Properties

Label 2-50-1.1-c3-0-4
Degree $2$
Conductor $50$
Sign $-1$
Analytic cond. $2.95009$
Root an. cond. $1.71758$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s − 2·3-s + 4·4-s + 4·6-s − 26·7-s − 8·8-s − 23·9-s − 28·11-s − 8·12-s − 12·13-s + 52·14-s + 16·16-s + 64·17-s + 46·18-s − 60·19-s + 52·21-s + 56·22-s + 58·23-s + 16·24-s + 24·26-s + 100·27-s − 104·28-s + 90·29-s − 128·31-s − 32·32-s + 56·33-s − 128·34-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.384·3-s + 1/2·4-s + 0.272·6-s − 1.40·7-s − 0.353·8-s − 0.851·9-s − 0.767·11-s − 0.192·12-s − 0.256·13-s + 0.992·14-s + 1/4·16-s + 0.913·17-s + 0.602·18-s − 0.724·19-s + 0.540·21-s + 0.542·22-s + 0.525·23-s + 0.136·24-s + 0.181·26-s + 0.712·27-s − 0.701·28-s + 0.576·29-s − 0.741·31-s − 0.176·32-s + 0.295·33-s − 0.645·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 50 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 50 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(50\)    =    \(2 \cdot 5^{2}\)
Sign: $-1$
Analytic conductor: \(2.95009\)
Root analytic conductor: \(1.71758\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 50,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + p T \)
5 \( 1 \)
good3 \( 1 + 2 T + p^{3} T^{2} \)
7 \( 1 + 26 T + p^{3} T^{2} \)
11 \( 1 + 28 T + p^{3} T^{2} \)
13 \( 1 + 12 T + p^{3} T^{2} \)
17 \( 1 - 64 T + p^{3} T^{2} \)
19 \( 1 + 60 T + p^{3} T^{2} \)
23 \( 1 - 58 T + p^{3} T^{2} \)
29 \( 1 - 90 T + p^{3} T^{2} \)
31 \( 1 + 128 T + p^{3} T^{2} \)
37 \( 1 + 236 T + p^{3} T^{2} \)
41 \( 1 - 242 T + p^{3} T^{2} \)
43 \( 1 + 362 T + p^{3} T^{2} \)
47 \( 1 + 226 T + p^{3} T^{2} \)
53 \( 1 - 108 T + p^{3} T^{2} \)
59 \( 1 + 20 T + p^{3} T^{2} \)
61 \( 1 - 542 T + p^{3} T^{2} \)
67 \( 1 - 434 T + p^{3} T^{2} \)
71 \( 1 + 1128 T + p^{3} T^{2} \)
73 \( 1 + 632 T + p^{3} T^{2} \)
79 \( 1 + 720 T + p^{3} T^{2} \)
83 \( 1 - 478 T + p^{3} T^{2} \)
89 \( 1 + 490 T + p^{3} T^{2} \)
97 \( 1 + 1456 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.68885980153862411665148753167, −13.12098673613847972078502918692, −12.09285017723653204901966267759, −10.72917816735290999485752832344, −9.753875940004547873505372131129, −8.449707716719759775880307510158, −6.89493100292272320006195407208, −5.62408358393626121672010056962, −3.00920048336052464792456495092, 0, 3.00920048336052464792456495092, 5.62408358393626121672010056962, 6.89493100292272320006195407208, 8.449707716719759775880307510158, 9.753875940004547873505372131129, 10.72917816735290999485752832344, 12.09285017723653204901966267759, 13.12098673613847972078502918692, 14.68885980153862411665148753167

Graph of the $Z$-function along the critical line