Properties

Label 50.4.a.b.1.1
Level $50$
Weight $4$
Character 50.1
Self dual yes
Analytic conductor $2.950$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [50,4,Mod(1,50)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(50, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("50.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 50 = 2 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 50.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(2.95009550029\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 10)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 50.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.00000 q^{2} -2.00000 q^{3} +4.00000 q^{4} +4.00000 q^{6} -26.0000 q^{7} -8.00000 q^{8} -23.0000 q^{9} -28.0000 q^{11} -8.00000 q^{12} -12.0000 q^{13} +52.0000 q^{14} +16.0000 q^{16} +64.0000 q^{17} +46.0000 q^{18} -60.0000 q^{19} +52.0000 q^{21} +56.0000 q^{22} +58.0000 q^{23} +16.0000 q^{24} +24.0000 q^{26} +100.000 q^{27} -104.000 q^{28} +90.0000 q^{29} -128.000 q^{31} -32.0000 q^{32} +56.0000 q^{33} -128.000 q^{34} -92.0000 q^{36} -236.000 q^{37} +120.000 q^{38} +24.0000 q^{39} +242.000 q^{41} -104.000 q^{42} -362.000 q^{43} -112.000 q^{44} -116.000 q^{46} -226.000 q^{47} -32.0000 q^{48} +333.000 q^{49} -128.000 q^{51} -48.0000 q^{52} +108.000 q^{53} -200.000 q^{54} +208.000 q^{56} +120.000 q^{57} -180.000 q^{58} -20.0000 q^{59} +542.000 q^{61} +256.000 q^{62} +598.000 q^{63} +64.0000 q^{64} -112.000 q^{66} +434.000 q^{67} +256.000 q^{68} -116.000 q^{69} -1128.00 q^{71} +184.000 q^{72} -632.000 q^{73} +472.000 q^{74} -240.000 q^{76} +728.000 q^{77} -48.0000 q^{78} -720.000 q^{79} +421.000 q^{81} -484.000 q^{82} +478.000 q^{83} +208.000 q^{84} +724.000 q^{86} -180.000 q^{87} +224.000 q^{88} -490.000 q^{89} +312.000 q^{91} +232.000 q^{92} +256.000 q^{93} +452.000 q^{94} +64.0000 q^{96} -1456.00 q^{97} -666.000 q^{98} +644.000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.00000 −0.707107
\(3\) −2.00000 −0.384900 −0.192450 0.981307i \(-0.561643\pi\)
−0.192450 + 0.981307i \(0.561643\pi\)
\(4\) 4.00000 0.500000
\(5\) 0 0
\(6\) 4.00000 0.272166
\(7\) −26.0000 −1.40387 −0.701934 0.712242i \(-0.747680\pi\)
−0.701934 + 0.712242i \(0.747680\pi\)
\(8\) −8.00000 −0.353553
\(9\) −23.0000 −0.851852
\(10\) 0 0
\(11\) −28.0000 −0.767483 −0.383742 0.923440i \(-0.625365\pi\)
−0.383742 + 0.923440i \(0.625365\pi\)
\(12\) −8.00000 −0.192450
\(13\) −12.0000 −0.256015 −0.128008 0.991773i \(-0.540858\pi\)
−0.128008 + 0.991773i \(0.540858\pi\)
\(14\) 52.0000 0.992685
\(15\) 0 0
\(16\) 16.0000 0.250000
\(17\) 64.0000 0.913075 0.456538 0.889704i \(-0.349089\pi\)
0.456538 + 0.889704i \(0.349089\pi\)
\(18\) 46.0000 0.602350
\(19\) −60.0000 −0.724471 −0.362235 0.932087i \(-0.617986\pi\)
−0.362235 + 0.932087i \(0.617986\pi\)
\(20\) 0 0
\(21\) 52.0000 0.540349
\(22\) 56.0000 0.542693
\(23\) 58.0000 0.525819 0.262909 0.964821i \(-0.415318\pi\)
0.262909 + 0.964821i \(0.415318\pi\)
\(24\) 16.0000 0.136083
\(25\) 0 0
\(26\) 24.0000 0.181030
\(27\) 100.000 0.712778
\(28\) −104.000 −0.701934
\(29\) 90.0000 0.576296 0.288148 0.957586i \(-0.406961\pi\)
0.288148 + 0.957586i \(0.406961\pi\)
\(30\) 0 0
\(31\) −128.000 −0.741596 −0.370798 0.928714i \(-0.620916\pi\)
−0.370798 + 0.928714i \(0.620916\pi\)
\(32\) −32.0000 −0.176777
\(33\) 56.0000 0.295405
\(34\) −128.000 −0.645642
\(35\) 0 0
\(36\) −92.0000 −0.425926
\(37\) −236.000 −1.04860 −0.524299 0.851534i \(-0.675673\pi\)
−0.524299 + 0.851534i \(0.675673\pi\)
\(38\) 120.000 0.512278
\(39\) 24.0000 0.0985404
\(40\) 0 0
\(41\) 242.000 0.921806 0.460903 0.887450i \(-0.347526\pi\)
0.460903 + 0.887450i \(0.347526\pi\)
\(42\) −104.000 −0.382084
\(43\) −362.000 −1.28383 −0.641913 0.766778i \(-0.721859\pi\)
−0.641913 + 0.766778i \(0.721859\pi\)
\(44\) −112.000 −0.383742
\(45\) 0 0
\(46\) −116.000 −0.371810
\(47\) −226.000 −0.701393 −0.350697 0.936489i \(-0.614055\pi\)
−0.350697 + 0.936489i \(0.614055\pi\)
\(48\) −32.0000 −0.0962250
\(49\) 333.000 0.970845
\(50\) 0 0
\(51\) −128.000 −0.351443
\(52\) −48.0000 −0.128008
\(53\) 108.000 0.279905 0.139952 0.990158i \(-0.455305\pi\)
0.139952 + 0.990158i \(0.455305\pi\)
\(54\) −200.000 −0.504010
\(55\) 0 0
\(56\) 208.000 0.496342
\(57\) 120.000 0.278849
\(58\) −180.000 −0.407503
\(59\) −20.0000 −0.0441318 −0.0220659 0.999757i \(-0.507024\pi\)
−0.0220659 + 0.999757i \(0.507024\pi\)
\(60\) 0 0
\(61\) 542.000 1.13764 0.568820 0.822462i \(-0.307400\pi\)
0.568820 + 0.822462i \(0.307400\pi\)
\(62\) 256.000 0.524388
\(63\) 598.000 1.19589
\(64\) 64.0000 0.125000
\(65\) 0 0
\(66\) −112.000 −0.208883
\(67\) 434.000 0.791366 0.395683 0.918387i \(-0.370508\pi\)
0.395683 + 0.918387i \(0.370508\pi\)
\(68\) 256.000 0.456538
\(69\) −116.000 −0.202388
\(70\) 0 0
\(71\) −1128.00 −1.88548 −0.942739 0.333531i \(-0.891760\pi\)
−0.942739 + 0.333531i \(0.891760\pi\)
\(72\) 184.000 0.301175
\(73\) −632.000 −1.01329 −0.506644 0.862155i \(-0.669114\pi\)
−0.506644 + 0.862155i \(0.669114\pi\)
\(74\) 472.000 0.741471
\(75\) 0 0
\(76\) −240.000 −0.362235
\(77\) 728.000 1.07745
\(78\) −48.0000 −0.0696786
\(79\) −720.000 −1.02540 −0.512698 0.858569i \(-0.671354\pi\)
−0.512698 + 0.858569i \(0.671354\pi\)
\(80\) 0 0
\(81\) 421.000 0.577503
\(82\) −484.000 −0.651815
\(83\) 478.000 0.632136 0.316068 0.948736i \(-0.397637\pi\)
0.316068 + 0.948736i \(0.397637\pi\)
\(84\) 208.000 0.270175
\(85\) 0 0
\(86\) 724.000 0.907801
\(87\) −180.000 −0.221816
\(88\) 224.000 0.271346
\(89\) −490.000 −0.583594 −0.291797 0.956480i \(-0.594253\pi\)
−0.291797 + 0.956480i \(0.594253\pi\)
\(90\) 0 0
\(91\) 312.000 0.359412
\(92\) 232.000 0.262909
\(93\) 256.000 0.285440
\(94\) 452.000 0.495960
\(95\) 0 0
\(96\) 64.0000 0.0680414
\(97\) −1456.00 −1.52407 −0.762033 0.647538i \(-0.775799\pi\)
−0.762033 + 0.647538i \(0.775799\pi\)
\(98\) −666.000 −0.686491
\(99\) 644.000 0.653782
\(100\) 0 0
\(101\) −578.000 −0.569437 −0.284719 0.958611i \(-0.591900\pi\)
−0.284719 + 0.958611i \(0.591900\pi\)
\(102\) 256.000 0.248508
\(103\) −1462.00 −1.39859 −0.699297 0.714831i \(-0.746503\pi\)
−0.699297 + 0.714831i \(0.746503\pi\)
\(104\) 96.0000 0.0905151
\(105\) 0 0
\(106\) −216.000 −0.197922
\(107\) −966.000 −0.872773 −0.436387 0.899759i \(-0.643742\pi\)
−0.436387 + 0.899759i \(0.643742\pi\)
\(108\) 400.000 0.356389
\(109\) 370.000 0.325134 0.162567 0.986698i \(-0.448023\pi\)
0.162567 + 0.986698i \(0.448023\pi\)
\(110\) 0 0
\(111\) 472.000 0.403606
\(112\) −416.000 −0.350967
\(113\) 528.000 0.439558 0.219779 0.975550i \(-0.429466\pi\)
0.219779 + 0.975550i \(0.429466\pi\)
\(114\) −240.000 −0.197176
\(115\) 0 0
\(116\) 360.000 0.288148
\(117\) 276.000 0.218087
\(118\) 40.0000 0.0312059
\(119\) −1664.00 −1.28184
\(120\) 0 0
\(121\) −547.000 −0.410969
\(122\) −1084.00 −0.804432
\(123\) −484.000 −0.354803
\(124\) −512.000 −0.370798
\(125\) 0 0
\(126\) −1196.00 −0.845620
\(127\) 1534.00 1.07181 0.535907 0.844277i \(-0.319970\pi\)
0.535907 + 0.844277i \(0.319970\pi\)
\(128\) −128.000 −0.0883883
\(129\) 724.000 0.494145
\(130\) 0 0
\(131\) 12.0000 0.00800340 0.00400170 0.999992i \(-0.498726\pi\)
0.00400170 + 0.999992i \(0.498726\pi\)
\(132\) 224.000 0.147702
\(133\) 1560.00 1.01706
\(134\) −868.000 −0.559580
\(135\) 0 0
\(136\) −512.000 −0.322821
\(137\) 1224.00 0.763309 0.381655 0.924305i \(-0.375354\pi\)
0.381655 + 0.924305i \(0.375354\pi\)
\(138\) 232.000 0.143110
\(139\) 3100.00 1.89164 0.945822 0.324685i \(-0.105258\pi\)
0.945822 + 0.324685i \(0.105258\pi\)
\(140\) 0 0
\(141\) 452.000 0.269966
\(142\) 2256.00 1.33323
\(143\) 336.000 0.196488
\(144\) −368.000 −0.212963
\(145\) 0 0
\(146\) 1264.00 0.716503
\(147\) −666.000 −0.373679
\(148\) −944.000 −0.524299
\(149\) 250.000 0.137455 0.0687275 0.997635i \(-0.478106\pi\)
0.0687275 + 0.997635i \(0.478106\pi\)
\(150\) 0 0
\(151\) 2152.00 1.15978 0.579892 0.814694i \(-0.303095\pi\)
0.579892 + 0.814694i \(0.303095\pi\)
\(152\) 480.000 0.256139
\(153\) −1472.00 −0.777805
\(154\) −1456.00 −0.761869
\(155\) 0 0
\(156\) 96.0000 0.0492702
\(157\) 524.000 0.266368 0.133184 0.991091i \(-0.457480\pi\)
0.133184 + 0.991091i \(0.457480\pi\)
\(158\) 1440.00 0.725065
\(159\) −216.000 −0.107735
\(160\) 0 0
\(161\) −1508.00 −0.738180
\(162\) −842.000 −0.408357
\(163\) 3518.00 1.69050 0.845249 0.534373i \(-0.179452\pi\)
0.845249 + 0.534373i \(0.179452\pi\)
\(164\) 968.000 0.460903
\(165\) 0 0
\(166\) −956.000 −0.446988
\(167\) 534.000 0.247438 0.123719 0.992317i \(-0.460518\pi\)
0.123719 + 0.992317i \(0.460518\pi\)
\(168\) −416.000 −0.191042
\(169\) −2053.00 −0.934456
\(170\) 0 0
\(171\) 1380.00 0.617142
\(172\) −1448.00 −0.641913
\(173\) −4252.00 −1.86863 −0.934317 0.356444i \(-0.883989\pi\)
−0.934317 + 0.356444i \(0.883989\pi\)
\(174\) 360.000 0.156848
\(175\) 0 0
\(176\) −448.000 −0.191871
\(177\) 40.0000 0.0169864
\(178\) 980.000 0.412664
\(179\) 2500.00 1.04390 0.521952 0.852975i \(-0.325204\pi\)
0.521952 + 0.852975i \(0.325204\pi\)
\(180\) 0 0
\(181\) −2578.00 −1.05868 −0.529340 0.848410i \(-0.677561\pi\)
−0.529340 + 0.848410i \(0.677561\pi\)
\(182\) −624.000 −0.254143
\(183\) −1084.00 −0.437878
\(184\) −464.000 −0.185905
\(185\) 0 0
\(186\) −512.000 −0.201837
\(187\) −1792.00 −0.700770
\(188\) −904.000 −0.350697
\(189\) −2600.00 −1.00065
\(190\) 0 0
\(191\) −768.000 −0.290945 −0.145473 0.989362i \(-0.546470\pi\)
−0.145473 + 0.989362i \(0.546470\pi\)
\(192\) −128.000 −0.0481125
\(193\) 2608.00 0.972684 0.486342 0.873769i \(-0.338331\pi\)
0.486342 + 0.873769i \(0.338331\pi\)
\(194\) 2912.00 1.07768
\(195\) 0 0
\(196\) 1332.00 0.485423
\(197\) −5116.00 −1.85025 −0.925127 0.379659i \(-0.876041\pi\)
−0.925127 + 0.379659i \(0.876041\pi\)
\(198\) −1288.00 −0.462294
\(199\) −3480.00 −1.23965 −0.619826 0.784739i \(-0.712797\pi\)
−0.619826 + 0.784739i \(0.712797\pi\)
\(200\) 0 0
\(201\) −868.000 −0.304597
\(202\) 1156.00 0.402653
\(203\) −2340.00 −0.809043
\(204\) −512.000 −0.175721
\(205\) 0 0
\(206\) 2924.00 0.988955
\(207\) −1334.00 −0.447920
\(208\) −192.000 −0.0640039
\(209\) 1680.00 0.556019
\(210\) 0 0
\(211\) 3132.00 1.02188 0.510938 0.859618i \(-0.329298\pi\)
0.510938 + 0.859618i \(0.329298\pi\)
\(212\) 432.000 0.139952
\(213\) 2256.00 0.725721
\(214\) 1932.00 0.617144
\(215\) 0 0
\(216\) −800.000 −0.252005
\(217\) 3328.00 1.04110
\(218\) −740.000 −0.229904
\(219\) 1264.00 0.390015
\(220\) 0 0
\(221\) −768.000 −0.233761
\(222\) −944.000 −0.285392
\(223\) −62.0000 −0.0186181 −0.00930903 0.999957i \(-0.502963\pi\)
−0.00930903 + 0.999957i \(0.502963\pi\)
\(224\) 832.000 0.248171
\(225\) 0 0
\(226\) −1056.00 −0.310814
\(227\) 5314.00 1.55376 0.776878 0.629651i \(-0.216802\pi\)
0.776878 + 0.629651i \(0.216802\pi\)
\(228\) 480.000 0.139424
\(229\) −190.000 −0.0548277 −0.0274139 0.999624i \(-0.508727\pi\)
−0.0274139 + 0.999624i \(0.508727\pi\)
\(230\) 0 0
\(231\) −1456.00 −0.414709
\(232\) −720.000 −0.203751
\(233\) 2408.00 0.677053 0.338526 0.940957i \(-0.390072\pi\)
0.338526 + 0.940957i \(0.390072\pi\)
\(234\) −552.000 −0.154211
\(235\) 0 0
\(236\) −80.0000 −0.0220659
\(237\) 1440.00 0.394675
\(238\) 3328.00 0.906396
\(239\) −5680.00 −1.53727 −0.768637 0.639685i \(-0.779065\pi\)
−0.768637 + 0.639685i \(0.779065\pi\)
\(240\) 0 0
\(241\) −278.000 −0.0743052 −0.0371526 0.999310i \(-0.511829\pi\)
−0.0371526 + 0.999310i \(0.511829\pi\)
\(242\) 1094.00 0.290599
\(243\) −3542.00 −0.935059
\(244\) 2168.00 0.568820
\(245\) 0 0
\(246\) 968.000 0.250884
\(247\) 720.000 0.185476
\(248\) 1024.00 0.262194
\(249\) −956.000 −0.243309
\(250\) 0 0
\(251\) 3252.00 0.817787 0.408893 0.912582i \(-0.365915\pi\)
0.408893 + 0.912582i \(0.365915\pi\)
\(252\) 2392.00 0.597944
\(253\) −1624.00 −0.403557
\(254\) −3068.00 −0.757888
\(255\) 0 0
\(256\) 256.000 0.0625000
\(257\) −1536.00 −0.372813 −0.186407 0.982473i \(-0.559684\pi\)
−0.186407 + 0.982473i \(0.559684\pi\)
\(258\) −1448.00 −0.349413
\(259\) 6136.00 1.47209
\(260\) 0 0
\(261\) −2070.00 −0.490919
\(262\) −24.0000 −0.00565926
\(263\) 4858.00 1.13900 0.569500 0.821991i \(-0.307137\pi\)
0.569500 + 0.821991i \(0.307137\pi\)
\(264\) −448.000 −0.104441
\(265\) 0 0
\(266\) −3120.00 −0.719171
\(267\) 980.000 0.224626
\(268\) 1736.00 0.395683
\(269\) 2610.00 0.591578 0.295789 0.955253i \(-0.404417\pi\)
0.295789 + 0.955253i \(0.404417\pi\)
\(270\) 0 0
\(271\) −5168.00 −1.15843 −0.579213 0.815176i \(-0.696640\pi\)
−0.579213 + 0.815176i \(0.696640\pi\)
\(272\) 1024.00 0.228269
\(273\) −624.000 −0.138338
\(274\) −2448.00 −0.539741
\(275\) 0 0
\(276\) −464.000 −0.101194
\(277\) 1924.00 0.417336 0.208668 0.977987i \(-0.433087\pi\)
0.208668 + 0.977987i \(0.433087\pi\)
\(278\) −6200.00 −1.33759
\(279\) 2944.00 0.631730
\(280\) 0 0
\(281\) 3042.00 0.645803 0.322901 0.946433i \(-0.395342\pi\)
0.322901 + 0.946433i \(0.395342\pi\)
\(282\) −904.000 −0.190895
\(283\) 1718.00 0.360864 0.180432 0.983587i \(-0.442250\pi\)
0.180432 + 0.983587i \(0.442250\pi\)
\(284\) −4512.00 −0.942739
\(285\) 0 0
\(286\) −672.000 −0.138938
\(287\) −6292.00 −1.29409
\(288\) 736.000 0.150588
\(289\) −817.000 −0.166294
\(290\) 0 0
\(291\) 2912.00 0.586613
\(292\) −2528.00 −0.506644
\(293\) −2292.00 −0.456997 −0.228498 0.973544i \(-0.573382\pi\)
−0.228498 + 0.973544i \(0.573382\pi\)
\(294\) 1332.00 0.264231
\(295\) 0 0
\(296\) 1888.00 0.370736
\(297\) −2800.00 −0.547045
\(298\) −500.000 −0.0971954
\(299\) −696.000 −0.134618
\(300\) 0 0
\(301\) 9412.00 1.80232
\(302\) −4304.00 −0.820091
\(303\) 1156.00 0.219176
\(304\) −960.000 −0.181118
\(305\) 0 0
\(306\) 2944.00 0.549991
\(307\) −5406.00 −1.00501 −0.502503 0.864576i \(-0.667587\pi\)
−0.502503 + 0.864576i \(0.667587\pi\)
\(308\) 2912.00 0.538723
\(309\) 2924.00 0.538319
\(310\) 0 0
\(311\) −5688.00 −1.03710 −0.518548 0.855048i \(-0.673527\pi\)
−0.518548 + 0.855048i \(0.673527\pi\)
\(312\) −192.000 −0.0348393
\(313\) −7352.00 −1.32767 −0.663833 0.747881i \(-0.731072\pi\)
−0.663833 + 0.747881i \(0.731072\pi\)
\(314\) −1048.00 −0.188351
\(315\) 0 0
\(316\) −2880.00 −0.512698
\(317\) 3484.00 0.617290 0.308645 0.951177i \(-0.400124\pi\)
0.308645 + 0.951177i \(0.400124\pi\)
\(318\) 432.000 0.0761804
\(319\) −2520.00 −0.442298
\(320\) 0 0
\(321\) 1932.00 0.335931
\(322\) 3016.00 0.521972
\(323\) −3840.00 −0.661496
\(324\) 1684.00 0.288752
\(325\) 0 0
\(326\) −7036.00 −1.19536
\(327\) −740.000 −0.125144
\(328\) −1936.00 −0.325908
\(329\) 5876.00 0.984664
\(330\) 0 0
\(331\) −7868.00 −1.30654 −0.653269 0.757125i \(-0.726603\pi\)
−0.653269 + 0.757125i \(0.726603\pi\)
\(332\) 1912.00 0.316068
\(333\) 5428.00 0.893251
\(334\) −1068.00 −0.174965
\(335\) 0 0
\(336\) 832.000 0.135087
\(337\) −656.000 −0.106037 −0.0530187 0.998594i \(-0.516884\pi\)
−0.0530187 + 0.998594i \(0.516884\pi\)
\(338\) 4106.00 0.660760
\(339\) −1056.00 −0.169186
\(340\) 0 0
\(341\) 3584.00 0.569163
\(342\) −2760.00 −0.436385
\(343\) 260.000 0.0409291
\(344\) 2896.00 0.453901
\(345\) 0 0
\(346\) 8504.00 1.32132
\(347\) 5754.00 0.890176 0.445088 0.895487i \(-0.353172\pi\)
0.445088 + 0.895487i \(0.353172\pi\)
\(348\) −720.000 −0.110908
\(349\) −3110.00 −0.477004 −0.238502 0.971142i \(-0.576656\pi\)
−0.238502 + 0.971142i \(0.576656\pi\)
\(350\) 0 0
\(351\) −1200.00 −0.182482
\(352\) 896.000 0.135673
\(353\) 7808.00 1.17727 0.588637 0.808397i \(-0.299665\pi\)
0.588637 + 0.808397i \(0.299665\pi\)
\(354\) −80.0000 −0.0120112
\(355\) 0 0
\(356\) −1960.00 −0.291797
\(357\) 3328.00 0.493379
\(358\) −5000.00 −0.738151
\(359\) −9240.00 −1.35841 −0.679204 0.733949i \(-0.737675\pi\)
−0.679204 + 0.733949i \(0.737675\pi\)
\(360\) 0 0
\(361\) −3259.00 −0.475142
\(362\) 5156.00 0.748600
\(363\) 1094.00 0.158182
\(364\) 1248.00 0.179706
\(365\) 0 0
\(366\) 2168.00 0.309626
\(367\) 3214.00 0.457137 0.228569 0.973528i \(-0.426595\pi\)
0.228569 + 0.973528i \(0.426595\pi\)
\(368\) 928.000 0.131455
\(369\) −5566.00 −0.785242
\(370\) 0 0
\(371\) −2808.00 −0.392949
\(372\) 1024.00 0.142720
\(373\) 348.000 0.0483077 0.0241538 0.999708i \(-0.492311\pi\)
0.0241538 + 0.999708i \(0.492311\pi\)
\(374\) 3584.00 0.495519
\(375\) 0 0
\(376\) 1808.00 0.247980
\(377\) −1080.00 −0.147541
\(378\) 5200.00 0.707564
\(379\) 4940.00 0.669527 0.334764 0.942302i \(-0.391344\pi\)
0.334764 + 0.942302i \(0.391344\pi\)
\(380\) 0 0
\(381\) −3068.00 −0.412542
\(382\) 1536.00 0.205729
\(383\) −6142.00 −0.819430 −0.409715 0.912214i \(-0.634372\pi\)
−0.409715 + 0.912214i \(0.634372\pi\)
\(384\) 256.000 0.0340207
\(385\) 0 0
\(386\) −5216.00 −0.687791
\(387\) 8326.00 1.09363
\(388\) −5824.00 −0.762033
\(389\) 3050.00 0.397535 0.198768 0.980047i \(-0.436306\pi\)
0.198768 + 0.980047i \(0.436306\pi\)
\(390\) 0 0
\(391\) 3712.00 0.480112
\(392\) −2664.00 −0.343246
\(393\) −24.0000 −0.00308051
\(394\) 10232.0 1.30833
\(395\) 0 0
\(396\) 2576.00 0.326891
\(397\) −5396.00 −0.682160 −0.341080 0.940034i \(-0.610793\pi\)
−0.341080 + 0.940034i \(0.610793\pi\)
\(398\) 6960.00 0.876566
\(399\) −3120.00 −0.391467
\(400\) 0 0
\(401\) 14482.0 1.80348 0.901741 0.432276i \(-0.142289\pi\)
0.901741 + 0.432276i \(0.142289\pi\)
\(402\) 1736.00 0.215383
\(403\) 1536.00 0.189860
\(404\) −2312.00 −0.284719
\(405\) 0 0
\(406\) 4680.00 0.572080
\(407\) 6608.00 0.804782
\(408\) 1024.00 0.124254
\(409\) −1090.00 −0.131778 −0.0658888 0.997827i \(-0.520988\pi\)
−0.0658888 + 0.997827i \(0.520988\pi\)
\(410\) 0 0
\(411\) −2448.00 −0.293798
\(412\) −5848.00 −0.699297
\(413\) 520.000 0.0619553
\(414\) 2668.00 0.316727
\(415\) 0 0
\(416\) 384.000 0.0452576
\(417\) −6200.00 −0.728094
\(418\) −3360.00 −0.393165
\(419\) −7180.00 −0.837150 −0.418575 0.908182i \(-0.637470\pi\)
−0.418575 + 0.908182i \(0.637470\pi\)
\(420\) 0 0
\(421\) −8138.00 −0.942095 −0.471047 0.882108i \(-0.656124\pi\)
−0.471047 + 0.882108i \(0.656124\pi\)
\(422\) −6264.00 −0.722575
\(423\) 5198.00 0.597483
\(424\) −864.000 −0.0989612
\(425\) 0 0
\(426\) −4512.00 −0.513162
\(427\) −14092.0 −1.59710
\(428\) −3864.00 −0.436387
\(429\) −672.000 −0.0756281
\(430\) 0 0
\(431\) −208.000 −0.0232460 −0.0116230 0.999932i \(-0.503700\pi\)
−0.0116230 + 0.999932i \(0.503700\pi\)
\(432\) 1600.00 0.178195
\(433\) −12992.0 −1.44193 −0.720965 0.692971i \(-0.756301\pi\)
−0.720965 + 0.692971i \(0.756301\pi\)
\(434\) −6656.00 −0.736171
\(435\) 0 0
\(436\) 1480.00 0.162567
\(437\) −3480.00 −0.380940
\(438\) −2528.00 −0.275782
\(439\) 1080.00 0.117416 0.0587080 0.998275i \(-0.481302\pi\)
0.0587080 + 0.998275i \(0.481302\pi\)
\(440\) 0 0
\(441\) −7659.00 −0.827017
\(442\) 1536.00 0.165294
\(443\) 9078.00 0.973609 0.486805 0.873511i \(-0.338162\pi\)
0.486805 + 0.873511i \(0.338162\pi\)
\(444\) 1888.00 0.201803
\(445\) 0 0
\(446\) 124.000 0.0131650
\(447\) −500.000 −0.0529065
\(448\) −1664.00 −0.175484
\(449\) 14310.0 1.50408 0.752039 0.659119i \(-0.229071\pi\)
0.752039 + 0.659119i \(0.229071\pi\)
\(450\) 0 0
\(451\) −6776.00 −0.707471
\(452\) 2112.00 0.219779
\(453\) −4304.00 −0.446401
\(454\) −10628.0 −1.09867
\(455\) 0 0
\(456\) −960.000 −0.0985880
\(457\) 2344.00 0.239929 0.119965 0.992778i \(-0.461722\pi\)
0.119965 + 0.992778i \(0.461722\pi\)
\(458\) 380.000 0.0387691
\(459\) 6400.00 0.650820
\(460\) 0 0
\(461\) 11382.0 1.14992 0.574959 0.818182i \(-0.305018\pi\)
0.574959 + 0.818182i \(0.305018\pi\)
\(462\) 2912.00 0.293244
\(463\) −16062.0 −1.61223 −0.806117 0.591756i \(-0.798435\pi\)
−0.806117 + 0.591756i \(0.798435\pi\)
\(464\) 1440.00 0.144074
\(465\) 0 0
\(466\) −4816.00 −0.478749
\(467\) −17166.0 −1.70096 −0.850479 0.526008i \(-0.823688\pi\)
−0.850479 + 0.526008i \(0.823688\pi\)
\(468\) 1104.00 0.109044
\(469\) −11284.0 −1.11097
\(470\) 0 0
\(471\) −1048.00 −0.102525
\(472\) 160.000 0.0156030
\(473\) 10136.0 0.985315
\(474\) −2880.00 −0.279078
\(475\) 0 0
\(476\) −6656.00 −0.640919
\(477\) −2484.00 −0.238437
\(478\) 11360.0 1.08702
\(479\) 7520.00 0.717323 0.358661 0.933468i \(-0.383233\pi\)
0.358661 + 0.933468i \(0.383233\pi\)
\(480\) 0 0
\(481\) 2832.00 0.268458
\(482\) 556.000 0.0525417
\(483\) 3016.00 0.284126
\(484\) −2188.00 −0.205485
\(485\) 0 0
\(486\) 7084.00 0.661187
\(487\) 11814.0 1.09927 0.549634 0.835406i \(-0.314767\pi\)
0.549634 + 0.835406i \(0.314767\pi\)
\(488\) −4336.00 −0.402216
\(489\) −7036.00 −0.650673
\(490\) 0 0
\(491\) 14052.0 1.29156 0.645782 0.763522i \(-0.276532\pi\)
0.645782 + 0.763522i \(0.276532\pi\)
\(492\) −1936.00 −0.177402
\(493\) 5760.00 0.526202
\(494\) −1440.00 −0.131151
\(495\) 0 0
\(496\) −2048.00 −0.185399
\(497\) 29328.0 2.64696
\(498\) 1912.00 0.172046
\(499\) 7620.00 0.683603 0.341802 0.939772i \(-0.388963\pi\)
0.341802 + 0.939772i \(0.388963\pi\)
\(500\) 0 0
\(501\) −1068.00 −0.0952390
\(502\) −6504.00 −0.578262
\(503\) 1818.00 0.161154 0.0805772 0.996748i \(-0.474324\pi\)
0.0805772 + 0.996748i \(0.474324\pi\)
\(504\) −4784.00 −0.422810
\(505\) 0 0
\(506\) 3248.00 0.285358
\(507\) 4106.00 0.359672
\(508\) 6136.00 0.535907
\(509\) 17850.0 1.55440 0.777198 0.629256i \(-0.216640\pi\)
0.777198 + 0.629256i \(0.216640\pi\)
\(510\) 0 0
\(511\) 16432.0 1.42252
\(512\) −512.000 −0.0441942
\(513\) −6000.00 −0.516387
\(514\) 3072.00 0.263619
\(515\) 0 0
\(516\) 2896.00 0.247072
\(517\) 6328.00 0.538308
\(518\) −12272.0 −1.04093
\(519\) 8504.00 0.719237
\(520\) 0 0
\(521\) −19238.0 −1.61772 −0.808860 0.588001i \(-0.799915\pi\)
−0.808860 + 0.588001i \(0.799915\pi\)
\(522\) 4140.00 0.347132
\(523\) 6278.00 0.524891 0.262445 0.964947i \(-0.415471\pi\)
0.262445 + 0.964947i \(0.415471\pi\)
\(524\) 48.0000 0.00400170
\(525\) 0 0
\(526\) −9716.00 −0.805395
\(527\) −8192.00 −0.677133
\(528\) 896.000 0.0738511
\(529\) −8803.00 −0.723514
\(530\) 0 0
\(531\) 460.000 0.0375938
\(532\) 6240.00 0.508531
\(533\) −2904.00 −0.235997
\(534\) −1960.00 −0.158834
\(535\) 0 0
\(536\) −3472.00 −0.279790
\(537\) −5000.00 −0.401799
\(538\) −5220.00 −0.418309
\(539\) −9324.00 −0.745108
\(540\) 0 0
\(541\) −9818.00 −0.780238 −0.390119 0.920764i \(-0.627566\pi\)
−0.390119 + 0.920764i \(0.627566\pi\)
\(542\) 10336.0 0.819131
\(543\) 5156.00 0.407486
\(544\) −2048.00 −0.161410
\(545\) 0 0
\(546\) 1248.00 0.0978195
\(547\) 12514.0 0.978172 0.489086 0.872236i \(-0.337330\pi\)
0.489086 + 0.872236i \(0.337330\pi\)
\(548\) 4896.00 0.381655
\(549\) −12466.0 −0.969100
\(550\) 0 0
\(551\) −5400.00 −0.417509
\(552\) 928.000 0.0715549
\(553\) 18720.0 1.43952
\(554\) −3848.00 −0.295101
\(555\) 0 0
\(556\) 12400.0 0.945822
\(557\) −10596.0 −0.806045 −0.403022 0.915190i \(-0.632040\pi\)
−0.403022 + 0.915190i \(0.632040\pi\)
\(558\) −5888.00 −0.446701
\(559\) 4344.00 0.328679
\(560\) 0 0
\(561\) 3584.00 0.269727
\(562\) −6084.00 −0.456651
\(563\) −14002.0 −1.04816 −0.524080 0.851669i \(-0.675591\pi\)
−0.524080 + 0.851669i \(0.675591\pi\)
\(564\) 1808.00 0.134983
\(565\) 0 0
\(566\) −3436.00 −0.255169
\(567\) −10946.0 −0.810739
\(568\) 9024.00 0.666617
\(569\) −7330.00 −0.540052 −0.270026 0.962853i \(-0.587032\pi\)
−0.270026 + 0.962853i \(0.587032\pi\)
\(570\) 0 0
\(571\) 5812.00 0.425963 0.212981 0.977056i \(-0.431683\pi\)
0.212981 + 0.977056i \(0.431683\pi\)
\(572\) 1344.00 0.0982438
\(573\) 1536.00 0.111985
\(574\) 12584.0 0.915063
\(575\) 0 0
\(576\) −1472.00 −0.106481
\(577\) −16736.0 −1.20750 −0.603751 0.797173i \(-0.706328\pi\)
−0.603751 + 0.797173i \(0.706328\pi\)
\(578\) 1634.00 0.117587
\(579\) −5216.00 −0.374386
\(580\) 0 0
\(581\) −12428.0 −0.887436
\(582\) −5824.00 −0.414798
\(583\) −3024.00 −0.214822
\(584\) 5056.00 0.358251
\(585\) 0 0
\(586\) 4584.00 0.323146
\(587\) 7434.00 0.522716 0.261358 0.965242i \(-0.415830\pi\)
0.261358 + 0.965242i \(0.415830\pi\)
\(588\) −2664.00 −0.186839
\(589\) 7680.00 0.537265
\(590\) 0 0
\(591\) 10232.0 0.712163
\(592\) −3776.00 −0.262150
\(593\) −25872.0 −1.79163 −0.895814 0.444429i \(-0.853407\pi\)
−0.895814 + 0.444429i \(0.853407\pi\)
\(594\) 5600.00 0.386820
\(595\) 0 0
\(596\) 1000.00 0.0687275
\(597\) 6960.00 0.477142
\(598\) 1392.00 0.0951892
\(599\) −3720.00 −0.253748 −0.126874 0.991919i \(-0.540494\pi\)
−0.126874 + 0.991919i \(0.540494\pi\)
\(600\) 0 0
\(601\) −12958.0 −0.879481 −0.439740 0.898125i \(-0.644930\pi\)
−0.439740 + 0.898125i \(0.644930\pi\)
\(602\) −18824.0 −1.27443
\(603\) −9982.00 −0.674127
\(604\) 8608.00 0.579892
\(605\) 0 0
\(606\) −2312.00 −0.154981
\(607\) 7214.00 0.482384 0.241192 0.970477i \(-0.422462\pi\)
0.241192 + 0.970477i \(0.422462\pi\)
\(608\) 1920.00 0.128070
\(609\) 4680.00 0.311401
\(610\) 0 0
\(611\) 2712.00 0.179568
\(612\) −5888.00 −0.388902
\(613\) 4828.00 0.318109 0.159055 0.987270i \(-0.449155\pi\)
0.159055 + 0.987270i \(0.449155\pi\)
\(614\) 10812.0 0.710646
\(615\) 0 0
\(616\) −5824.00 −0.380934
\(617\) −27656.0 −1.80452 −0.902260 0.431193i \(-0.858093\pi\)
−0.902260 + 0.431193i \(0.858093\pi\)
\(618\) −5848.00 −0.380649
\(619\) −21220.0 −1.37787 −0.688937 0.724821i \(-0.741922\pi\)
−0.688937 + 0.724821i \(0.741922\pi\)
\(620\) 0 0
\(621\) 5800.00 0.374792
\(622\) 11376.0 0.733338
\(623\) 12740.0 0.819289
\(624\) 384.000 0.0246351
\(625\) 0 0
\(626\) 14704.0 0.938802
\(627\) −3360.00 −0.214012
\(628\) 2096.00 0.133184
\(629\) −15104.0 −0.957450
\(630\) 0 0
\(631\) 17672.0 1.11491 0.557457 0.830206i \(-0.311777\pi\)
0.557457 + 0.830206i \(0.311777\pi\)
\(632\) 5760.00 0.362532
\(633\) −6264.00 −0.393320
\(634\) −6968.00 −0.436490
\(635\) 0 0
\(636\) −864.000 −0.0538677
\(637\) −3996.00 −0.248551
\(638\) 5040.00 0.312752
\(639\) 25944.0 1.60615
\(640\) 0 0
\(641\) 7322.00 0.451173 0.225586 0.974223i \(-0.427570\pi\)
0.225586 + 0.974223i \(0.427570\pi\)
\(642\) −3864.00 −0.237539
\(643\) 8238.00 0.505249 0.252624 0.967564i \(-0.418706\pi\)
0.252624 + 0.967564i \(0.418706\pi\)
\(644\) −6032.00 −0.369090
\(645\) 0 0
\(646\) 7680.00 0.467749
\(647\) −6426.00 −0.390467 −0.195233 0.980757i \(-0.562546\pi\)
−0.195233 + 0.980757i \(0.562546\pi\)
\(648\) −3368.00 −0.204178
\(649\) 560.000 0.0338705
\(650\) 0 0
\(651\) −6656.00 −0.400721
\(652\) 14072.0 0.845249
\(653\) 5908.00 0.354055 0.177027 0.984206i \(-0.443352\pi\)
0.177027 + 0.984206i \(0.443352\pi\)
\(654\) 1480.00 0.0884902
\(655\) 0 0
\(656\) 3872.00 0.230452
\(657\) 14536.0 0.863171
\(658\) −11752.0 −0.696262
\(659\) −26780.0 −1.58301 −0.791503 0.611166i \(-0.790701\pi\)
−0.791503 + 0.611166i \(0.790701\pi\)
\(660\) 0 0
\(661\) −24538.0 −1.44390 −0.721950 0.691945i \(-0.756754\pi\)
−0.721950 + 0.691945i \(0.756754\pi\)
\(662\) 15736.0 0.923863
\(663\) 1536.00 0.0899748
\(664\) −3824.00 −0.223494
\(665\) 0 0
\(666\) −10856.0 −0.631624
\(667\) 5220.00 0.303027
\(668\) 2136.00 0.123719
\(669\) 124.000 0.00716609
\(670\) 0 0
\(671\) −15176.0 −0.873119
\(672\) −1664.00 −0.0955211
\(673\) 28848.0 1.65232 0.826158 0.563439i \(-0.190522\pi\)
0.826158 + 0.563439i \(0.190522\pi\)
\(674\) 1312.00 0.0749798
\(675\) 0 0
\(676\) −8212.00 −0.467228
\(677\) 26884.0 1.52620 0.763099 0.646282i \(-0.223677\pi\)
0.763099 + 0.646282i \(0.223677\pi\)
\(678\) 2112.00 0.119633
\(679\) 37856.0 2.13959
\(680\) 0 0
\(681\) −10628.0 −0.598041
\(682\) −7168.00 −0.402459
\(683\) −14282.0 −0.800125 −0.400063 0.916488i \(-0.631012\pi\)
−0.400063 + 0.916488i \(0.631012\pi\)
\(684\) 5520.00 0.308571
\(685\) 0 0
\(686\) −520.000 −0.0289412
\(687\) 380.000 0.0211032
\(688\) −5792.00 −0.320956
\(689\) −1296.00 −0.0716599
\(690\) 0 0
\(691\) −3428.00 −0.188723 −0.0943613 0.995538i \(-0.530081\pi\)
−0.0943613 + 0.995538i \(0.530081\pi\)
\(692\) −17008.0 −0.934317
\(693\) −16744.0 −0.917824
\(694\) −11508.0 −0.629449
\(695\) 0 0
\(696\) 1440.00 0.0784239
\(697\) 15488.0 0.841678
\(698\) 6220.00 0.337293
\(699\) −4816.00 −0.260598
\(700\) 0 0
\(701\) 26942.0 1.45162 0.725810 0.687895i \(-0.241465\pi\)
0.725810 + 0.687895i \(0.241465\pi\)
\(702\) 2400.00 0.129034
\(703\) 14160.0 0.759679
\(704\) −1792.00 −0.0959354
\(705\) 0 0
\(706\) −15616.0 −0.832459
\(707\) 15028.0 0.799415
\(708\) 160.000 0.00849318
\(709\) −1950.00 −0.103292 −0.0516458 0.998665i \(-0.516447\pi\)
−0.0516458 + 0.998665i \(0.516447\pi\)
\(710\) 0 0
\(711\) 16560.0 0.873486
\(712\) 3920.00 0.206332
\(713\) −7424.00 −0.389945
\(714\) −6656.00 −0.348872
\(715\) 0 0
\(716\) 10000.0 0.521952
\(717\) 11360.0 0.591697
\(718\) 18480.0 0.960540
\(719\) 12080.0 0.626576 0.313288 0.949658i \(-0.398570\pi\)
0.313288 + 0.949658i \(0.398570\pi\)
\(720\) 0 0
\(721\) 38012.0 1.96344
\(722\) 6518.00 0.335976
\(723\) 556.000 0.0286001
\(724\) −10312.0 −0.529340
\(725\) 0 0
\(726\) −2188.00 −0.111852
\(727\) −17226.0 −0.878785 −0.439393 0.898295i \(-0.644806\pi\)
−0.439393 + 0.898295i \(0.644806\pi\)
\(728\) −2496.00 −0.127071
\(729\) −4283.00 −0.217599
\(730\) 0 0
\(731\) −23168.0 −1.17223
\(732\) −4336.00 −0.218939
\(733\) 788.000 0.0397073 0.0198536 0.999803i \(-0.493680\pi\)
0.0198536 + 0.999803i \(0.493680\pi\)
\(734\) −6428.00 −0.323245
\(735\) 0 0
\(736\) −1856.00 −0.0929525
\(737\) −12152.0 −0.607360
\(738\) 11132.0 0.555250
\(739\) −2060.00 −0.102542 −0.0512709 0.998685i \(-0.516327\pi\)
−0.0512709 + 0.998685i \(0.516327\pi\)
\(740\) 0 0
\(741\) −1440.00 −0.0713896
\(742\) 5616.00 0.277857
\(743\) 3258.00 0.160867 0.0804337 0.996760i \(-0.474369\pi\)
0.0804337 + 0.996760i \(0.474369\pi\)
\(744\) −2048.00 −0.100918
\(745\) 0 0
\(746\) −696.000 −0.0341587
\(747\) −10994.0 −0.538487
\(748\) −7168.00 −0.350385
\(749\) 25116.0 1.22526
\(750\) 0 0
\(751\) −4528.00 −0.220012 −0.110006 0.993931i \(-0.535087\pi\)
−0.110006 + 0.993931i \(0.535087\pi\)
\(752\) −3616.00 −0.175348
\(753\) −6504.00 −0.314766
\(754\) 2160.00 0.104327
\(755\) 0 0
\(756\) −10400.0 −0.500323
\(757\) −18236.0 −0.875560 −0.437780 0.899082i \(-0.644235\pi\)
−0.437780 + 0.899082i \(0.644235\pi\)
\(758\) −9880.00 −0.473427
\(759\) 3248.00 0.155329
\(760\) 0 0
\(761\) −18678.0 −0.889720 −0.444860 0.895600i \(-0.646747\pi\)
−0.444860 + 0.895600i \(0.646747\pi\)
\(762\) 6136.00 0.291711
\(763\) −9620.00 −0.456445
\(764\) −3072.00 −0.145473
\(765\) 0 0
\(766\) 12284.0 0.579424
\(767\) 240.000 0.0112984
\(768\) −512.000 −0.0240563
\(769\) 27390.0 1.28441 0.642203 0.766534i \(-0.278020\pi\)
0.642203 + 0.766534i \(0.278020\pi\)
\(770\) 0 0
\(771\) 3072.00 0.143496
\(772\) 10432.0 0.486342
\(773\) −9252.00 −0.430493 −0.215247 0.976560i \(-0.569056\pi\)
−0.215247 + 0.976560i \(0.569056\pi\)
\(774\) −16652.0 −0.773312
\(775\) 0 0
\(776\) 11648.0 0.538839
\(777\) −12272.0 −0.566609
\(778\) −6100.00 −0.281100
\(779\) −14520.0 −0.667822
\(780\) 0 0
\(781\) 31584.0 1.44707
\(782\) −7424.00 −0.339491
\(783\) 9000.00 0.410771
\(784\) 5328.00 0.242711
\(785\) 0 0
\(786\) 48.0000 0.00217825
\(787\) −5726.00 −0.259352 −0.129676 0.991556i \(-0.541394\pi\)
−0.129676 + 0.991556i \(0.541394\pi\)
\(788\) −20464.0 −0.925127
\(789\) −9716.00 −0.438401
\(790\) 0 0
\(791\) −13728.0 −0.617082
\(792\) −5152.00 −0.231147
\(793\) −6504.00 −0.291253
\(794\) 10792.0 0.482360
\(795\) 0 0
\(796\) −13920.0 −0.619826
\(797\) −27236.0 −1.21048 −0.605238 0.796045i \(-0.706922\pi\)
−0.605238 + 0.796045i \(0.706922\pi\)
\(798\) 6240.00 0.276809
\(799\) −14464.0 −0.640425
\(800\) 0 0
\(801\) 11270.0 0.497136
\(802\) −28964.0 −1.27525
\(803\) 17696.0 0.777682
\(804\) −3472.00 −0.152299
\(805\) 0 0
\(806\) −3072.00 −0.134251
\(807\) −5220.00 −0.227699
\(808\) 4624.00 0.201326
\(809\) 10950.0 0.475873 0.237937 0.971281i \(-0.423529\pi\)
0.237937 + 0.971281i \(0.423529\pi\)
\(810\) 0 0
\(811\) −8828.00 −0.382236 −0.191118 0.981567i \(-0.561211\pi\)
−0.191118 + 0.981567i \(0.561211\pi\)
\(812\) −9360.00 −0.404522
\(813\) 10336.0 0.445879
\(814\) −13216.0 −0.569067
\(815\) 0 0
\(816\) −2048.00 −0.0878607
\(817\) 21720.0 0.930094
\(818\) 2180.00 0.0931808
\(819\) −7176.00 −0.306166
\(820\) 0 0
\(821\) −16058.0 −0.682616 −0.341308 0.939951i \(-0.610870\pi\)
−0.341308 + 0.939951i \(0.610870\pi\)
\(822\) 4896.00 0.207746
\(823\) −41862.0 −1.77305 −0.886523 0.462684i \(-0.846887\pi\)
−0.886523 + 0.462684i \(0.846887\pi\)
\(824\) 11696.0 0.494478
\(825\) 0 0
\(826\) −1040.00 −0.0438090
\(827\) 12154.0 0.511047 0.255524 0.966803i \(-0.417752\pi\)
0.255524 + 0.966803i \(0.417752\pi\)
\(828\) −5336.00 −0.223960
\(829\) −15390.0 −0.644773 −0.322386 0.946608i \(-0.604485\pi\)
−0.322386 + 0.946608i \(0.604485\pi\)
\(830\) 0 0
\(831\) −3848.00 −0.160633
\(832\) −768.000 −0.0320019
\(833\) 21312.0 0.886455
\(834\) 12400.0 0.514840
\(835\) 0 0
\(836\) 6720.00 0.278010
\(837\) −12800.0 −0.528593
\(838\) 14360.0 0.591955
\(839\) −4280.00 −0.176117 −0.0880584 0.996115i \(-0.528066\pi\)
−0.0880584 + 0.996115i \(0.528066\pi\)
\(840\) 0 0
\(841\) −16289.0 −0.667883
\(842\) 16276.0 0.666162
\(843\) −6084.00 −0.248570
\(844\) 12528.0 0.510938
\(845\) 0 0
\(846\) −10396.0 −0.422484
\(847\) 14222.0 0.576947
\(848\) 1728.00 0.0699761
\(849\) −3436.00 −0.138897
\(850\) 0 0
\(851\) −13688.0 −0.551373
\(852\) 9024.00 0.362860
\(853\) −14452.0 −0.580102 −0.290051 0.957011i \(-0.593672\pi\)
−0.290051 + 0.957011i \(0.593672\pi\)
\(854\) 28184.0 1.12932
\(855\) 0 0
\(856\) 7728.00 0.308572
\(857\) 22584.0 0.900181 0.450090 0.892983i \(-0.351392\pi\)
0.450090 + 0.892983i \(0.351392\pi\)
\(858\) 1344.00 0.0534772
\(859\) −26740.0 −1.06212 −0.531058 0.847336i \(-0.678205\pi\)
−0.531058 + 0.847336i \(0.678205\pi\)
\(860\) 0 0
\(861\) 12584.0 0.498097
\(862\) 416.000 0.0164374
\(863\) 498.000 0.0196432 0.00982162 0.999952i \(-0.496874\pi\)
0.00982162 + 0.999952i \(0.496874\pi\)
\(864\) −3200.00 −0.126003
\(865\) 0 0
\(866\) 25984.0 1.01960
\(867\) 1634.00 0.0640064
\(868\) 13312.0 0.520552
\(869\) 20160.0 0.786975
\(870\) 0 0
\(871\) −5208.00 −0.202602
\(872\) −2960.00 −0.114952
\(873\) 33488.0 1.29828
\(874\) 6960.00 0.269366
\(875\) 0 0
\(876\) 5056.00 0.195007
\(877\) 13244.0 0.509941 0.254970 0.966949i \(-0.417934\pi\)
0.254970 + 0.966949i \(0.417934\pi\)
\(878\) −2160.00 −0.0830256
\(879\) 4584.00 0.175898
\(880\) 0 0
\(881\) 40842.0 1.56186 0.780932 0.624616i \(-0.214745\pi\)
0.780932 + 0.624616i \(0.214745\pi\)
\(882\) 15318.0 0.584789
\(883\) 12078.0 0.460314 0.230157 0.973154i \(-0.426076\pi\)
0.230157 + 0.973154i \(0.426076\pi\)
\(884\) −3072.00 −0.116881
\(885\) 0 0
\(886\) −18156.0 −0.688446
\(887\) 18294.0 0.692506 0.346253 0.938141i \(-0.387454\pi\)
0.346253 + 0.938141i \(0.387454\pi\)
\(888\) −3776.00 −0.142696
\(889\) −39884.0 −1.50469
\(890\) 0 0
\(891\) −11788.0 −0.443224
\(892\) −248.000 −0.00930903
\(893\) 13560.0 0.508139
\(894\) 1000.00 0.0374105
\(895\) 0 0
\(896\) 3328.00 0.124086
\(897\) 1392.00 0.0518144
\(898\) −28620.0 −1.06354
\(899\) −11520.0 −0.427379
\(900\) 0 0
\(901\) 6912.00 0.255574
\(902\) 13552.0 0.500257
\(903\) −18824.0 −0.693714
\(904\) −4224.00 −0.155407
\(905\) 0 0
\(906\) 8608.00 0.315653
\(907\) −22566.0 −0.826121 −0.413060 0.910704i \(-0.635540\pi\)
−0.413060 + 0.910704i \(0.635540\pi\)
\(908\) 21256.0 0.776878
\(909\) 13294.0 0.485076
\(910\) 0 0
\(911\) −6768.00 −0.246140 −0.123070 0.992398i \(-0.539274\pi\)
−0.123070 + 0.992398i \(0.539274\pi\)
\(912\) 1920.00 0.0697122
\(913\) −13384.0 −0.485154
\(914\) −4688.00 −0.169656
\(915\) 0 0
\(916\) −760.000 −0.0274139
\(917\) −312.000 −0.0112357
\(918\) −12800.0 −0.460199
\(919\) 22200.0 0.796856 0.398428 0.917200i \(-0.369556\pi\)
0.398428 + 0.917200i \(0.369556\pi\)
\(920\) 0 0
\(921\) 10812.0 0.386827
\(922\) −22764.0 −0.813115
\(923\) 13536.0 0.482712
\(924\) −5824.00 −0.207354
\(925\) 0 0
\(926\) 32124.0 1.14002
\(927\) 33626.0 1.19139
\(928\) −2880.00 −0.101876
\(929\) −6330.00 −0.223553 −0.111776 0.993733i \(-0.535654\pi\)
−0.111776 + 0.993733i \(0.535654\pi\)
\(930\) 0 0
\(931\) −19980.0 −0.703349
\(932\) 9632.00 0.338526
\(933\) 11376.0 0.399178
\(934\) 34332.0 1.20276
\(935\) 0 0
\(936\) −2208.00 −0.0771055
\(937\) 19544.0 0.681403 0.340702 0.940172i \(-0.389335\pi\)
0.340702 + 0.940172i \(0.389335\pi\)
\(938\) 22568.0 0.785577
\(939\) 14704.0 0.511019
\(940\) 0 0
\(941\) −9898.00 −0.342896 −0.171448 0.985193i \(-0.554845\pi\)
−0.171448 + 0.985193i \(0.554845\pi\)
\(942\) 2096.00 0.0724961
\(943\) 14036.0 0.484703
\(944\) −320.000 −0.0110330
\(945\) 0 0
\(946\) −20272.0 −0.696723
\(947\) −41406.0 −1.42082 −0.710409 0.703789i \(-0.751490\pi\)
−0.710409 + 0.703789i \(0.751490\pi\)
\(948\) 5760.00 0.197338
\(949\) 7584.00 0.259417
\(950\) 0 0
\(951\) −6968.00 −0.237595
\(952\) 13312.0 0.453198
\(953\) −25432.0 −0.864453 −0.432226 0.901765i \(-0.642272\pi\)
−0.432226 + 0.901765i \(0.642272\pi\)
\(954\) 4968.00 0.168601
\(955\) 0 0
\(956\) −22720.0 −0.768637
\(957\) 5040.00 0.170240
\(958\) −15040.0 −0.507224
\(959\) −31824.0 −1.07159
\(960\) 0 0
\(961\) −13407.0 −0.450035
\(962\) −5664.00 −0.189828
\(963\) 22218.0 0.743474
\(964\) −1112.00 −0.0371526
\(965\) 0 0
\(966\) −6032.00 −0.200907
\(967\) −12106.0 −0.402588 −0.201294 0.979531i \(-0.564515\pi\)
−0.201294 + 0.979531i \(0.564515\pi\)
\(968\) 4376.00 0.145300
\(969\) 7680.00 0.254610
\(970\) 0 0
\(971\) 7812.00 0.258186 0.129093 0.991632i \(-0.458793\pi\)
0.129093 + 0.991632i \(0.458793\pi\)
\(972\) −14168.0 −0.467530
\(973\) −80600.0 −2.65562
\(974\) −23628.0 −0.777300
\(975\) 0 0
\(976\) 8672.00 0.284410
\(977\) −12576.0 −0.411814 −0.205907 0.978572i \(-0.566014\pi\)
−0.205907 + 0.978572i \(0.566014\pi\)
\(978\) 14072.0 0.460095
\(979\) 13720.0 0.447899
\(980\) 0 0
\(981\) −8510.00 −0.276966
\(982\) −28104.0 −0.913274
\(983\) −4342.00 −0.140883 −0.0704417 0.997516i \(-0.522441\pi\)
−0.0704417 + 0.997516i \(0.522441\pi\)
\(984\) 3872.00 0.125442
\(985\) 0 0
\(986\) −11520.0 −0.372081
\(987\) −11752.0 −0.378997
\(988\) 2880.00 0.0927379
\(989\) −20996.0 −0.675060
\(990\) 0 0
\(991\) 26272.0 0.842137 0.421068 0.907029i \(-0.361655\pi\)
0.421068 + 0.907029i \(0.361655\pi\)
\(992\) 4096.00 0.131097
\(993\) 15736.0 0.502887
\(994\) −58656.0 −1.87169
\(995\) 0 0
\(996\) −3824.00 −0.121655
\(997\) −44796.0 −1.42297 −0.711486 0.702700i \(-0.751978\pi\)
−0.711486 + 0.702700i \(0.751978\pi\)
\(998\) −15240.0 −0.483381
\(999\) −23600.0 −0.747418
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 50.4.a.b.1.1 1
3.2 odd 2 450.4.a.k.1.1 1
4.3 odd 2 400.4.a.n.1.1 1
5.2 odd 4 10.4.b.a.9.1 2
5.3 odd 4 10.4.b.a.9.2 yes 2
5.4 even 2 50.4.a.d.1.1 1
7.6 odd 2 2450.4.a.o.1.1 1
8.3 odd 2 1600.4.a.t.1.1 1
8.5 even 2 1600.4.a.bh.1.1 1
15.2 even 4 90.4.c.b.19.2 2
15.8 even 4 90.4.c.b.19.1 2
15.14 odd 2 450.4.a.j.1.1 1
20.3 even 4 80.4.c.a.49.2 2
20.7 even 4 80.4.c.a.49.1 2
20.19 odd 2 400.4.a.h.1.1 1
35.13 even 4 490.4.c.b.99.2 2
35.27 even 4 490.4.c.b.99.1 2
35.34 odd 2 2450.4.a.bb.1.1 1
40.3 even 4 320.4.c.c.129.1 2
40.13 odd 4 320.4.c.d.129.2 2
40.19 odd 2 1600.4.a.bg.1.1 1
40.27 even 4 320.4.c.c.129.2 2
40.29 even 2 1600.4.a.u.1.1 1
40.37 odd 4 320.4.c.d.129.1 2
60.23 odd 4 720.4.f.f.289.2 2
60.47 odd 4 720.4.f.f.289.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
10.4.b.a.9.1 2 5.2 odd 4
10.4.b.a.9.2 yes 2 5.3 odd 4
50.4.a.b.1.1 1 1.1 even 1 trivial
50.4.a.d.1.1 1 5.4 even 2
80.4.c.a.49.1 2 20.7 even 4
80.4.c.a.49.2 2 20.3 even 4
90.4.c.b.19.1 2 15.8 even 4
90.4.c.b.19.2 2 15.2 even 4
320.4.c.c.129.1 2 40.3 even 4
320.4.c.c.129.2 2 40.27 even 4
320.4.c.d.129.1 2 40.37 odd 4
320.4.c.d.129.2 2 40.13 odd 4
400.4.a.h.1.1 1 20.19 odd 2
400.4.a.n.1.1 1 4.3 odd 2
450.4.a.j.1.1 1 15.14 odd 2
450.4.a.k.1.1 1 3.2 odd 2
490.4.c.b.99.1 2 35.27 even 4
490.4.c.b.99.2 2 35.13 even 4
720.4.f.f.289.1 2 60.47 odd 4
720.4.f.f.289.2 2 60.23 odd 4
1600.4.a.t.1.1 1 8.3 odd 2
1600.4.a.u.1.1 1 40.29 even 2
1600.4.a.bg.1.1 1 40.19 odd 2
1600.4.a.bh.1.1 1 8.5 even 2
2450.4.a.o.1.1 1 7.6 odd 2
2450.4.a.bb.1.1 1 35.34 odd 2