L(s) = 1 | + (1.41 + 0.0976i)2-s + (−0.0867 − 0.170i)3-s + (1.98 + 0.275i)4-s + (−0.105 − 0.248i)6-s + (−1.89 − 1.89i)7-s + (2.76 + 0.582i)8-s + (1.74 − 2.39i)9-s + (2.99 + 4.12i)11-s + (−0.124 − 0.361i)12-s + (−0.433 − 2.73i)13-s + (−2.48 − 2.85i)14-s + (3.84 + 1.09i)16-s + (4.16 + 2.12i)17-s + (2.69 − 3.21i)18-s + (−1.55 − 4.77i)19-s + ⋯ |
L(s) = 1 | + (0.997 + 0.0690i)2-s + (−0.0500 − 0.0982i)3-s + (0.990 + 0.137i)4-s + (−0.0431 − 0.101i)6-s + (−0.715 − 0.715i)7-s + (0.978 + 0.205i)8-s + (0.580 − 0.799i)9-s + (0.904 + 1.24i)11-s + (−0.0360 − 0.104i)12-s + (−0.120 − 0.758i)13-s + (−0.664 − 0.763i)14-s + (0.962 + 0.273i)16-s + (1.01 + 0.514i)17-s + (0.634 − 0.757i)18-s + (−0.355 − 1.09i)19-s + ⋯ |
Λ(s)=(=(500s/2ΓC(s)L(s)(0.967+0.251i)Λ(2−s)
Λ(s)=(=(500s/2ΓC(s+1/2)L(s)(0.967+0.251i)Λ(1−s)
Degree: |
2 |
Conductor: |
500
= 22⋅53
|
Sign: |
0.967+0.251i
|
Analytic conductor: |
3.99252 |
Root analytic conductor: |
1.99812 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ500(343,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 500, ( :1/2), 0.967+0.251i)
|
Particular Values
L(1) |
≈ |
2.62323−0.335890i |
L(21) |
≈ |
2.62323−0.335890i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−1.41−0.0976i)T |
| 5 | 1 |
good | 3 | 1+(0.0867+0.170i)T+(−1.76+2.42i)T2 |
| 7 | 1+(1.89+1.89i)T+7iT2 |
| 11 | 1+(−2.99−4.12i)T+(−3.39+10.4i)T2 |
| 13 | 1+(0.433+2.73i)T+(−12.3+4.01i)T2 |
| 17 | 1+(−4.16−2.12i)T+(9.99+13.7i)T2 |
| 19 | 1+(1.55+4.77i)T+(−15.3+11.1i)T2 |
| 23 | 1+(0.699−4.41i)T+(−21.8−7.10i)T2 |
| 29 | 1+(0.211+0.0688i)T+(23.4+17.0i)T2 |
| 31 | 1+(7.01−2.28i)T+(25.0−18.2i)T2 |
| 37 | 1+(4.32−0.684i)T+(35.1−11.4i)T2 |
| 41 | 1+(−2.54−1.84i)T+(12.6+38.9i)T2 |
| 43 | 1+(2.68−2.68i)T−43iT2 |
| 47 | 1+(7.84−3.99i)T+(27.6−38.0i)T2 |
| 53 | 1+(1.64−0.837i)T+(31.1−42.8i)T2 |
| 59 | 1+(7.33+5.32i)T+(18.2+56.1i)T2 |
| 61 | 1+(−1.16+0.845i)T+(18.8−58.0i)T2 |
| 67 | 1+(−1.53+3.01i)T+(−39.3−54.2i)T2 |
| 71 | 1+(−5.45−1.77i)T+(57.4+41.7i)T2 |
| 73 | 1+(−0.0187−0.00296i)T+(69.4+22.5i)T2 |
| 79 | 1+(2.08−6.41i)T+(−63.9−46.4i)T2 |
| 83 | 1+(−2.99−1.52i)T+(48.7+67.1i)T2 |
| 89 | 1+(0.509+0.700i)T+(−27.5+84.6i)T2 |
| 97 | 1+(−5.07−9.96i)T+(−57.0+78.4i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.02073733343802879675000761828, −10.03362160292075504437894463598, −9.426331171121367941107677441457, −7.75913437043501296369658847803, −6.97558150305228051088046247891, −6.40360198681666219869829747168, −5.13476314987413108521421694551, −4.00676303401685542302663530969, −3.29896411803659178156042560792, −1.50650807081196552884007559276,
1.82684550958868510369280224282, 3.21543277945067803287943904788, 4.12763561896804587675045671493, 5.39738094779256202698561547962, 6.12985211576064188920360067785, 7.03191039722717076742862948718, 8.176436835979998165651746242901, 9.311503850396833092941243398887, 10.26488798750085413638515400897, 11.13982528039500833249634181365