15 0.278304
\(957\) − 4.80191e15i − 0.193374i
\(958\) 8.98935e15i 0.359930i
\(959\) −5.62135e16 −2.23789
\(960\) 0 0
\(961\) −2.03611e16 −0.801351
\(962\) − 1.56108e16i − 0.610889i
\(963\) − 2.06846e16i − 0.804827i
\(964\) 1.23217e16 0.476702
\(965\) 0 0
\(966\) 9.00228e15 0.344333
\(967\) − 2.01801e16i − 0.767500i −0.923437 0.383750i \(-0.874633\pi\)
0.923437 0.383750i \(-0.125367\pi\)
\(968\) − 5.43416e15i − 0.205503i
\(969\) −4.48952e16 −1.68818
\(970\) 0 0
\(971\) 7.19924e15 0.267658 0.133829 0.991004i \(-0.457273\pi\)
0.133829 + 0.991004i \(0.457273\pi\)
\(972\) − 7.14182e15i − 0.264025i
\(973\) − 6.12821e16i − 2.25275i
\(974\) 1.30052e16 0.475383
\(975\) 0 0
\(976\) 1.12790e16 0.407660
\(977\) − 3.14860e16i − 1.13161i −0.824538 0.565806i \(-0.808565\pi\)
0.824538 0.565806i \(-0.191435\pi\)
\(978\) − 5.98064e16i − 2.13739i
\(979\) −3.21353e15 −0.114203
\(980\) 0 0
\(981\) −1.34169e16 −0.471491
\(982\) − 3.27934e16i − 1.14597i
\(983\) − 1.68059e15i − 0.0584006i −0.999574 0.0292003i \(-0.990704\pi\)
0.999574 0.0292003i \(-0.00929607\pi\)
\(984\) 2.22682e16 0.769505
\(985\) 0 0
\(986\) 3.21489e15 0.109861
\(987\) 1.50324e16i 0.510840i
\(988\) − 1.72561e16i − 0.583150i
\(989\) −6.14345e15 −0.206458
\(990\) 0 0
\(991\) −2.21678e15 −0.0736746 −0.0368373 0.999321i \(-0.511728\pi\)
−0.0368373 + 0.999321i \(0.511728\pi\)
\(992\) − 2.38387e15i − 0.0787894i
\(993\) 5.80389e16i 1.90765i
\(994\) 7.89931e15 0.258205
\(995\) 0 0
\(996\) 4.24316e16 1.37171
\(997\) − 2.59411e14i − 0.00833999i −0.999991 0.00416999i \(-0.998673\pi\)
0.999991 0.00416999i \(-0.00132735\pi\)
\(998\) 3.25097e15i 0.103943i
\(999\) −4.86389e16 −1.54658
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 50.12.b.f.49.2 4
5.2 odd 4 10.12.a.d.1.2 2
5.3 odd 4 50.12.a.f.1.1 2
5.4 even 2 inner 50.12.b.f.49.3 4
15.2 even 4 90.12.a.l.1.1 2
20.7 even 4 80.12.a.g.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
10.12.a.d.1.2 2 5.2 odd 4
50.12.a.f.1.1 2 5.3 odd 4
50.12.b.f.49.2 4 1.1 even 1 trivial
50.12.b.f.49.3 4 5.4 even 2 inner
80.12.a.g.1.1 2 20.7 even 4
90.12.a.l.1.1 2 15.2 even 4