Properties

Label 720.4.f.f.289.1
Level $720$
Weight $4$
Character 720.289
Analytic conductor $42.481$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [720,4,Mod(289,720)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(720, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("720.289");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 720 = 2^{4} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 720.f (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(42.4813752041\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 10)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 289.1
Root \(1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 720.289
Dual form 720.4.f.f.289.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(5.00000 - 10.0000i) q^{5} +26.0000i q^{7} -28.0000 q^{11} +12.0000i q^{13} -64.0000i q^{17} -60.0000 q^{19} -58.0000i q^{23} +(-75.0000 - 100.000i) q^{25} +90.0000 q^{29} +128.000 q^{31} +(260.000 + 130.000i) q^{35} -236.000i q^{37} -242.000 q^{41} -362.000i q^{43} -226.000i q^{47} -333.000 q^{49} +108.000i q^{53} +(-140.000 + 280.000i) q^{55} +20.0000 q^{59} +542.000 q^{61} +(120.000 + 60.0000i) q^{65} -434.000i q^{67} -1128.00 q^{71} +632.000i q^{73} -728.000i q^{77} -720.000 q^{79} -478.000i q^{83} +(-640.000 - 320.000i) q^{85} -490.000 q^{89} -312.000 q^{91} +(-300.000 + 600.000i) q^{95} -1456.00i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 10 q^{5} - 56 q^{11} - 120 q^{19} - 150 q^{25} + 180 q^{29} + 256 q^{31} + 520 q^{35} - 484 q^{41} - 666 q^{49} - 280 q^{55} + 40 q^{59} + 1084 q^{61} + 240 q^{65} - 2256 q^{71} - 1440 q^{79} - 1280 q^{85}+ \cdots - 600 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/720\mathbb{Z}\right)^\times\).

\(n\) \(181\) \(271\) \(577\) \(641\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 5.00000 10.0000i 0.447214 0.894427i
\(6\) 0 0
\(7\) 26.0000i 1.40387i 0.712242 + 0.701934i \(0.247680\pi\)
−0.712242 + 0.701934i \(0.752320\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −28.0000 −0.767483 −0.383742 0.923440i \(-0.625365\pi\)
−0.383742 + 0.923440i \(0.625365\pi\)
\(12\) 0 0
\(13\) 12.0000i 0.256015i 0.991773 + 0.128008i \(0.0408582\pi\)
−0.991773 + 0.128008i \(0.959142\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 64.0000i 0.913075i −0.889704 0.456538i \(-0.849089\pi\)
0.889704 0.456538i \(-0.150911\pi\)
\(18\) 0 0
\(19\) −60.0000 −0.724471 −0.362235 0.932087i \(-0.617986\pi\)
−0.362235 + 0.932087i \(0.617986\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 58.0000i 0.525819i −0.964821 0.262909i \(-0.915318\pi\)
0.964821 0.262909i \(-0.0846821\pi\)
\(24\) 0 0
\(25\) −75.0000 100.000i −0.600000 0.800000i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 90.0000 0.576296 0.288148 0.957586i \(-0.406961\pi\)
0.288148 + 0.957586i \(0.406961\pi\)
\(30\) 0 0
\(31\) 128.000 0.741596 0.370798 0.928714i \(-0.379084\pi\)
0.370798 + 0.928714i \(0.379084\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 260.000 + 130.000i 1.25566 + 0.627829i
\(36\) 0 0
\(37\) 236.000i 1.04860i −0.851534 0.524299i \(-0.824327\pi\)
0.851534 0.524299i \(-0.175673\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −242.000 −0.921806 −0.460903 0.887450i \(-0.652474\pi\)
−0.460903 + 0.887450i \(0.652474\pi\)
\(42\) 0 0
\(43\) 362.000i 1.28383i −0.766778 0.641913i \(-0.778141\pi\)
0.766778 0.641913i \(-0.221859\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 226.000i 0.701393i −0.936489 0.350697i \(-0.885945\pi\)
0.936489 0.350697i \(-0.114055\pi\)
\(48\) 0 0
\(49\) −333.000 −0.970845
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 108.000i 0.279905i 0.990158 + 0.139952i \(0.0446949\pi\)
−0.990158 + 0.139952i \(0.955305\pi\)
\(54\) 0 0
\(55\) −140.000 + 280.000i −0.343229 + 0.686458i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 20.0000 0.0441318 0.0220659 0.999757i \(-0.492976\pi\)
0.0220659 + 0.999757i \(0.492976\pi\)
\(60\) 0 0
\(61\) 542.000 1.13764 0.568820 0.822462i \(-0.307400\pi\)
0.568820 + 0.822462i \(0.307400\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 120.000 + 60.0000i 0.228987 + 0.114494i
\(66\) 0 0
\(67\) 434.000i 0.791366i −0.918387 0.395683i \(-0.870508\pi\)
0.918387 0.395683i \(-0.129492\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −1128.00 −1.88548 −0.942739 0.333531i \(-0.891760\pi\)
−0.942739 + 0.333531i \(0.891760\pi\)
\(72\) 0 0
\(73\) 632.000i 1.01329i 0.862155 + 0.506644i \(0.169114\pi\)
−0.862155 + 0.506644i \(0.830886\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 728.000i 1.07745i
\(78\) 0 0
\(79\) −720.000 −1.02540 −0.512698 0.858569i \(-0.671354\pi\)
−0.512698 + 0.858569i \(0.671354\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 478.000i 0.632136i −0.948736 0.316068i \(-0.897637\pi\)
0.948736 0.316068i \(-0.102363\pi\)
\(84\) 0 0
\(85\) −640.000 320.000i −0.816679 0.408340i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −490.000 −0.583594 −0.291797 0.956480i \(-0.594253\pi\)
−0.291797 + 0.956480i \(0.594253\pi\)
\(90\) 0 0
\(91\) −312.000 −0.359412
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −300.000 + 600.000i −0.323993 + 0.647986i
\(96\) 0 0
\(97\) 1456.00i 1.52407i −0.647538 0.762033i \(-0.724201\pi\)
0.647538 0.762033i \(-0.275799\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 578.000 0.569437 0.284719 0.958611i \(-0.408100\pi\)
0.284719 + 0.958611i \(0.408100\pi\)
\(102\) 0 0
\(103\) 1462.00i 1.39859i −0.714831 0.699297i \(-0.753497\pi\)
0.714831 0.699297i \(-0.246503\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 966.000i 0.872773i −0.899759 0.436387i \(-0.856258\pi\)
0.899759 0.436387i \(-0.143742\pi\)
\(108\) 0 0
\(109\) −370.000 −0.325134 −0.162567 0.986698i \(-0.551977\pi\)
−0.162567 + 0.986698i \(0.551977\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 528.000i 0.439558i 0.975550 + 0.219779i \(0.0705336\pi\)
−0.975550 + 0.219779i \(0.929466\pi\)
\(114\) 0 0
\(115\) −580.000 290.000i −0.470307 0.235153i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 1664.00 1.28184
\(120\) 0 0
\(121\) −547.000 −0.410969
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −1375.00 + 250.000i −0.983870 + 0.178885i
\(126\) 0 0
\(127\) 1534.00i 1.07181i −0.844277 0.535907i \(-0.819970\pi\)
0.844277 0.535907i \(-0.180030\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 12.0000 0.00800340 0.00400170 0.999992i \(-0.498726\pi\)
0.00400170 + 0.999992i \(0.498726\pi\)
\(132\) 0 0
\(133\) 1560.00i 1.01706i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 1224.00i 0.763309i −0.924305 0.381655i \(-0.875354\pi\)
0.924305 0.381655i \(-0.124646\pi\)
\(138\) 0 0
\(139\) 3100.00 1.89164 0.945822 0.324685i \(-0.105258\pi\)
0.945822 + 0.324685i \(0.105258\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 336.000i 0.196488i
\(144\) 0 0
\(145\) 450.000 900.000i 0.257727 0.515455i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 250.000 0.137455 0.0687275 0.997635i \(-0.478106\pi\)
0.0687275 + 0.997635i \(0.478106\pi\)
\(150\) 0 0
\(151\) −2152.00 −1.15978 −0.579892 0.814694i \(-0.696905\pi\)
−0.579892 + 0.814694i \(0.696905\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 640.000 1280.00i 0.331652 0.663304i
\(156\) 0 0
\(157\) 524.000i 0.266368i 0.991091 + 0.133184i \(0.0425201\pi\)
−0.991091 + 0.133184i \(0.957480\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 1508.00 0.738180
\(162\) 0 0
\(163\) 3518.00i 1.69050i 0.534373 + 0.845249i \(0.320548\pi\)
−0.534373 + 0.845249i \(0.679452\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 534.000i 0.247438i 0.992317 + 0.123719i \(0.0394822\pi\)
−0.992317 + 0.123719i \(0.960518\pi\)
\(168\) 0 0
\(169\) 2053.00 0.934456
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 4252.00i 1.86863i −0.356444 0.934317i \(-0.616011\pi\)
0.356444 0.934317i \(-0.383989\pi\)
\(174\) 0 0
\(175\) 2600.00 1950.00i 1.12309 0.842321i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −2500.00 −1.04390 −0.521952 0.852975i \(-0.674796\pi\)
−0.521952 + 0.852975i \(0.674796\pi\)
\(180\) 0 0
\(181\) −2578.00 −1.05868 −0.529340 0.848410i \(-0.677561\pi\)
−0.529340 + 0.848410i \(0.677561\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −2360.00 1180.00i −0.937895 0.468948i
\(186\) 0 0
\(187\) 1792.00i 0.700770i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −768.000 −0.290945 −0.145473 0.989362i \(-0.546470\pi\)
−0.145473 + 0.989362i \(0.546470\pi\)
\(192\) 0 0
\(193\) 2608.00i 0.972684i −0.873769 0.486342i \(-0.838331\pi\)
0.873769 0.486342i \(-0.161669\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 5116.00i 1.85025i 0.379659 + 0.925127i \(0.376041\pi\)
−0.379659 + 0.925127i \(0.623959\pi\)
\(198\) 0 0
\(199\) −3480.00 −1.23965 −0.619826 0.784739i \(-0.712797\pi\)
−0.619826 + 0.784739i \(0.712797\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 2340.00i 0.809043i
\(204\) 0 0
\(205\) −1210.00 + 2420.00i −0.412244 + 0.824488i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 1680.00 0.556019
\(210\) 0 0
\(211\) −3132.00 −1.02188 −0.510938 0.859618i \(-0.670702\pi\)
−0.510938 + 0.859618i \(0.670702\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −3620.00 1810.00i −1.14829 0.574144i
\(216\) 0 0
\(217\) 3328.00i 1.04110i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 768.000 0.233761
\(222\) 0 0
\(223\) 62.0000i 0.0186181i −0.999957 0.00930903i \(-0.997037\pi\)
0.999957 0.00930903i \(-0.00296320\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 5314.00i 1.55376i 0.629651 + 0.776878i \(0.283198\pi\)
−0.629651 + 0.776878i \(0.716802\pi\)
\(228\) 0 0
\(229\) 190.000 0.0548277 0.0274139 0.999624i \(-0.491273\pi\)
0.0274139 + 0.999624i \(0.491273\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 2408.00i 0.677053i 0.940957 + 0.338526i \(0.109928\pi\)
−0.940957 + 0.338526i \(0.890072\pi\)
\(234\) 0 0
\(235\) −2260.00 1130.00i −0.627345 0.313673i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 5680.00 1.53727 0.768637 0.639685i \(-0.220935\pi\)
0.768637 + 0.639685i \(0.220935\pi\)
\(240\) 0 0
\(241\) −278.000 −0.0743052 −0.0371526 0.999310i \(-0.511829\pi\)
−0.0371526 + 0.999310i \(0.511829\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −1665.00 + 3330.00i −0.434175 + 0.868351i
\(246\) 0 0
\(247\) 720.000i 0.185476i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 3252.00 0.817787 0.408893 0.912582i \(-0.365915\pi\)
0.408893 + 0.912582i \(0.365915\pi\)
\(252\) 0 0
\(253\) 1624.00i 0.403557i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 1536.00i 0.372813i 0.982473 + 0.186407i \(0.0596842\pi\)
−0.982473 + 0.186407i \(0.940316\pi\)
\(258\) 0 0
\(259\) 6136.00 1.47209
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 4858.00i 1.13900i −0.821991 0.569500i \(-0.807137\pi\)
0.821991 0.569500i \(-0.192863\pi\)
\(264\) 0 0
\(265\) 1080.00 + 540.000i 0.250354 + 0.125177i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 2610.00 0.591578 0.295789 0.955253i \(-0.404417\pi\)
0.295789 + 0.955253i \(0.404417\pi\)
\(270\) 0 0
\(271\) 5168.00 1.15843 0.579213 0.815176i \(-0.303360\pi\)
0.579213 + 0.815176i \(0.303360\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 2100.00 + 2800.00i 0.460490 + 0.613987i
\(276\) 0 0
\(277\) 1924.00i 0.417336i 0.977987 + 0.208668i \(0.0669127\pi\)
−0.977987 + 0.208668i \(0.933087\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −3042.00 −0.645803 −0.322901 0.946433i \(-0.604658\pi\)
−0.322901 + 0.946433i \(0.604658\pi\)
\(282\) 0 0
\(283\) 1718.00i 0.360864i 0.983587 + 0.180432i \(0.0577496\pi\)
−0.983587 + 0.180432i \(0.942250\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 6292.00i 1.29409i
\(288\) 0 0
\(289\) 817.000 0.166294
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 2292.00i 0.456997i −0.973544 0.228498i \(-0.926618\pi\)
0.973544 0.228498i \(-0.0733816\pi\)
\(294\) 0 0
\(295\) 100.000 200.000i 0.0197364 0.0394727i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 696.000 0.134618
\(300\) 0 0
\(301\) 9412.00 1.80232
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 2710.00 5420.00i 0.508768 1.01754i
\(306\) 0 0
\(307\) 5406.00i 1.00501i 0.864576 + 0.502503i \(0.167587\pi\)
−0.864576 + 0.502503i \(0.832413\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −5688.00 −1.03710 −0.518548 0.855048i \(-0.673527\pi\)
−0.518548 + 0.855048i \(0.673527\pi\)
\(312\) 0 0
\(313\) 7352.00i 1.32767i 0.747881 + 0.663833i \(0.231072\pi\)
−0.747881 + 0.663833i \(0.768928\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 3484.00i 0.617290i −0.951177 0.308645i \(-0.900124\pi\)
0.951177 0.308645i \(-0.0998755\pi\)
\(318\) 0 0
\(319\) −2520.00 −0.442298
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 3840.00i 0.661496i
\(324\) 0 0
\(325\) 1200.00 900.000i 0.204812 0.153609i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 5876.00 0.984664
\(330\) 0 0
\(331\) 7868.00 1.30654 0.653269 0.757125i \(-0.273397\pi\)
0.653269 + 0.757125i \(0.273397\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −4340.00 2170.00i −0.707819 0.353910i
\(336\) 0 0
\(337\) 656.000i 0.106037i −0.998594 0.0530187i \(-0.983116\pi\)
0.998594 0.0530187i \(-0.0168843\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −3584.00 −0.569163
\(342\) 0 0
\(343\) 260.000i 0.0409291i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 5754.00i 0.890176i 0.895487 + 0.445088i \(0.146828\pi\)
−0.895487 + 0.445088i \(0.853172\pi\)
\(348\) 0 0
\(349\) 3110.00 0.477004 0.238502 0.971142i \(-0.423344\pi\)
0.238502 + 0.971142i \(0.423344\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 7808.00i 1.17727i 0.808397 + 0.588637i \(0.200335\pi\)
−0.808397 + 0.588637i \(0.799665\pi\)
\(354\) 0 0
\(355\) −5640.00 + 11280.0i −0.843212 + 1.68642i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 9240.00 1.35841 0.679204 0.733949i \(-0.262325\pi\)
0.679204 + 0.733949i \(0.262325\pi\)
\(360\) 0 0
\(361\) −3259.00 −0.475142
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 6320.00 + 3160.00i 0.906312 + 0.453156i
\(366\) 0 0
\(367\) 3214.00i 0.457137i −0.973528 0.228569i \(-0.926595\pi\)
0.973528 0.228569i \(-0.0734046\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −2808.00 −0.392949
\(372\) 0 0
\(373\) 348.000i 0.0483077i −0.999708 0.0241538i \(-0.992311\pi\)
0.999708 0.0241538i \(-0.00768915\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 1080.00i 0.147541i
\(378\) 0 0
\(379\) 4940.00 0.669527 0.334764 0.942302i \(-0.391344\pi\)
0.334764 + 0.942302i \(0.391344\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 6142.00i 0.819430i 0.912214 + 0.409715i \(0.134372\pi\)
−0.912214 + 0.409715i \(0.865628\pi\)
\(384\) 0 0
\(385\) −7280.00 3640.00i −0.963697 0.481848i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 3050.00 0.397535 0.198768 0.980047i \(-0.436306\pi\)
0.198768 + 0.980047i \(0.436306\pi\)
\(390\) 0 0
\(391\) −3712.00 −0.480112
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −3600.00 + 7200.00i −0.458571 + 0.917143i
\(396\) 0 0
\(397\) 5396.00i 0.682160i −0.940034 0.341080i \(-0.889207\pi\)
0.940034 0.341080i \(-0.110793\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −14482.0 −1.80348 −0.901741 0.432276i \(-0.857711\pi\)
−0.901741 + 0.432276i \(0.857711\pi\)
\(402\) 0 0
\(403\) 1536.00i 0.189860i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 6608.00i 0.804782i
\(408\) 0 0
\(409\) 1090.00 0.131778 0.0658888 0.997827i \(-0.479012\pi\)
0.0658888 + 0.997827i \(0.479012\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 520.000i 0.0619553i
\(414\) 0 0
\(415\) −4780.00 2390.00i −0.565400 0.282700i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 7180.00 0.837150 0.418575 0.908182i \(-0.362530\pi\)
0.418575 + 0.908182i \(0.362530\pi\)
\(420\) 0 0
\(421\) −8138.00 −0.942095 −0.471047 0.882108i \(-0.656124\pi\)
−0.471047 + 0.882108i \(0.656124\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −6400.00 + 4800.00i −0.730460 + 0.547845i
\(426\) 0 0
\(427\) 14092.0i 1.59710i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −208.000 −0.0232460 −0.0116230 0.999932i \(-0.503700\pi\)
−0.0116230 + 0.999932i \(0.503700\pi\)
\(432\) 0 0
\(433\) 12992.0i 1.44193i 0.692971 + 0.720965i \(0.256301\pi\)
−0.692971 + 0.720965i \(0.743699\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 3480.00i 0.380940i
\(438\) 0 0
\(439\) 1080.00 0.117416 0.0587080 0.998275i \(-0.481302\pi\)
0.0587080 + 0.998275i \(0.481302\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 9078.00i 0.973609i −0.873511 0.486805i \(-0.838162\pi\)
0.873511 0.486805i \(-0.161838\pi\)
\(444\) 0 0
\(445\) −2450.00 + 4900.00i −0.260991 + 0.521983i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 14310.0 1.50408 0.752039 0.659119i \(-0.229071\pi\)
0.752039 + 0.659119i \(0.229071\pi\)
\(450\) 0 0
\(451\) 6776.00 0.707471
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −1560.00 + 3120.00i −0.160734 + 0.321468i
\(456\) 0 0
\(457\) 2344.00i 0.239929i 0.992778 + 0.119965i \(0.0382781\pi\)
−0.992778 + 0.119965i \(0.961722\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −11382.0 −1.14992 −0.574959 0.818182i \(-0.694982\pi\)
−0.574959 + 0.818182i \(0.694982\pi\)
\(462\) 0 0
\(463\) 16062.0i 1.61223i −0.591756 0.806117i \(-0.701565\pi\)
0.591756 0.806117i \(-0.298435\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 17166.0i 1.70096i −0.526008 0.850479i \(-0.676312\pi\)
0.526008 0.850479i \(-0.323688\pi\)
\(468\) 0 0
\(469\) 11284.0 1.11097
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 10136.0i 0.985315i
\(474\) 0 0
\(475\) 4500.00 + 6000.00i 0.434682 + 0.579577i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −7520.00 −0.717323 −0.358661 0.933468i \(-0.616767\pi\)
−0.358661 + 0.933468i \(0.616767\pi\)
\(480\) 0 0
\(481\) 2832.00 0.268458
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −14560.0 7280.00i −1.36317 0.681583i
\(486\) 0 0
\(487\) 11814.0i 1.09927i −0.835406 0.549634i \(-0.814767\pi\)
0.835406 0.549634i \(-0.185233\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 14052.0 1.29156 0.645782 0.763522i \(-0.276532\pi\)
0.645782 + 0.763522i \(0.276532\pi\)
\(492\) 0 0
\(493\) 5760.00i 0.526202i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 29328.0i 2.64696i
\(498\) 0 0
\(499\) 7620.00 0.683603 0.341802 0.939772i \(-0.388963\pi\)
0.341802 + 0.939772i \(0.388963\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 1818.00i 0.161154i −0.996748 0.0805772i \(-0.974324\pi\)
0.996748 0.0805772i \(-0.0256763\pi\)
\(504\) 0 0
\(505\) 2890.00 5780.00i 0.254660 0.509320i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 17850.0 1.55440 0.777198 0.629256i \(-0.216640\pi\)
0.777198 + 0.629256i \(0.216640\pi\)
\(510\) 0 0
\(511\) −16432.0 −1.42252
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −14620.0 7310.00i −1.25094 0.625470i
\(516\) 0 0
\(517\) 6328.00i 0.538308i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 19238.0 1.61772 0.808860 0.588001i \(-0.200085\pi\)
0.808860 + 0.588001i \(0.200085\pi\)
\(522\) 0 0
\(523\) 6278.00i 0.524891i 0.964947 + 0.262445i \(0.0845289\pi\)
−0.964947 + 0.262445i \(0.915471\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 8192.00i 0.677133i
\(528\) 0 0
\(529\) 8803.00 0.723514
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 2904.00i 0.235997i
\(534\) 0 0
\(535\) −9660.00 4830.00i −0.780632 0.390316i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 9324.00 0.745108
\(540\) 0 0
\(541\) −9818.00 −0.780238 −0.390119 0.920764i \(-0.627566\pi\)
−0.390119 + 0.920764i \(0.627566\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −1850.00 + 3700.00i −0.145404 + 0.290808i
\(546\) 0 0
\(547\) 12514.0i 0.978172i −0.872236 0.489086i \(-0.837330\pi\)
0.872236 0.489086i \(-0.162670\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −5400.00 −0.417509
\(552\) 0 0
\(553\) 18720.0i 1.43952i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 10596.0i 0.806045i 0.915190 + 0.403022i \(0.132040\pi\)
−0.915190 + 0.403022i \(0.867960\pi\)
\(558\) 0 0
\(559\) 4344.00 0.328679
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 14002.0i 1.04816i 0.851669 + 0.524080i \(0.175591\pi\)
−0.851669 + 0.524080i \(0.824409\pi\)
\(564\) 0 0
\(565\) 5280.00 + 2640.00i 0.393153 + 0.196576i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −7330.00 −0.540052 −0.270026 0.962853i \(-0.587032\pi\)
−0.270026 + 0.962853i \(0.587032\pi\)
\(570\) 0 0
\(571\) −5812.00 −0.425963 −0.212981 0.977056i \(-0.568317\pi\)
−0.212981 + 0.977056i \(0.568317\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −5800.00 + 4350.00i −0.420655 + 0.315491i
\(576\) 0 0
\(577\) 16736.0i 1.20750i −0.797173 0.603751i \(-0.793672\pi\)
0.797173 0.603751i \(-0.206328\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 12428.0 0.887436
\(582\) 0 0
\(583\) 3024.00i 0.214822i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 7434.00i 0.522716i 0.965242 + 0.261358i \(0.0841702\pi\)
−0.965242 + 0.261358i \(0.915830\pi\)
\(588\) 0 0
\(589\) −7680.00 −0.537265
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 25872.0i 1.79163i −0.444429 0.895814i \(-0.646593\pi\)
0.444429 0.895814i \(-0.353407\pi\)
\(594\) 0 0
\(595\) 8320.00 16640.0i 0.573255 1.14651i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 3720.00 0.253748 0.126874 0.991919i \(-0.459506\pi\)
0.126874 + 0.991919i \(0.459506\pi\)
\(600\) 0 0
\(601\) −12958.0 −0.879481 −0.439740 0.898125i \(-0.644930\pi\)
−0.439740 + 0.898125i \(0.644930\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −2735.00 + 5470.00i −0.183791 + 0.367582i
\(606\) 0 0
\(607\) 7214.00i 0.482384i −0.970477 0.241192i \(-0.922462\pi\)
0.970477 0.241192i \(-0.0775384\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 2712.00 0.179568
\(612\) 0 0
\(613\) 4828.00i 0.318109i −0.987270 0.159055i \(-0.949155\pi\)
0.987270 0.159055i \(-0.0508446\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 27656.0i 1.80452i 0.431193 + 0.902260i \(0.358093\pi\)
−0.431193 + 0.902260i \(0.641907\pi\)
\(618\) 0 0
\(619\) −21220.0 −1.37787 −0.688937 0.724821i \(-0.741922\pi\)
−0.688937 + 0.724821i \(0.741922\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 12740.0i 0.819289i
\(624\) 0 0
\(625\) −4375.00 + 15000.0i −0.280000 + 0.960000i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −15104.0 −0.957450
\(630\) 0 0
\(631\) −17672.0 −1.11491 −0.557457 0.830206i \(-0.688223\pi\)
−0.557457 + 0.830206i \(0.688223\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −15340.0 7670.00i −0.958660 0.479330i
\(636\) 0 0
\(637\) 3996.00i 0.248551i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −7322.00 −0.451173 −0.225586 0.974223i \(-0.572430\pi\)
−0.225586 + 0.974223i \(0.572430\pi\)
\(642\) 0 0
\(643\) 8238.00i 0.505249i 0.967564 + 0.252624i \(0.0812937\pi\)
−0.967564 + 0.252624i \(0.918706\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 6426.00i 0.390467i −0.980757 0.195233i \(-0.937454\pi\)
0.980757 0.195233i \(-0.0625465\pi\)
\(648\) 0 0
\(649\) −560.000 −0.0338705
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 5908.00i 0.354055i 0.984206 + 0.177027i \(0.0566482\pi\)
−0.984206 + 0.177027i \(0.943352\pi\)
\(654\) 0 0
\(655\) 60.0000 120.000i 0.00357923 0.00715845i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 26780.0 1.58301 0.791503 0.611166i \(-0.209299\pi\)
0.791503 + 0.611166i \(0.209299\pi\)
\(660\) 0 0
\(661\) −24538.0 −1.44390 −0.721950 0.691945i \(-0.756754\pi\)
−0.721950 + 0.691945i \(0.756754\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −15600.0 7800.00i −0.909687 0.454844i
\(666\) 0 0
\(667\) 5220.00i 0.303027i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −15176.0 −0.873119
\(672\) 0 0
\(673\) 28848.0i 1.65232i −0.563439 0.826158i \(-0.690522\pi\)
0.563439 0.826158i \(-0.309478\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 26884.0i 1.52620i −0.646282 0.763099i \(-0.723677\pi\)
0.646282 0.763099i \(-0.276323\pi\)
\(678\) 0 0
\(679\) 37856.0 2.13959
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 14282.0i 0.800125i 0.916488 + 0.400063i \(0.131012\pi\)
−0.916488 + 0.400063i \(0.868988\pi\)
\(684\) 0 0
\(685\) −12240.0 6120.00i −0.682725 0.341362i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −1296.00 −0.0716599
\(690\) 0 0
\(691\) 3428.00 0.188723 0.0943613 0.995538i \(-0.469919\pi\)
0.0943613 + 0.995538i \(0.469919\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 15500.0 31000.0i 0.845969 1.69194i
\(696\) 0 0
\(697\) 15488.0i 0.841678i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −26942.0 −1.45162 −0.725810 0.687895i \(-0.758535\pi\)
−0.725810 + 0.687895i \(0.758535\pi\)
\(702\) 0 0
\(703\) 14160.0i 0.759679i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 15028.0i 0.799415i
\(708\) 0 0
\(709\) 1950.00 0.103292 0.0516458 0.998665i \(-0.483553\pi\)
0.0516458 + 0.998665i \(0.483553\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 7424.00i 0.389945i
\(714\) 0 0
\(715\) −3360.00 1680.00i −0.175744 0.0878719i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −12080.0 −0.626576 −0.313288 0.949658i \(-0.601430\pi\)
−0.313288 + 0.949658i \(0.601430\pi\)
\(720\) 0 0
\(721\) 38012.0 1.96344
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −6750.00 9000.00i −0.345778 0.461037i
\(726\) 0 0
\(727\) 17226.0i 0.878785i 0.898295 + 0.439393i \(0.144806\pi\)
−0.898295 + 0.439393i \(0.855194\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −23168.0 −1.17223
\(732\) 0 0
\(733\) 788.000i 0.0397073i −0.999803 0.0198536i \(-0.993680\pi\)
0.999803 0.0198536i \(-0.00632003\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 12152.0i 0.607360i
\(738\) 0 0
\(739\) −2060.00 −0.102542 −0.0512709 0.998685i \(-0.516327\pi\)
−0.0512709 + 0.998685i \(0.516327\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 3258.00i 0.160867i −0.996760 0.0804337i \(-0.974369\pi\)
0.996760 0.0804337i \(-0.0256305\pi\)
\(744\) 0 0
\(745\) 1250.00 2500.00i 0.0614718 0.122944i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 25116.0 1.22526
\(750\) 0 0
\(751\) 4528.00 0.220012 0.110006 0.993931i \(-0.464913\pi\)
0.110006 + 0.993931i \(0.464913\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −10760.0 + 21520.0i −0.518671 + 1.03734i
\(756\) 0 0
\(757\) 18236.0i 0.875560i −0.899082 0.437780i \(-0.855765\pi\)
0.899082 0.437780i \(-0.144235\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 18678.0 0.889720 0.444860 0.895600i \(-0.353253\pi\)
0.444860 + 0.895600i \(0.353253\pi\)
\(762\) 0 0
\(763\) 9620.00i 0.456445i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 240.000i 0.0112984i
\(768\) 0 0
\(769\) −27390.0 −1.28441 −0.642203 0.766534i \(-0.721980\pi\)
−0.642203 + 0.766534i \(0.721980\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 9252.00i 0.430493i −0.976560 0.215247i \(-0.930944\pi\)
0.976560 0.215247i \(-0.0690555\pi\)
\(774\) 0 0
\(775\) −9600.00 12800.0i −0.444958 0.593277i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 14520.0 0.667822
\(780\) 0 0
\(781\) 31584.0 1.44707
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 5240.00 + 2620.00i 0.238247 + 0.119123i
\(786\) 0 0
\(787\) 5726.00i 0.259352i 0.991556 + 0.129676i \(0.0413937\pi\)
−0.991556 + 0.129676i \(0.958606\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −13728.0 −0.617082
\(792\) 0 0
\(793\) 6504.00i 0.291253i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 27236.0i 1.21048i 0.796045 + 0.605238i \(0.206922\pi\)
−0.796045 + 0.605238i \(0.793078\pi\)
\(798\) 0 0
\(799\) −14464.0 −0.640425
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 17696.0i 0.777682i
\(804\) 0 0
\(805\) 7540.00 15080.0i 0.330124 0.660249i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 10950.0 0.475873 0.237937 0.971281i \(-0.423529\pi\)
0.237937 + 0.971281i \(0.423529\pi\)
\(810\) 0 0
\(811\) 8828.00 0.382236 0.191118 0.981567i \(-0.438789\pi\)
0.191118 + 0.981567i \(0.438789\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 35180.0 + 17590.0i 1.51203 + 0.756013i
\(816\) 0 0
\(817\) 21720.0i 0.930094i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 16058.0 0.682616 0.341308 0.939951i \(-0.389130\pi\)
0.341308 + 0.939951i \(0.389130\pi\)
\(822\) 0 0
\(823\) 41862.0i 1.77305i −0.462684 0.886523i \(-0.653113\pi\)
0.462684 0.886523i \(-0.346887\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 12154.0i 0.511047i 0.966803 + 0.255524i \(0.0822478\pi\)
−0.966803 + 0.255524i \(0.917752\pi\)
\(828\) 0 0
\(829\) 15390.0 0.644773 0.322386 0.946608i \(-0.395515\pi\)
0.322386 + 0.946608i \(0.395515\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 21312.0i 0.886455i
\(834\) 0 0
\(835\) 5340.00 + 2670.00i 0.221315 + 0.110658i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 4280.00 0.176117 0.0880584 0.996115i \(-0.471934\pi\)
0.0880584 + 0.996115i \(0.471934\pi\)
\(840\) 0 0
\(841\) −16289.0 −0.667883
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 10265.0 20530.0i 0.417901 0.835803i
\(846\) 0 0
\(847\) 14222.0i 0.576947i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −13688.0 −0.551373
\(852\) 0 0
\(853\) 14452.0i 0.580102i 0.957011 + 0.290051i \(0.0936723\pi\)
−0.957011 + 0.290051i \(0.906328\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 22584.0i 0.900181i −0.892983 0.450090i \(-0.851392\pi\)
0.892983 0.450090i \(-0.148608\pi\)
\(858\) 0 0
\(859\) −26740.0 −1.06212 −0.531058 0.847336i \(-0.678205\pi\)
−0.531058 + 0.847336i \(0.678205\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 498.000i 0.0196432i −0.999952 0.00982162i \(-0.996874\pi\)
0.999952 0.00982162i \(-0.00312637\pi\)
\(864\) 0 0
\(865\) −42520.0 21260.0i −1.67136 0.835678i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 20160.0 0.786975
\(870\) 0 0
\(871\) 5208.00 0.202602
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −6500.00 35750.0i −0.251132 1.38122i
\(876\) 0 0
\(877\) 13244.0i 0.509941i 0.966949 + 0.254970i \(0.0820657\pi\)
−0.966949 + 0.254970i \(0.917934\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −40842.0 −1.56186 −0.780932 0.624616i \(-0.785255\pi\)
−0.780932 + 0.624616i \(0.785255\pi\)
\(882\) 0 0
\(883\) 12078.0i 0.460314i 0.973154 + 0.230157i \(0.0739239\pi\)
−0.973154 + 0.230157i \(0.926076\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 18294.0i 0.692506i 0.938141 + 0.346253i \(0.112546\pi\)
−0.938141 + 0.346253i \(0.887454\pi\)
\(888\) 0 0
\(889\) 39884.0 1.50469
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 13560.0i 0.508139i
\(894\) 0 0
\(895\) −12500.0 + 25000.0i −0.466848 + 0.933696i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 11520.0 0.427379
\(900\) 0 0
\(901\) 6912.00 0.255574
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −12890.0 + 25780.0i −0.473456 + 0.946913i
\(906\) 0 0
\(907\) 22566.0i 0.826121i 0.910704 + 0.413060i \(0.135540\pi\)
−0.910704 + 0.413060i \(0.864460\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −6768.00 −0.246140 −0.123070 0.992398i \(-0.539274\pi\)
−0.123070 + 0.992398i \(0.539274\pi\)
\(912\) 0 0
\(913\) 13384.0i 0.485154i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 312.000i 0.0112357i
\(918\) 0 0
\(919\) 22200.0 0.796856 0.398428 0.917200i \(-0.369556\pi\)
0.398428 + 0.917200i \(0.369556\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 13536.0i 0.482712i
\(924\) 0 0
\(925\) −23600.0 + 17700.0i −0.838879 + 0.629159i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −6330.00 −0.223553 −0.111776 0.993733i \(-0.535654\pi\)
−0.111776 + 0.993733i \(0.535654\pi\)
\(930\) 0 0
\(931\) 19980.0 0.703349
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 17920.0 + 8960.00i 0.626788 + 0.313394i
\(936\) 0 0
\(937\) 19544.0i 0.681403i 0.940172 + 0.340702i \(0.110665\pi\)
−0.940172 + 0.340702i \(0.889335\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 9898.00 0.342896 0.171448 0.985193i \(-0.445155\pi\)
0.171448 + 0.985193i \(0.445155\pi\)
\(942\) 0 0
\(943\) 14036.0i 0.484703i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 41406.0i 1.42082i −0.703789 0.710409i \(-0.748510\pi\)
0.703789 0.710409i \(-0.251490\pi\)
\(948\) 0 0
\(949\) −7584.00 −0.259417
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 25432.0i 0.864453i −0.901765 0.432226i \(-0.857728\pi\)
0.901765 0.432226i \(-0.142272\pi\)
\(954\) 0 0
\(955\) −3840.00 + 7680.00i −0.130115 + 0.260229i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 31824.0 1.07159
\(960\) 0 0
\(961\) −13407.0 −0.450035
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −26080.0 13040.0i −0.869995 0.434997i
\(966\) 0 0
\(967\) 12106.0i 0.402588i 0.979531 + 0.201294i \(0.0645147\pi\)
−0.979531 + 0.201294i \(0.935485\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 7812.00 0.258186 0.129093 0.991632i \(-0.458793\pi\)
0.129093 + 0.991632i \(0.458793\pi\)
\(972\) 0 0
\(973\) 80600.0i 2.65562i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 12576.0i 0.411814i 0.978572 + 0.205907i \(0.0660144\pi\)
−0.978572 + 0.205907i \(0.933986\pi\)
\(978\) 0 0
\(979\) 13720.0 0.447899
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 4342.00i 0.140883i 0.997516 + 0.0704417i \(0.0224409\pi\)
−0.997516 + 0.0704417i \(0.977559\pi\)
\(984\) 0 0
\(985\) 51160.0 + 25580.0i 1.65492 + 0.827458i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −20996.0 −0.675060
\(990\) 0 0
\(991\) −26272.0 −0.842137 −0.421068 0.907029i \(-0.638345\pi\)
−0.421068 + 0.907029i \(0.638345\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −17400.0 + 34800.0i −0.554389 + 1.10878i
\(996\) 0 0
\(997\) 44796.0i 1.42297i −0.702700 0.711486i \(-0.748022\pi\)
0.702700 0.711486i \(-0.251978\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 720.4.f.f.289.1 2
3.2 odd 2 80.4.c.a.49.1 2
4.3 odd 2 90.4.c.b.19.2 2
5.4 even 2 inner 720.4.f.f.289.2 2
12.11 even 2 10.4.b.a.9.1 2
15.2 even 4 400.4.a.h.1.1 1
15.8 even 4 400.4.a.n.1.1 1
15.14 odd 2 80.4.c.a.49.2 2
20.3 even 4 450.4.a.k.1.1 1
20.7 even 4 450.4.a.j.1.1 1
20.19 odd 2 90.4.c.b.19.1 2
24.5 odd 2 320.4.c.c.129.2 2
24.11 even 2 320.4.c.d.129.1 2
60.23 odd 4 50.4.a.b.1.1 1
60.47 odd 4 50.4.a.d.1.1 1
60.59 even 2 10.4.b.a.9.2 yes 2
84.83 odd 2 490.4.c.b.99.1 2
120.29 odd 2 320.4.c.c.129.1 2
120.53 even 4 1600.4.a.t.1.1 1
120.59 even 2 320.4.c.d.129.2 2
120.77 even 4 1600.4.a.bg.1.1 1
120.83 odd 4 1600.4.a.bh.1.1 1
120.107 odd 4 1600.4.a.u.1.1 1
420.83 even 4 2450.4.a.o.1.1 1
420.167 even 4 2450.4.a.bb.1.1 1
420.419 odd 2 490.4.c.b.99.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
10.4.b.a.9.1 2 12.11 even 2
10.4.b.a.9.2 yes 2 60.59 even 2
50.4.a.b.1.1 1 60.23 odd 4
50.4.a.d.1.1 1 60.47 odd 4
80.4.c.a.49.1 2 3.2 odd 2
80.4.c.a.49.2 2 15.14 odd 2
90.4.c.b.19.1 2 20.19 odd 2
90.4.c.b.19.2 2 4.3 odd 2
320.4.c.c.129.1 2 120.29 odd 2
320.4.c.c.129.2 2 24.5 odd 2
320.4.c.d.129.1 2 24.11 even 2
320.4.c.d.129.2 2 120.59 even 2
400.4.a.h.1.1 1 15.2 even 4
400.4.a.n.1.1 1 15.8 even 4
450.4.a.j.1.1 1 20.7 even 4
450.4.a.k.1.1 1 20.3 even 4
490.4.c.b.99.1 2 84.83 odd 2
490.4.c.b.99.2 2 420.419 odd 2
720.4.f.f.289.1 2 1.1 even 1 trivial
720.4.f.f.289.2 2 5.4 even 2 inner
1600.4.a.t.1.1 1 120.53 even 4
1600.4.a.u.1.1 1 120.107 odd 4
1600.4.a.bg.1.1 1 120.77 even 4
1600.4.a.bh.1.1 1 120.83 odd 4
2450.4.a.o.1.1 1 420.83 even 4
2450.4.a.bb.1.1 1 420.167 even 4