Properties

Label 500.2.l.f.343.12
Level $500$
Weight $2$
Character 500.343
Analytic conductor $3.993$
Analytic rank $0$
Dimension $96$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [500,2,Mod(7,500)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(500, base_ring=CyclotomicField(20))
 
chi = DirichletCharacter(H, H._module([10, 17]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("500.7");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 500 = 2^{2} \cdot 5^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 500.l (of order \(20\), degree \(8\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.99252010106\)
Analytic rank: \(0\)
Dimension: \(96\)
Relative dimension: \(12\) over \(\Q(\zeta_{20})\)
Twist minimal: no (minimal twist has level 100)
Sato-Tate group: $\mathrm{SU}(2)[C_{20}]$

Embedding invariants

Embedding label 343.12
Character \(\chi\) \(=\) 500.343
Dual form 500.2.l.f.207.12

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.41083 + 0.0976968i) q^{2} +(-0.0867473 - 0.170251i) q^{3} +(1.98091 + 0.275668i) q^{4} +(-0.105753 - 0.248671i) q^{6} +(-1.89427 - 1.89427i) q^{7} +(2.76781 + 0.582451i) q^{8} +(1.74190 - 2.39751i) q^{9} +(2.99934 + 4.12824i) q^{11} +(-0.124906 - 0.361166i) q^{12} +(-0.433317 - 2.73586i) q^{13} +(-2.48743 - 2.85756i) q^{14} +(3.84801 + 1.09215i) q^{16} +(4.16697 + 2.12318i) q^{17} +(2.69176 - 3.21232i) q^{18} +(-1.55045 - 4.77181i) q^{19} +(-0.158179 + 0.486824i) q^{21} +(3.82826 + 6.11729i) q^{22} +(-0.699923 + 4.41914i) q^{23} +(-0.140937 - 0.521748i) q^{24} +(-0.344055 - 3.90218i) q^{26} +(-1.12546 - 0.178255i) q^{27} +(-3.23018 - 4.27456i) q^{28} +(-0.211843 - 0.0688321i) q^{29} +(-7.01920 + 2.28068i) q^{31} +(5.32221 + 1.91678i) q^{32} +(0.442653 - 0.868756i) q^{33} +(5.67148 + 3.40256i) q^{34} +(4.11146 - 4.26907i) q^{36} +(-4.32186 + 0.684516i) q^{37} +(-1.72125 - 6.88371i) q^{38} +(-0.428194 + 0.311101i) q^{39} +(2.54404 + 1.84835i) q^{41} +(-0.270725 + 0.671374i) q^{42} +(-2.68807 + 2.68807i) q^{43} +(4.80341 + 9.00450i) q^{44} +(-1.41921 + 6.16630i) q^{46} +(-7.84709 + 3.99829i) q^{47} +(-0.147866 - 0.749870i) q^{48} +0.176489i q^{49} -0.893612i q^{51} +(-0.104174 - 5.53894i) q^{52} +(-1.64295 + 0.837124i) q^{53} +(-1.57042 - 0.361442i) q^{54} +(-4.13965 - 6.34628i) q^{56} +(-0.677908 + 0.677908i) q^{57} +(-0.292151 - 0.117807i) q^{58} +(-7.33328 - 5.32794i) q^{59} +(1.16375 - 0.845512i) q^{61} +(-10.1258 + 2.53191i) q^{62} +(-7.84114 + 1.24191i) q^{63} +(7.32150 + 3.22422i) q^{64} +(0.709385 - 1.18243i) q^{66} +(1.53527 - 3.01313i) q^{67} +(7.66911 + 5.35453i) q^{68} +(0.813081 - 0.264186i) q^{69} +(5.45415 + 1.77216i) q^{71} +(6.21766 - 5.62128i) q^{72} +(0.0187149 + 0.00296414i) q^{73} +(-6.16431 + 0.543507i) q^{74} +(-1.75588 - 9.87994i) q^{76} +(2.13843 - 13.5015i) q^{77} +(-0.634505 + 0.397079i) q^{78} +(-2.08434 + 6.41493i) q^{79} +(-2.68002 - 8.24826i) q^{81} +(3.40864 + 2.85627i) q^{82} +(2.99552 + 1.52629i) q^{83} +(-0.447539 + 0.920749i) q^{84} +(-4.05504 + 3.52981i) q^{86} +(0.00665810 + 0.0420376i) q^{87} +(5.89710 + 13.1731i) q^{88} +(-0.509284 - 0.700969i) q^{89} +(-4.36162 + 6.00326i) q^{91} +(-2.60470 + 8.56098i) q^{92} +(0.997185 + 0.997185i) q^{93} +(-11.4616 + 4.87429i) q^{94} +(-0.135354 - 1.07239i) q^{96} +(5.07638 + 9.96296i) q^{97} +(-0.0172424 + 0.248997i) q^{98} +15.1221 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 96 q + 10 q^{2} - 10 q^{4} - 6 q^{6} + 10 q^{8} - 20 q^{9} + 10 q^{12} + 20 q^{13} - 10 q^{14} - 14 q^{16} + 20 q^{17} - 20 q^{18} - 12 q^{21} + 10 q^{22} - 12 q^{26} + 10 q^{28} - 20 q^{29} + 50 q^{32}+ \cdots + 130 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/500\mathbb{Z}\right)^\times\).

\(n\) \(251\) \(377\)
\(\chi(n)\) \(-1\) \(e\left(\frac{11}{20}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.41083 + 0.0976968i 0.997611 + 0.0690820i
\(3\) −0.0867473 0.170251i −0.0500836 0.0982946i 0.864608 0.502447i \(-0.167567\pi\)
−0.914692 + 0.404152i \(0.867567\pi\)
\(4\) 1.98091 + 0.275668i 0.990455 + 0.137834i
\(5\) 0 0
\(6\) −0.105753 0.248671i −0.0431735 0.101520i
\(7\) −1.89427 1.89427i −0.715965 0.715965i 0.251811 0.967776i \(-0.418974\pi\)
−0.967776 + 0.251811i \(0.918974\pi\)
\(8\) 2.76781 + 0.582451i 0.978567 + 0.205927i
\(9\) 1.74190 2.39751i 0.580632 0.799171i
\(10\) 0 0
\(11\) 2.99934 + 4.12824i 0.904336 + 1.24471i 0.969064 + 0.246809i \(0.0793819\pi\)
−0.0647283 + 0.997903i \(0.520618\pi\)
\(12\) −0.124906 0.361166i −0.0360572 0.104260i
\(13\) −0.433317 2.73586i −0.120181 0.758790i −0.972005 0.234962i \(-0.924503\pi\)
0.851824 0.523828i \(-0.175497\pi\)
\(14\) −2.48743 2.85756i −0.664795 0.763715i
\(15\) 0 0
\(16\) 3.84801 + 1.09215i 0.962004 + 0.273037i
\(17\) 4.16697 + 2.12318i 1.01064 + 0.514947i 0.879238 0.476383i \(-0.158052\pi\)
0.131402 + 0.991329i \(0.458052\pi\)
\(18\) 2.69176 3.21232i 0.634453 0.757151i
\(19\) −1.55045 4.77181i −0.355699 1.09473i −0.955603 0.294657i \(-0.904795\pi\)
0.599905 0.800072i \(-0.295205\pi\)
\(20\) 0 0
\(21\) −0.158179 + 0.486824i −0.0345174 + 0.106234i
\(22\) 3.82826 + 6.11729i 0.816188 + 1.30421i
\(23\) −0.699923 + 4.41914i −0.145944 + 0.921455i 0.800675 + 0.599100i \(0.204475\pi\)
−0.946619 + 0.322355i \(0.895525\pi\)
\(24\) −0.140937 0.521748i −0.0287686 0.106501i
\(25\) 0 0
\(26\) −0.344055 3.90218i −0.0674747 0.765280i
\(27\) −1.12546 0.178255i −0.216595 0.0343052i
\(28\) −3.23018 4.27456i −0.610447 0.807816i
\(29\) −0.211843 0.0688321i −0.0393383 0.0127818i 0.289282 0.957244i \(-0.406584\pi\)
−0.328620 + 0.944462i \(0.606584\pi\)
\(30\) 0 0
\(31\) −7.01920 + 2.28068i −1.26069 + 0.409622i −0.861739 0.507352i \(-0.830624\pi\)
−0.398947 + 0.916974i \(0.630624\pi\)
\(32\) 5.32221 + 1.91678i 0.940843 + 0.338842i
\(33\) 0.442653 0.868756i 0.0770560 0.151231i
\(34\) 5.67148 + 3.40256i 0.972652 + 0.583533i
\(35\) 0 0
\(36\) 4.11146 4.26907i 0.685243 0.711512i
\(37\) −4.32186 + 0.684516i −0.710510 + 0.112534i −0.501220 0.865320i \(-0.667115\pi\)
−0.209290 + 0.977854i \(0.567115\pi\)
\(38\) −1.72125 6.88371i −0.279223 1.11669i
\(39\) −0.428194 + 0.311101i −0.0685659 + 0.0498160i
\(40\) 0 0
\(41\) 2.54404 + 1.84835i 0.397312 + 0.288664i 0.768445 0.639915i \(-0.221031\pi\)
−0.371133 + 0.928580i \(0.621031\pi\)
\(42\) −0.270725 + 0.671374i −0.0417738 + 0.103595i
\(43\) −2.68807 + 2.68807i −0.409927 + 0.409927i −0.881713 0.471786i \(-0.843609\pi\)
0.471786 + 0.881713i \(0.343609\pi\)
\(44\) 4.80341 + 9.00450i 0.724141 + 1.35748i
\(45\) 0 0
\(46\) −1.41921 + 6.16630i −0.209251 + 0.909171i
\(47\) −7.84709 + 3.99829i −1.14462 + 0.583211i −0.920264 0.391298i \(-0.872026\pi\)
−0.224351 + 0.974508i \(0.572026\pi\)
\(48\) −0.147866 0.749870i −0.0213425 0.108234i
\(49\) 0.176489i 0.0252127i
\(50\) 0 0
\(51\) 0.893612i 0.125131i
\(52\) −0.104174 5.53894i −0.0144464 0.768113i
\(53\) −1.64295 + 0.837124i −0.225676 + 0.114988i −0.563173 0.826339i \(-0.690420\pi\)
0.337497 + 0.941327i \(0.390420\pi\)
\(54\) −1.57042 0.361442i −0.213707 0.0491861i
\(55\) 0 0
\(56\) −4.13965 6.34628i −0.553183 0.848057i
\(57\) −0.677908 + 0.677908i −0.0897912 + 0.0897912i
\(58\) −0.292151 0.117807i −0.0383614 0.0154688i
\(59\) −7.33328 5.32794i −0.954712 0.693639i −0.00279513 0.999996i \(-0.500890\pi\)
−0.951917 + 0.306357i \(0.900890\pi\)
\(60\) 0 0
\(61\) 1.16375 0.845512i 0.149003 0.108257i −0.510786 0.859708i \(-0.670646\pi\)
0.659789 + 0.751451i \(0.270646\pi\)
\(62\) −10.1258 + 2.53191i −1.28597 + 0.321552i
\(63\) −7.84114 + 1.24191i −0.987891 + 0.156467i
\(64\) 7.32150 + 3.22422i 0.915188 + 0.403028i
\(65\) 0 0
\(66\) 0.709385 1.18243i 0.0873193 0.145546i
\(67\) 1.53527 3.01313i 0.187563 0.368113i −0.778007 0.628255i \(-0.783769\pi\)
0.965570 + 0.260142i \(0.0837695\pi\)
\(68\) 7.66911 + 5.35453i 0.930016 + 0.649332i
\(69\) 0.813081 0.264186i 0.0978834 0.0318043i
\(70\) 0 0
\(71\) 5.45415 + 1.77216i 0.647288 + 0.210317i 0.614218 0.789136i \(-0.289471\pi\)
0.0330703 + 0.999453i \(0.489471\pi\)
\(72\) 6.21766 5.62128i 0.732759 0.662475i
\(73\) 0.0187149 + 0.00296414i 0.00219041 + 0.000346927i 0.157530 0.987514i \(-0.449647\pi\)
−0.155339 + 0.987861i \(0.549647\pi\)
\(74\) −6.16431 + 0.543507i −0.716586 + 0.0631814i
\(75\) 0 0
\(76\) −1.75588 9.87994i −0.201413 1.13331i
\(77\) 2.13843 13.5015i 0.243697 1.53864i
\(78\) −0.634505 + 0.397079i −0.0718435 + 0.0449604i
\(79\) −2.08434 + 6.41493i −0.234506 + 0.721736i 0.762680 + 0.646776i \(0.223883\pi\)
−0.997187 + 0.0749601i \(0.976117\pi\)
\(80\) 0 0
\(81\) −2.68002 8.24826i −0.297780 0.916474i
\(82\) 3.40864 + 2.85627i 0.376422 + 0.315422i
\(83\) 2.99552 + 1.52629i 0.328801 + 0.167532i 0.610596 0.791942i \(-0.290930\pi\)
−0.281795 + 0.959475i \(0.590930\pi\)
\(84\) −0.447539 + 0.920749i −0.0488305 + 0.100462i
\(85\) 0 0
\(86\) −4.05504 + 3.52981i −0.437266 + 0.380629i
\(87\) 0.00665810 + 0.0420376i 0.000713823 + 0.00450690i
\(88\) 5.89710 + 13.1731i 0.628633 + 1.40426i
\(89\) −0.509284 0.700969i −0.0539840 0.0743026i 0.781172 0.624316i \(-0.214622\pi\)
−0.835156 + 0.550014i \(0.814622\pi\)
\(90\) 0 0
\(91\) −4.36162 + 6.00326i −0.457222 + 0.629313i
\(92\) −2.60470 + 8.56098i −0.271559 + 0.892544i
\(93\) 0.997185 + 0.997185i 0.103403 + 0.103403i
\(94\) −11.4616 + 4.87429i −1.18217 + 0.502745i
\(95\) 0 0
\(96\) −0.135354 1.07239i −0.0138145 0.109450i
\(97\) 5.07638 + 9.96296i 0.515428 + 1.01158i 0.991244 + 0.132040i \(0.0421528\pi\)
−0.475816 + 0.879545i \(0.657847\pi\)
\(98\) −0.0172424 + 0.248997i −0.00174175 + 0.0251525i
\(99\) 15.1221 1.51982
\(100\) 0 0
\(101\) −11.8084 −1.17498 −0.587489 0.809232i \(-0.699884\pi\)
−0.587489 + 0.809232i \(0.699884\pi\)
\(102\) 0.0873030 1.26074i 0.00864429 0.124832i
\(103\) −0.880821 1.72871i −0.0867899 0.170335i 0.843532 0.537079i \(-0.180472\pi\)
−0.930322 + 0.366744i \(0.880472\pi\)
\(104\) 0.394164 7.82471i 0.0386509 0.767276i
\(105\) 0 0
\(106\) −2.39971 + 1.02053i −0.233081 + 0.0991230i
\(107\) −8.09772 8.09772i −0.782836 0.782836i 0.197472 0.980308i \(-0.436727\pi\)
−0.980308 + 0.197472i \(0.936727\pi\)
\(108\) −2.18029 0.663361i −0.209799 0.0638319i
\(109\) −9.13259 + 12.5699i −0.874743 + 1.20398i 0.103106 + 0.994670i \(0.467122\pi\)
−0.977849 + 0.209310i \(0.932878\pi\)
\(110\) 0 0
\(111\) 0.491450 + 0.676422i 0.0466463 + 0.0642032i
\(112\) −5.22035 9.35798i −0.493276 0.884246i
\(113\) 1.26860 + 8.00964i 0.119340 + 0.753483i 0.972684 + 0.232135i \(0.0745710\pi\)
−0.853344 + 0.521349i \(0.825429\pi\)
\(114\) −1.02265 + 0.890188i −0.0957796 + 0.0833737i
\(115\) 0 0
\(116\) −0.400668 0.194749i −0.0372011 0.0180820i
\(117\) −7.31405 3.72669i −0.676184 0.344533i
\(118\) −9.82552 8.23328i −0.904513 0.757935i
\(119\) −3.87149 11.9152i −0.354899 1.09227i
\(120\) 0 0
\(121\) −4.64713 + 14.3024i −0.422467 + 1.30022i
\(122\) 1.72446 1.07918i 0.156125 0.0977047i
\(123\) 0.0939957 0.593466i 0.00847531 0.0535110i
\(124\) −14.5331 + 2.58285i −1.30511 + 0.231947i
\(125\) 0 0
\(126\) −11.1839 + 0.986083i −0.996340 + 0.0878472i
\(127\) 15.8543 + 2.51108i 1.40684 + 0.222822i 0.813237 0.581932i \(-0.197703\pi\)
0.593608 + 0.804755i \(0.297703\pi\)
\(128\) 10.0144 + 5.26413i 0.885159 + 0.465288i
\(129\) 0.690830 + 0.224464i 0.0608242 + 0.0197630i
\(130\) 0 0
\(131\) 12.9418 4.20505i 1.13073 0.367397i 0.316878 0.948466i \(-0.397365\pi\)
0.813854 + 0.581069i \(0.197365\pi\)
\(132\) 1.11634 1.59890i 0.0971653 0.139167i
\(133\) −6.10210 + 11.9761i −0.529119 + 1.03846i
\(134\) 2.46038 4.10104i 0.212545 0.354276i
\(135\) 0 0
\(136\) 10.2967 + 8.30361i 0.882937 + 0.712028i
\(137\) −18.6626 + 2.95587i −1.59445 + 0.252537i −0.889575 0.456790i \(-0.848999\pi\)
−0.704880 + 0.709327i \(0.748999\pi\)
\(138\) 1.17293 0.293287i 0.0998467 0.0249663i
\(139\) −5.89560 + 4.28340i −0.500058 + 0.363313i −0.809039 0.587755i \(-0.800012\pi\)
0.308981 + 0.951068i \(0.400012\pi\)
\(140\) 0 0
\(141\) 1.36143 + 0.989135i 0.114653 + 0.0833002i
\(142\) 7.52177 + 3.03308i 0.631213 + 0.254530i
\(143\) 9.99461 9.99461i 0.835792 0.835792i
\(144\) 9.32128 7.32326i 0.776773 0.610272i
\(145\) 0 0
\(146\) 0.0261140 + 0.00601030i 0.00216121 + 0.000497416i
\(147\) 0.0300475 0.0153100i 0.00247828 0.00126274i
\(148\) −8.74992 + 0.164565i −0.719239 + 0.0135272i
\(149\) 2.12851i 0.174375i 0.996192 + 0.0871873i \(0.0277879\pi\)
−0.996192 + 0.0871873i \(0.972212\pi\)
\(150\) 0 0
\(151\) 6.10369i 0.496712i −0.968669 0.248356i \(-0.920110\pi\)
0.968669 0.248356i \(-0.0798902\pi\)
\(152\) −1.51202 14.1105i −0.122641 1.14451i
\(153\) 12.3488 6.29202i 0.998340 0.508680i
\(154\) 4.33603 18.8395i 0.349408 1.51813i
\(155\) 0 0
\(156\) −0.933975 + 0.498224i −0.0747778 + 0.0398899i
\(157\) 11.4802 11.4802i 0.916218 0.916218i −0.0805335 0.996752i \(-0.525662\pi\)
0.996752 + 0.0805335i \(0.0256624\pi\)
\(158\) −3.56737 + 8.84677i −0.283805 + 0.703811i
\(159\) 0.285043 + 0.207096i 0.0226054 + 0.0164238i
\(160\) 0 0
\(161\) 9.69687 7.04519i 0.764221 0.555239i
\(162\) −2.97524 11.8988i −0.233757 0.934856i
\(163\) 7.81379 1.23758i 0.612023 0.0969349i 0.157275 0.987555i \(-0.449729\pi\)
0.454748 + 0.890620i \(0.349729\pi\)
\(164\) 4.52998 + 4.36273i 0.353732 + 0.340672i
\(165\) 0 0
\(166\) 4.07707 + 2.44600i 0.316442 + 0.189846i
\(167\) 6.13600 12.0426i 0.474818 0.931883i −0.522059 0.852910i \(-0.674836\pi\)
0.996877 0.0789735i \(-0.0251643\pi\)
\(168\) −0.721358 + 1.25530i −0.0556540 + 0.0968487i
\(169\) 5.06658 1.64623i 0.389737 0.126633i
\(170\) 0 0
\(171\) −14.1412 4.59476i −1.08141 0.351370i
\(172\) −6.06584 + 4.58381i −0.462516 + 0.349512i
\(173\) −1.08340 0.171594i −0.0823695 0.0130460i 0.115114 0.993352i \(-0.463277\pi\)
−0.197483 + 0.980306i \(0.563277\pi\)
\(174\) 0.00528654 + 0.0599586i 0.000400772 + 0.00454545i
\(175\) 0 0
\(176\) 7.03287 + 19.1613i 0.530122 + 1.44433i
\(177\) −0.270946 + 1.71068i −0.0203655 + 0.128583i
\(178\) −0.650033 1.03871i −0.0487220 0.0778544i
\(179\) −7.45601 + 22.9472i −0.557289 + 1.71516i 0.132533 + 0.991179i \(0.457689\pi\)
−0.689822 + 0.723979i \(0.742311\pi\)
\(180\) 0 0
\(181\) −2.15964 6.64670i −0.160525 0.494045i 0.838154 0.545434i \(-0.183635\pi\)
−0.998679 + 0.0513890i \(0.983635\pi\)
\(182\) −6.74003 + 8.04349i −0.499604 + 0.596223i
\(183\) −0.244901 0.124784i −0.0181036 0.00922426i
\(184\) −4.51119 + 11.8237i −0.332569 + 0.871652i
\(185\) 0 0
\(186\) 1.30944 + 1.50429i 0.0960130 + 0.110300i
\(187\) 3.73319 + 23.5704i 0.272998 + 1.72364i
\(188\) −16.6466 + 5.75707i −1.21408 + 0.419877i
\(189\) 1.79426 + 2.46958i 0.130513 + 0.179636i
\(190\) 0 0
\(191\) 9.26511 12.7523i 0.670400 0.922727i −0.329369 0.944201i \(-0.606836\pi\)
0.999769 + 0.0214746i \(0.00683611\pi\)
\(192\) −0.0861932 1.52619i −0.00622046 0.110143i
\(193\) −6.44920 6.44920i −0.464223 0.464223i 0.435814 0.900037i \(-0.356461\pi\)
−0.900037 + 0.435814i \(0.856461\pi\)
\(194\) 6.18859 + 14.5520i 0.444315 + 1.04478i
\(195\) 0 0
\(196\) −0.0486524 + 0.349609i −0.00347517 + 0.0249721i
\(197\) 2.59555 + 5.09406i 0.184925 + 0.362936i 0.964794 0.263007i \(-0.0847142\pi\)
−0.779869 + 0.625943i \(0.784714\pi\)
\(198\) 21.3347 + 1.47738i 1.51619 + 0.104993i
\(199\) 24.6399 1.74668 0.873338 0.487115i \(-0.161951\pi\)
0.873338 + 0.487115i \(0.161951\pi\)
\(200\) 0 0
\(201\) −0.646170 −0.0455773
\(202\) −16.6597 1.15364i −1.17217 0.0811699i
\(203\) 0.270901 + 0.531674i 0.0190136 + 0.0373162i
\(204\) 0.246340 1.77017i 0.0172473 0.123936i
\(205\) 0 0
\(206\) −1.07380 2.52498i −0.0748155 0.175923i
\(207\) 9.37576 + 9.37576i 0.651660 + 0.651660i
\(208\) 1.32055 11.0009i 0.0915636 0.762773i
\(209\) 15.0488 20.7129i 1.04095 1.43274i
\(210\) 0 0
\(211\) −11.6703 16.0628i −0.803419 1.10581i −0.992306 0.123813i \(-0.960488\pi\)
0.188886 0.981999i \(-0.439512\pi\)
\(212\) −3.48530 + 1.20536i −0.239372 + 0.0827845i
\(213\) −0.171420 1.08231i −0.0117455 0.0741584i
\(214\) −10.6334 12.2157i −0.726886 0.835046i
\(215\) 0 0
\(216\) −3.01123 1.14890i −0.204888 0.0781728i
\(217\) 17.6165 + 8.97603i 1.19588 + 0.609333i
\(218\) −14.1126 + 16.8419i −0.955827 + 1.14068i
\(219\) −0.00111881 0.00344336i −7.56025e−5 0.000232681i
\(220\) 0 0
\(221\) 4.00309 12.3203i 0.269277 0.828750i
\(222\) 0.627270 + 1.00233i 0.0420996 + 0.0672722i
\(223\) 1.81060 11.4317i 0.121247 0.765524i −0.849883 0.526972i \(-0.823327\pi\)
0.971130 0.238552i \(-0.0766727\pi\)
\(224\) −6.45080 13.7126i −0.431012 0.916210i
\(225\) 0 0
\(226\) 1.00727 + 11.4242i 0.0670028 + 0.759928i
\(227\) 15.3359 + 2.42897i 1.01788 + 0.161216i 0.643007 0.765861i \(-0.277687\pi\)
0.374872 + 0.927077i \(0.377687\pi\)
\(228\) −1.52975 + 1.15600i −0.101310 + 0.0765579i
\(229\) −16.0312 5.20884i −1.05937 0.344210i −0.273030 0.962006i \(-0.588026\pi\)
−0.786339 + 0.617796i \(0.788026\pi\)
\(230\) 0 0
\(231\) −2.48416 + 0.807152i −0.163446 + 0.0531067i
\(232\) −0.546250 0.313902i −0.0358631 0.0206087i
\(233\) 13.2595 26.0233i 0.868660 1.70484i 0.174963 0.984575i \(-0.444019\pi\)
0.693697 0.720267i \(-0.255981\pi\)
\(234\) −9.95483 5.97231i −0.650768 0.390422i
\(235\) 0 0
\(236\) −13.0578 12.5757i −0.849992 0.818610i
\(237\) 1.27296 0.201617i 0.0826876 0.0130964i
\(238\) −4.29796 17.1886i −0.278595 1.11417i
\(239\) 0.369981 0.268807i 0.0239321 0.0173877i −0.575755 0.817622i \(-0.695292\pi\)
0.599687 + 0.800235i \(0.295292\pi\)
\(240\) 0 0
\(241\) 17.6697 + 12.8378i 1.13820 + 0.826953i 0.986868 0.161530i \(-0.0516429\pi\)
0.151335 + 0.988483i \(0.451643\pi\)
\(242\) −7.95364 + 19.7243i −0.511279 + 1.26793i
\(243\) −3.58901 + 3.58901i −0.230235 + 0.230235i
\(244\) 2.53836 1.35408i 0.162502 0.0866858i
\(245\) 0 0
\(246\) 0.190592 0.828099i 0.0121517 0.0527977i
\(247\) −12.3832 + 6.30953i −0.787921 + 0.401466i
\(248\) −20.7562 + 2.22413i −1.31802 + 0.141233i
\(249\) 0.642393i 0.0407100i
\(250\) 0 0
\(251\) 5.42259i 0.342271i 0.985248 + 0.171135i \(0.0547436\pi\)
−0.985248 + 0.171135i \(0.945256\pi\)
\(252\) −15.8750 + 0.298570i −1.00003 + 0.0188082i
\(253\) −20.3426 + 10.3651i −1.27893 + 0.651647i
\(254\) 22.1225 + 5.09164i 1.38809 + 0.319478i
\(255\) 0 0
\(256\) 13.6144 + 8.40520i 0.850902 + 0.525325i
\(257\) −8.02192 + 8.02192i −0.500394 + 0.500394i −0.911560 0.411166i \(-0.865121\pi\)
0.411166 + 0.911560i \(0.365121\pi\)
\(258\) 0.952717 + 0.384174i 0.0593136 + 0.0239176i
\(259\) 9.48341 + 6.89010i 0.589271 + 0.428130i
\(260\) 0 0
\(261\) −0.534035 + 0.387999i −0.0330559 + 0.0240165i
\(262\) 18.6696 4.66826i 1.15341 0.288406i
\(263\) 19.6441 3.11132i 1.21131 0.191852i 0.482081 0.876127i \(-0.339881\pi\)
0.729224 + 0.684275i \(0.239881\pi\)
\(264\) 1.73119 2.14672i 0.106547 0.132122i
\(265\) 0 0
\(266\) −9.77908 + 16.3001i −0.599594 + 0.999422i
\(267\) −0.0751618 + 0.147513i −0.00459983 + 0.00902767i
\(268\) 3.87185 5.54552i 0.236511 0.338747i
\(269\) −9.63789 + 3.13154i −0.587633 + 0.190933i −0.587717 0.809067i \(-0.699973\pi\)
8.44003e−5 1.00000i \(0.499973\pi\)
\(270\) 0 0
\(271\) 1.79674 + 0.583795i 0.109144 + 0.0354630i 0.363080 0.931758i \(-0.381725\pi\)
−0.253936 + 0.967221i \(0.581725\pi\)
\(272\) 13.7158 + 12.7210i 0.831640 + 0.771322i
\(273\) 1.40042 + 0.221805i 0.0847574 + 0.0134243i
\(274\) −26.6186 + 2.34696i −1.60809 + 0.141785i
\(275\) 0 0
\(276\) 1.68347 0.299188i 0.101333 0.0180090i
\(277\) −1.79116 + 11.3089i −0.107620 + 0.679488i 0.873607 + 0.486632i \(0.161775\pi\)
−0.981227 + 0.192855i \(0.938225\pi\)
\(278\) −8.73619 + 5.46719i −0.523962 + 0.327900i
\(279\) −6.75877 + 20.8013i −0.404637 + 1.24534i
\(280\) 0 0
\(281\) 7.15917 + 22.0337i 0.427080 + 1.31442i 0.900988 + 0.433844i \(0.142843\pi\)
−0.473908 + 0.880574i \(0.657157\pi\)
\(282\) 1.82411 + 1.52851i 0.108624 + 0.0910217i
\(283\) −16.9779 8.65065i −1.00923 0.514228i −0.130449 0.991455i \(-0.541642\pi\)
−0.878780 + 0.477227i \(0.841642\pi\)
\(284\) 10.3157 + 5.01403i 0.612121 + 0.297528i
\(285\) 0 0
\(286\) 15.0772 13.1243i 0.891533 0.776057i
\(287\) −1.31782 8.32036i −0.0777882 0.491135i
\(288\) 13.8662 9.42125i 0.817076 0.555153i
\(289\) 2.86343 + 3.94118i 0.168437 + 0.231834i
\(290\) 0 0
\(291\) 1.25584 1.72852i 0.0736188 0.101328i
\(292\) 0.0362553 + 0.0110308i 0.00212168 + 0.000645528i
\(293\) 9.23047 + 9.23047i 0.539250 + 0.539250i 0.923309 0.384059i \(-0.125474\pi\)
−0.384059 + 0.923309i \(0.625474\pi\)
\(294\) 0.0438878 0.0186643i 0.00255959 0.00108852i
\(295\) 0 0
\(296\) −12.3608 0.622665i −0.718455 0.0361916i
\(297\) −2.63976 5.18082i −0.153174 0.300621i
\(298\) −0.207949 + 3.00298i −0.0120462 + 0.173958i
\(299\) 12.3934 0.716731
\(300\) 0 0
\(301\) 10.1838 0.586986
\(302\) 0.596311 8.61130i 0.0343138 0.495525i
\(303\) 1.02435 + 2.01039i 0.0588472 + 0.115494i
\(304\) −0.754653 20.0553i −0.0432823 1.15025i
\(305\) 0 0
\(306\) 18.0368 7.67056i 1.03110 0.438497i
\(307\) −9.17187 9.17187i −0.523466 0.523466i 0.395150 0.918616i \(-0.370692\pi\)
−0.918616 + 0.395150i \(0.870692\pi\)
\(308\) 7.95799 26.1559i 0.453449 1.49037i
\(309\) −0.217906 + 0.299922i −0.0123962 + 0.0170619i
\(310\) 0 0
\(311\) 2.44643 + 3.36722i 0.138724 + 0.190938i 0.872726 0.488209i \(-0.162350\pi\)
−0.734002 + 0.679147i \(0.762350\pi\)
\(312\) −1.36636 + 0.611666i −0.0773548 + 0.0346288i
\(313\) −3.50477 22.1282i −0.198101 1.25076i −0.863529 0.504300i \(-0.831751\pi\)
0.665427 0.746462i \(-0.268249\pi\)
\(314\) 17.3182 15.0751i 0.977324 0.850735i
\(315\) 0 0
\(316\) −5.89727 + 12.1328i −0.331748 + 0.682524i
\(317\) −5.61291 2.85992i −0.315252 0.160629i 0.289204 0.957268i \(-0.406609\pi\)
−0.604456 + 0.796639i \(0.706609\pi\)
\(318\) 0.381916 + 0.320026i 0.0214168 + 0.0179462i
\(319\) −0.351235 1.08099i −0.0196654 0.0605239i
\(320\) 0 0
\(321\) −0.676191 + 2.08110i −0.0377413 + 0.116156i
\(322\) 14.3690 8.99225i 0.800752 0.501118i
\(323\) 3.67070 23.1759i 0.204243 1.28954i
\(324\) −3.03510 17.0779i −0.168617 0.948771i
\(325\) 0 0
\(326\) 11.1449 0.982643i 0.617257 0.0544235i
\(327\) 2.93227 + 0.464426i 0.162155 + 0.0256828i
\(328\) 5.96484 + 6.59766i 0.329353 + 0.364295i
\(329\) 22.4383 + 7.29065i 1.23706 + 0.401946i
\(330\) 0 0
\(331\) 15.4106 5.00720i 0.847042 0.275221i 0.146835 0.989161i \(-0.453091\pi\)
0.700206 + 0.713940i \(0.253091\pi\)
\(332\) 5.51311 + 3.84922i 0.302571 + 0.211253i
\(333\) −5.88710 + 11.5541i −0.322611 + 0.633159i
\(334\) 9.83341 16.3906i 0.538060 0.896855i
\(335\) 0 0
\(336\) −1.14036 + 1.70055i −0.0622116 + 0.0927726i
\(337\) 19.9748 3.16369i 1.08809 0.172337i 0.413484 0.910511i \(-0.364312\pi\)
0.674610 + 0.738174i \(0.264312\pi\)
\(338\) 7.30894 1.82757i 0.397554 0.0994069i
\(339\) 1.25360 0.910796i 0.0680864 0.0494676i
\(340\) 0 0
\(341\) −30.4682 22.1364i −1.64995 1.19876i
\(342\) −19.5020 7.86399i −1.05455 0.425236i
\(343\) −12.9255 + 12.9255i −0.697914 + 0.697914i
\(344\) −9.00572 + 5.87439i −0.485556 + 0.316726i
\(345\) 0 0
\(346\) −1.51174 0.347935i −0.0812714 0.0187051i
\(347\) 5.16571 2.63206i 0.277310 0.141296i −0.309805 0.950800i \(-0.600264\pi\)
0.587115 + 0.809504i \(0.300264\pi\)
\(348\) 0.00160068 + 0.0851081i 8.58056e−5 + 0.00456227i
\(349\) 0.0528810i 0.00283065i 0.999999 + 0.00141533i \(0.000450513\pi\)
−0.999999 + 0.00141533i \(0.999549\pi\)
\(350\) 0 0
\(351\) 3.15634i 0.168473i
\(352\) 8.05022 + 27.7205i 0.429078 + 1.47751i
\(353\) 3.66865 1.86927i 0.195263 0.0994913i −0.353626 0.935387i \(-0.615051\pi\)
0.548888 + 0.835896i \(0.315051\pi\)
\(354\) −0.549388 + 2.38702i −0.0291996 + 0.126869i
\(355\) 0 0
\(356\) −0.815611 1.52895i −0.0432273 0.0810342i
\(357\) −1.69274 + 1.69274i −0.0895893 + 0.0895893i
\(358\) −12.7611 + 31.6463i −0.674444 + 1.67256i
\(359\) −22.3556 16.2423i −1.17989 0.857237i −0.187726 0.982221i \(-0.560112\pi\)
−0.992159 + 0.124985i \(0.960112\pi\)
\(360\) 0 0
\(361\) −4.99493 + 3.62903i −0.262891 + 0.191002i
\(362\) −2.39754 9.58838i −0.126012 0.503954i
\(363\) 2.83813 0.449515i 0.148963 0.0235934i
\(364\) −10.2949 + 10.6896i −0.539599 + 0.560285i
\(365\) 0 0
\(366\) −0.333325 0.199975i −0.0174232 0.0104529i
\(367\) 3.08204 6.04885i 0.160881 0.315747i −0.796468 0.604681i \(-0.793301\pi\)
0.957349 + 0.288934i \(0.0933007\pi\)
\(368\) −7.51967 + 16.2405i −0.391990 + 0.846595i
\(369\) 8.86290 2.87973i 0.461384 0.149913i
\(370\) 0 0
\(371\) 4.69792 + 1.52645i 0.243904 + 0.0792492i
\(372\) 1.70044 + 2.25023i 0.0881639 + 0.116669i
\(373\) 11.3458 + 1.79701i 0.587466 + 0.0930454i 0.443089 0.896477i \(-0.353882\pi\)
0.144376 + 0.989523i \(0.453882\pi\)
\(374\) 2.96416 + 33.6187i 0.153273 + 1.73838i
\(375\) 0 0
\(376\) −24.0480 + 6.49595i −1.24018 + 0.335003i
\(377\) −0.0965194 + 0.609399i −0.00497100 + 0.0313857i
\(378\) 2.29013 + 3.65947i 0.117792 + 0.188223i
\(379\) 3.95657 12.1771i 0.203235 0.625494i −0.796546 0.604578i \(-0.793342\pi\)
0.999781 0.0209157i \(-0.00665816\pi\)
\(380\) 0 0
\(381\) −0.947807 2.91705i −0.0485576 0.149445i
\(382\) 14.3174 17.0863i 0.732542 0.874210i
\(383\) 16.4227 + 8.36780i 0.839163 + 0.427575i 0.820084 0.572243i \(-0.193927\pi\)
0.0190788 + 0.999818i \(0.493927\pi\)
\(384\) 0.0274992 2.16162i 0.00140331 0.110310i
\(385\) 0 0
\(386\) −8.46869 9.72882i −0.431045 0.495184i
\(387\) 1.76235 + 11.1270i 0.0895851 + 0.565618i
\(388\) 7.30939 + 21.1351i 0.371078 + 1.07297i
\(389\) −14.6199 20.1226i −0.741258 1.02025i −0.998545 0.0539190i \(-0.982829\pi\)
0.257287 0.966335i \(-0.417171\pi\)
\(390\) 0 0
\(391\) −12.2992 + 16.9284i −0.621997 + 0.856105i
\(392\) −0.102796 + 0.488488i −0.00519199 + 0.0246724i
\(393\) −1.83858 1.83858i −0.0927443 0.0927443i
\(394\) 3.16422 + 7.44045i 0.159411 + 0.374844i
\(395\) 0 0
\(396\) 29.9554 + 4.16867i 1.50532 + 0.209483i
\(397\) −12.6438 24.8148i −0.634574 1.24542i −0.954566 0.298001i \(-0.903680\pi\)
0.319992 0.947420i \(-0.396320\pi\)
\(398\) 34.7628 + 2.40724i 1.74250 + 0.120664i
\(399\) 2.56828 0.128575
\(400\) 0 0
\(401\) 10.4612 0.522406 0.261203 0.965284i \(-0.415881\pi\)
0.261203 + 0.965284i \(0.415881\pi\)
\(402\) −0.911639 0.0631287i −0.0454684 0.00314857i
\(403\) 9.28115 + 18.2153i 0.462327 + 0.907368i
\(404\) −23.3914 3.25520i −1.16376 0.161952i
\(405\) 0 0
\(406\) 0.330254 + 0.776571i 0.0163903 + 0.0385405i
\(407\) −15.7886 15.7886i −0.782611 0.782611i
\(408\) 0.520485 2.47335i 0.0257679 0.122449i
\(409\) −9.12365 + 12.5576i −0.451136 + 0.620935i −0.972641 0.232313i \(-0.925371\pi\)
0.521505 + 0.853248i \(0.325371\pi\)
\(410\) 0 0
\(411\) 2.12217 + 2.92092i 0.104679 + 0.144078i
\(412\) −1.26828 3.66723i −0.0624836 0.180672i
\(413\) 3.79865 + 23.9837i 0.186919 + 1.18016i
\(414\) 12.3117 + 14.1436i 0.605086 + 0.695122i
\(415\) 0 0
\(416\) 2.93783 15.3914i 0.144039 0.754625i
\(417\) 1.24068 + 0.632159i 0.0607564 + 0.0309569i
\(418\) 23.2550 27.7523i 1.13744 1.35741i
\(419\) −11.1568 34.3371i −0.545045 1.67748i −0.720883 0.693056i \(-0.756264\pi\)
0.175838 0.984419i \(-0.443736\pi\)
\(420\) 0 0
\(421\) 4.95128 15.2385i 0.241311 0.742678i −0.754911 0.655828i \(-0.772320\pi\)
0.996221 0.0868504i \(-0.0276802\pi\)
\(422\) −14.8956 23.8022i −0.725108 1.15867i
\(423\) −4.08285 + 25.7781i −0.198515 + 1.25337i
\(424\) −5.03495 + 1.36006i −0.244519 + 0.0660504i
\(425\) 0 0
\(426\) −0.136108 1.54370i −0.00659446 0.0747926i
\(427\) −3.80607 0.602823i −0.184189 0.0291726i
\(428\) −13.8086 18.2731i −0.667463 0.883266i
\(429\) −2.56860 0.834589i −0.124013 0.0402943i
\(430\) 0 0
\(431\) −6.40797 + 2.08208i −0.308661 + 0.100290i −0.459252 0.888306i \(-0.651882\pi\)
0.150591 + 0.988596i \(0.451882\pi\)
\(432\) −4.13610 1.91510i −0.198998 0.0921401i
\(433\) −4.78847 + 9.39790i −0.230119 + 0.451634i −0.976976 0.213351i \(-0.931562\pi\)
0.746857 + 0.664985i \(0.231562\pi\)
\(434\) 23.9770 + 14.3848i 1.15093 + 0.690491i
\(435\) 0 0
\(436\) −21.5560 + 22.3823i −1.03234 + 1.07192i
\(437\) 22.1725 3.51178i 1.06065 0.167991i
\(438\) −0.00124206 0.00496732i −5.93478e−5 0.000237347i
\(439\) −8.47207 + 6.15532i −0.404350 + 0.293778i −0.771311 0.636459i \(-0.780398\pi\)
0.366960 + 0.930237i \(0.380398\pi\)
\(440\) 0 0
\(441\) 0.423135 + 0.307426i 0.0201493 + 0.0146393i
\(442\) 6.85136 16.9908i 0.325886 0.808168i
\(443\) 3.27124 3.27124i 0.155421 0.155421i −0.625113 0.780534i \(-0.714947\pi\)
0.780534 + 0.625113i \(0.214947\pi\)
\(444\) 0.787050 + 1.47541i 0.0373517 + 0.0700198i
\(445\) 0 0
\(446\) 3.67131 15.9514i 0.173841 0.755319i
\(447\) 0.362382 0.184643i 0.0171401 0.00873331i
\(448\) −7.76134 19.9764i −0.366689 0.943797i
\(449\) 18.0931i 0.853868i 0.904283 + 0.426934i \(0.140406\pi\)
−0.904283 + 0.426934i \(0.859594\pi\)
\(450\) 0 0
\(451\) 16.0463i 0.755589i
\(452\) 0.304986 + 16.2161i 0.0143453 + 0.762741i
\(453\) −1.03916 + 0.529479i −0.0488241 + 0.0248771i
\(454\) 21.3991 + 4.92514i 1.00431 + 0.231148i
\(455\) 0 0
\(456\) −2.27117 + 1.48147i −0.106357 + 0.0693762i
\(457\) −23.4612 + 23.4612i −1.09747 + 1.09747i −0.102764 + 0.994706i \(0.532769\pi\)
−0.994706 + 0.102764i \(0.967231\pi\)
\(458\) −22.1084 8.91500i −1.03306 0.416571i
\(459\) −4.31129 3.13234i −0.201234 0.146205i
\(460\) 0 0
\(461\) −26.1799 + 19.0208i −1.21932 + 0.885887i −0.996043 0.0888686i \(-0.971675\pi\)
−0.223275 + 0.974755i \(0.571675\pi\)
\(462\) −3.58359 + 0.896064i −0.166724 + 0.0416887i
\(463\) −30.2882 + 4.79718i −1.40761 + 0.222944i −0.813560 0.581481i \(-0.802473\pi\)
−0.594054 + 0.804425i \(0.702473\pi\)
\(464\) −0.740002 0.496231i −0.0343537 0.0230369i
\(465\) 0 0
\(466\) 21.2494 35.4191i 0.984359 1.64076i
\(467\) 7.07648 13.8884i 0.327460 0.642677i −0.667314 0.744777i \(-0.732556\pi\)
0.994774 + 0.102100i \(0.0325560\pi\)
\(468\) −13.4611 9.39850i −0.622242 0.434446i
\(469\) −8.61588 + 2.79947i −0.397844 + 0.129268i
\(470\) 0 0
\(471\) −2.95039 0.958640i −0.135947 0.0441718i
\(472\) −17.1938 19.0180i −0.791410 0.875373i
\(473\) −19.1594 3.03456i −0.880952 0.139529i
\(474\) 1.81563 0.160084i 0.0833948 0.00735291i
\(475\) 0 0
\(476\) −4.38443 24.6702i −0.200960 1.13076i
\(477\) −0.854829 + 5.39718i −0.0391399 + 0.247120i
\(478\) 0.548244 0.343096i 0.0250761 0.0156929i
\(479\) 2.15249 6.62469i 0.0983498 0.302690i −0.889762 0.456424i \(-0.849130\pi\)
0.988112 + 0.153734i \(0.0491300\pi\)
\(480\) 0 0
\(481\) 3.74547 + 11.5274i 0.170779 + 0.525604i
\(482\) 23.6748 + 19.8382i 1.07836 + 0.903606i
\(483\) −2.04063 1.03975i −0.0928519 0.0473104i
\(484\) −13.1483 + 27.0507i −0.597649 + 1.22958i
\(485\) 0 0
\(486\) −5.41414 + 4.71287i −0.245590 + 0.213780i
\(487\) 3.26215 + 20.5964i 0.147822 + 0.933313i 0.944405 + 0.328784i \(0.106639\pi\)
−0.796583 + 0.604529i \(0.793361\pi\)
\(488\) 3.71350 1.66239i 0.168102 0.0752528i
\(489\) −0.888525 1.22295i −0.0401805 0.0553037i
\(490\) 0 0
\(491\) 2.89183 3.98026i 0.130506 0.179627i −0.738763 0.673965i \(-0.764590\pi\)
0.869269 + 0.494339i \(0.164590\pi\)
\(492\) 0.349797 1.14969i 0.0157700 0.0518321i
\(493\) −0.736603 0.736603i −0.0331749 0.0331749i
\(494\) −18.0870 + 7.69191i −0.813773 + 0.346076i
\(495\) 0 0
\(496\) −29.5008 + 1.11007i −1.32463 + 0.0498438i
\(497\) −6.97467 13.6886i −0.312857 0.614016i
\(498\) 0.0627597 0.906310i 0.00281233 0.0406127i
\(499\) −19.8140 −0.886994 −0.443497 0.896276i \(-0.646262\pi\)
−0.443497 + 0.896276i \(0.646262\pi\)
\(500\) 0 0
\(501\) −2.58255 −0.115380
\(502\) −0.529770 + 7.65038i −0.0236448 + 0.341453i
\(503\) −12.4717 24.4770i −0.556084 1.09138i −0.982398 0.186801i \(-0.940188\pi\)
0.426314 0.904575i \(-0.359812\pi\)
\(504\) −22.4261 1.12970i −0.998939 0.0503208i
\(505\) 0 0
\(506\) −29.7127 + 12.6360i −1.32089 + 0.561739i
\(507\) −0.719785 0.719785i −0.0319668 0.0319668i
\(508\) 30.7138 + 9.34476i 1.36270 + 0.414607i
\(509\) −8.04575 + 11.0740i −0.356622 + 0.490847i −0.949204 0.314663i \(-0.898109\pi\)
0.592582 + 0.805510i \(0.298109\pi\)
\(510\) 0 0
\(511\) −0.0298360 0.0410658i −0.00131987 0.00181664i
\(512\) 18.3866 + 13.1884i 0.812578 + 0.582852i
\(513\) 0.894374 + 5.64685i 0.0394876 + 0.249315i
\(514\) −12.1013 + 10.5339i −0.533767 + 0.464630i
\(515\) 0 0
\(516\) 1.30659 + 0.635083i 0.0575196 + 0.0279580i
\(517\) −40.0420 20.4024i −1.76105 0.897298i
\(518\) 12.7064 + 10.6473i 0.558287 + 0.467815i
\(519\) 0.0647681 + 0.199336i 0.00284300 + 0.00874987i
\(520\) 0 0
\(521\) 1.41202 4.34576i 0.0618618 0.190391i −0.915349 0.402661i \(-0.868085\pi\)
0.977211 + 0.212270i \(0.0680855\pi\)
\(522\) −0.791341 + 0.495229i −0.0346361 + 0.0216756i
\(523\) −5.67302 + 35.8180i −0.248064 + 1.56621i 0.477859 + 0.878437i \(0.341413\pi\)
−0.725923 + 0.687776i \(0.758587\pi\)
\(524\) 26.7958 4.76219i 1.17058 0.208037i
\(525\) 0 0
\(526\) 28.0185 2.47039i 1.22167 0.107714i
\(527\) −34.0911 5.39950i −1.48503 0.235206i
\(528\) 2.65214 2.85954i 0.115420 0.124446i
\(529\) 2.83537 + 0.921267i 0.123277 + 0.0400551i
\(530\) 0 0
\(531\) −25.5476 + 8.30092i −1.10867 + 0.360229i
\(532\) −15.3891 + 22.0413i −0.667204 + 0.955613i
\(533\) 3.95446 7.76106i 0.171286 0.336169i
\(534\) −0.120452 + 0.200774i −0.00521249 + 0.00868834i
\(535\) 0 0
\(536\) 6.00433 7.44555i 0.259347 0.321599i
\(537\) 4.55359 0.721217i 0.196502 0.0311228i
\(538\) −13.9034 + 3.47650i −0.599419 + 0.149882i
\(539\) −0.728590 + 0.529352i −0.0313826 + 0.0228008i
\(540\) 0 0
\(541\) −23.6895 17.2114i −1.01849 0.739976i −0.0525174 0.998620i \(-0.516724\pi\)
−0.965973 + 0.258644i \(0.916724\pi\)
\(542\) 2.47786 + 0.999174i 0.106433 + 0.0429182i
\(543\) −0.944265 + 0.944265i −0.0405223 + 0.0405223i
\(544\) 18.1079 + 19.2872i 0.776368 + 0.826931i
\(545\) 0 0
\(546\) 1.95409 + 0.449747i 0.0836275 + 0.0192474i
\(547\) −31.1849 + 15.8895i −1.33337 + 0.679385i −0.967876 0.251429i \(-0.919100\pi\)
−0.365493 + 0.930814i \(0.619100\pi\)
\(548\) −37.7838 + 0.710624i −1.61404 + 0.0303563i
\(549\) 4.26289i 0.181936i
\(550\) 0 0
\(551\) 1.11760i 0.0476112i
\(552\) 2.40433 0.257636i 0.102335 0.0109657i
\(553\) 16.0999 8.20329i 0.684636 0.348839i
\(554\) −3.63187 + 15.7800i −0.154304 + 0.670430i
\(555\) 0 0
\(556\) −12.8594 + 6.85981i −0.545362 + 0.290921i
\(557\) 25.1416 25.1416i 1.06528 1.06528i 0.0675692 0.997715i \(-0.478476\pi\)
0.997715 0.0675692i \(-0.0215243\pi\)
\(558\) −11.5677 + 28.6869i −0.489701 + 1.21442i
\(559\) 8.51896 + 6.18939i 0.360314 + 0.261783i
\(560\) 0 0
\(561\) 3.68905 2.68025i 0.155752 0.113160i
\(562\) 7.94779 + 31.7853i 0.335257 + 1.34078i
\(563\) −27.3038 + 4.32450i −1.15072 + 0.182256i −0.702510 0.711674i \(-0.747937\pi\)
−0.448208 + 0.893929i \(0.647937\pi\)
\(564\) 2.42419 + 2.33469i 0.102077 + 0.0983082i
\(565\) 0 0
\(566\) −23.1078 13.8633i −0.971294 0.582719i
\(567\) −10.5477 + 20.7011i −0.442963 + 0.869364i
\(568\) 14.0638 + 8.08177i 0.590105 + 0.339104i
\(569\) 8.77237 2.85032i 0.367757 0.119491i −0.119308 0.992857i \(-0.538068\pi\)
0.487065 + 0.873366i \(0.338068\pi\)
\(570\) 0 0
\(571\) 17.2235 + 5.59625i 0.720780 + 0.234196i 0.646362 0.763031i \(-0.276290\pi\)
0.0744189 + 0.997227i \(0.476290\pi\)
\(572\) 22.5536 17.0432i 0.943015 0.712614i
\(573\) −2.97482 0.471166i −0.124275 0.0196832i
\(574\) −1.04635 11.8674i −0.0436737 0.495336i
\(575\) 0 0
\(576\) 20.4834 11.9371i 0.853475 0.497381i
\(577\) −1.72312 + 10.8794i −0.0717345 + 0.452914i 0.925510 + 0.378724i \(0.123637\pi\)
−0.997244 + 0.0741898i \(0.976363\pi\)
\(578\) 3.65479 + 5.84010i 0.152019 + 0.242916i
\(579\) −0.538533 + 1.65743i −0.0223807 + 0.0688806i
\(580\) 0 0
\(581\) −2.78310 8.56552i −0.115463 0.355357i
\(582\) 1.94066 2.31596i 0.0804429 0.0959998i
\(583\) −8.38362 4.27167i −0.347214 0.176914i
\(584\) 0.0500726 + 0.0191047i 0.00207202 + 0.000790556i
\(585\) 0 0
\(586\) 12.1209 + 13.9245i 0.500709 + 0.575214i
\(587\) −7.33025 46.2814i −0.302552 1.91024i −0.402825 0.915277i \(-0.631972\pi\)
0.100273 0.994960i \(-0.468028\pi\)
\(588\) 0.0637419 0.0220445i 0.00262867 0.000909101i
\(589\) 21.7659 + 29.9582i 0.896849 + 1.23441i
\(590\) 0 0
\(591\) 0.642112 0.883792i 0.0264130 0.0363543i
\(592\) −17.3782 2.08608i −0.714239 0.0857375i
\(593\) 11.5238 + 11.5238i 0.473225 + 0.473225i 0.902957 0.429731i \(-0.141392\pi\)
−0.429731 + 0.902957i \(0.641392\pi\)
\(594\) −3.21811 7.56717i −0.132041 0.310485i
\(595\) 0 0
\(596\) −0.586763 + 4.21640i −0.0240348 + 0.172710i
\(597\) −2.13745 4.19497i −0.0874798 0.171689i
\(598\) 17.4851 + 1.21080i 0.715019 + 0.0495132i
\(599\) −7.21615 −0.294844 −0.147422 0.989074i \(-0.547098\pi\)
−0.147422 + 0.989074i \(0.547098\pi\)
\(600\) 0 0
\(601\) −15.0642 −0.614483 −0.307241 0.951632i \(-0.599406\pi\)
−0.307241 + 0.951632i \(0.599406\pi\)
\(602\) 14.3677 + 0.994928i 0.585584 + 0.0405502i
\(603\) −4.54975 8.92939i −0.185280 0.363633i
\(604\) 1.68259 12.0909i 0.0684637 0.491971i
\(605\) 0 0
\(606\) 1.24877 + 2.93641i 0.0507280 + 0.119283i
\(607\) −3.59194 3.59194i −0.145792 0.145792i 0.630443 0.776235i \(-0.282873\pi\)
−0.776235 + 0.630443i \(0.782873\pi\)
\(608\) 0.894649 28.3685i 0.0362828 1.15049i
\(609\) 0.0670182 0.0922426i 0.00271571 0.00373786i
\(610\) 0 0
\(611\) 14.3390 + 19.7360i 0.580095 + 0.798433i
\(612\) 26.1963 9.05976i 1.05892 0.366219i
\(613\) 0.788465 + 4.97817i 0.0318458 + 0.201066i 0.998481 0.0550888i \(-0.0175442\pi\)
−0.966636 + 0.256155i \(0.917544\pi\)
\(614\) −12.0439 13.8360i −0.486053 0.558378i
\(615\) 0 0
\(616\) 13.7828 36.1241i 0.555323 1.45548i
\(617\) 16.5627 + 8.43913i 0.666790 + 0.339746i 0.754406 0.656408i \(-0.227925\pi\)
−0.0876162 + 0.996154i \(0.527925\pi\)
\(618\) −0.336731 + 0.401851i −0.0135453 + 0.0161648i
\(619\) 6.54265 + 20.1362i 0.262971 + 0.809343i 0.992154 + 0.125024i \(0.0399006\pi\)
−0.729182 + 0.684320i \(0.760099\pi\)
\(620\) 0 0
\(621\) 1.57547 4.84880i 0.0632215 0.194576i
\(622\) 3.12254 + 4.98960i 0.125203 + 0.200065i
\(623\) −0.363103 + 2.29254i −0.0145474 + 0.0918487i
\(624\) −1.98746 + 0.729471i −0.0795623 + 0.0292022i
\(625\) 0 0
\(626\) −2.78279 31.5617i −0.111223 1.26146i
\(627\) −4.83185 0.765290i −0.192966 0.0305627i
\(628\) 25.9059 19.5765i 1.03376 0.781187i
\(629\) −19.4624 6.32373i −0.776018 0.252144i
\(630\) 0 0
\(631\) −3.22756 + 1.04870i −0.128487 + 0.0417480i −0.372555 0.928010i \(-0.621518\pi\)
0.244068 + 0.969758i \(0.421518\pi\)
\(632\) −9.50542 + 16.5413i −0.378105 + 0.657976i
\(633\) −1.72235 + 3.38030i −0.0684572 + 0.134355i
\(634\) −7.63948 4.58324i −0.303402 0.182024i
\(635\) 0 0
\(636\) 0.507555 + 0.488815i 0.0201259 + 0.0193828i
\(637\) 0.482849 0.0764758i 0.0191312 0.00303008i
\(638\) −0.389926 1.55942i −0.0154373 0.0617378i
\(639\) 13.7493 9.98948i 0.543915 0.395178i
\(640\) 0 0
\(641\) 31.0401 + 22.5519i 1.22601 + 0.890748i 0.996585 0.0825780i \(-0.0263153\pi\)
0.229425 + 0.973326i \(0.426315\pi\)
\(642\) −1.15731 + 2.87003i −0.0456754 + 0.113271i
\(643\) 6.79295 6.79295i 0.267888 0.267888i −0.560361 0.828249i \(-0.689338\pi\)
0.828249 + 0.560361i \(0.189338\pi\)
\(644\) 21.1508 11.2828i 0.833457 0.444604i
\(645\) 0 0
\(646\) 7.44296 32.3388i 0.292840 1.27235i
\(647\) 30.3148 15.4461i 1.19180 0.607251i 0.258379 0.966044i \(-0.416812\pi\)
0.933417 + 0.358793i \(0.116812\pi\)
\(648\) −2.61358 24.3906i −0.102671 0.958152i
\(649\) 46.2539i 1.81562i
\(650\) 0 0
\(651\) 3.77787i 0.148066i
\(652\) 15.8196 0.297529i 0.619542 0.0116521i
\(653\) −5.70477 + 2.90673i −0.223245 + 0.113749i −0.562036 0.827112i \(-0.689982\pi\)
0.338791 + 0.940862i \(0.389982\pi\)
\(654\) 4.09158 + 0.941702i 0.159993 + 0.0368235i
\(655\) 0 0
\(656\) 7.77083 + 9.89096i 0.303400 + 0.386177i
\(657\) 0.0397059 0.0397059i 0.00154907 0.00154907i
\(658\) 30.9445 + 12.4780i 1.20634 + 0.486445i
\(659\) −11.5792 8.41281i −0.451063 0.327716i 0.338952 0.940804i \(-0.389927\pi\)
−0.790015 + 0.613087i \(0.789927\pi\)
\(660\) 0 0
\(661\) −0.382235 + 0.277710i −0.0148672 + 0.0108017i −0.595194 0.803582i \(-0.702925\pi\)
0.580327 + 0.814384i \(0.302925\pi\)
\(662\) 22.2310 5.55877i 0.864031 0.216048i
\(663\) −2.44480 + 0.387218i −0.0949480 + 0.0150383i
\(664\) 7.40203 + 5.96923i 0.287254 + 0.231651i
\(665\) 0 0
\(666\) −9.43452 + 15.7257i −0.365580 + 0.609360i
\(667\) 0.452453 0.887989i 0.0175190 0.0343831i
\(668\) 15.4746 22.1638i 0.598731 0.857543i
\(669\) −2.10333 + 0.683413i −0.0813193 + 0.0264223i
\(670\) 0 0
\(671\) 6.98096 + 2.26825i 0.269497 + 0.0875648i
\(672\) −1.77499 + 2.28779i −0.0684719 + 0.0882533i
\(673\) 21.1799 + 3.35456i 0.816424 + 0.129309i 0.550660 0.834729i \(-0.314376\pi\)
0.265764 + 0.964038i \(0.414376\pi\)
\(674\) 28.4902 2.51198i 1.09740 0.0967578i
\(675\) 0 0
\(676\) 10.4903 1.86434i 0.403471 0.0717055i
\(677\) −6.95245 + 43.8961i −0.267204 + 1.68706i 0.380191 + 0.924908i \(0.375858\pi\)
−0.647395 + 0.762155i \(0.724142\pi\)
\(678\) 1.85761 1.16251i 0.0713410 0.0446459i
\(679\) 9.25648 28.4885i 0.355231 1.09329i
\(680\) 0 0
\(681\) −0.916813 2.82166i −0.0351323 0.108126i
\(682\) −40.8229 34.2075i −1.56319 1.30987i
\(683\) 21.8180 + 11.1168i 0.834843 + 0.425374i 0.818510 0.574493i \(-0.194801\pi\)
0.0163335 + 0.999867i \(0.494801\pi\)
\(684\) −26.7458 13.0001i −1.02265 0.497071i
\(685\) 0 0
\(686\) −19.4986 + 16.9730i −0.744460 + 0.648033i
\(687\) 0.503849 + 3.18118i 0.0192230 + 0.121369i
\(688\) −13.2795 + 7.40796i −0.506276 + 0.282426i
\(689\) 3.00217 + 4.13213i 0.114374 + 0.157422i
\(690\) 0 0
\(691\) −9.83947 + 13.5429i −0.374311 + 0.515195i −0.954066 0.299596i \(-0.903148\pi\)
0.579755 + 0.814791i \(0.303148\pi\)
\(692\) −2.09882 0.638571i −0.0797851 0.0242748i
\(693\) −28.6452 28.6452i −1.08814 1.08814i
\(694\) 7.54511 3.20873i 0.286408 0.121802i
\(695\) 0 0
\(696\) −0.00605649 + 0.120230i −0.000229571 + 0.00455730i
\(697\) 6.67656 + 13.1035i 0.252893 + 0.496330i
\(698\) −0.00516630 + 0.0746063i −0.000195547 + 0.00282389i
\(699\) −5.58072 −0.211082
\(700\) 0 0
\(701\) 50.9450 1.92417 0.962083 0.272757i \(-0.0879356\pi\)
0.962083 + 0.272757i \(0.0879356\pi\)
\(702\) −0.308364 + 4.45307i −0.0116384 + 0.168070i
\(703\) 9.96723 + 19.5618i 0.375921 + 0.737787i
\(704\) 8.64933 + 39.8955i 0.325984 + 1.50362i
\(705\) 0 0
\(706\) 5.35848 2.27882i 0.201669 0.0857644i
\(707\) 22.3682 + 22.3682i 0.841244 + 0.841244i
\(708\) −1.00830 + 3.31402i −0.0378942 + 0.124549i
\(709\) 23.6335 32.5288i 0.887576 1.22164i −0.0866885 0.996235i \(-0.527628\pi\)
0.974264 0.225408i \(-0.0723715\pi\)
\(710\) 0 0
\(711\) 11.7492 + 16.1714i 0.440629 + 0.606473i
\(712\) −1.00132 2.23678i −0.0375260 0.0838268i
\(713\) −5.16574 32.6152i −0.193458 1.22145i
\(714\) −2.55355 + 2.22280i −0.0955643 + 0.0831863i
\(715\) 0 0
\(716\) −21.0955 + 43.4011i −0.788376 + 1.62197i
\(717\) −0.0778596 0.0396715i −0.00290772 0.00148156i
\(718\) −29.9533 25.0993i −1.11785 0.936698i
\(719\) 3.14270 + 9.67223i 0.117203 + 0.360713i 0.992400 0.123053i \(-0.0392685\pi\)
−0.875197 + 0.483766i \(0.839269\pi\)
\(720\) 0 0
\(721\) −1.60612 + 4.94314i −0.0598152 + 0.184092i
\(722\) −7.40157 + 4.63197i −0.275458 + 0.172384i
\(723\) 0.652848 4.12192i 0.0242797 0.153296i
\(724\) −2.44578 13.7619i −0.0908966 0.511455i
\(725\) 0 0
\(726\) 4.04805 0.356916i 0.150237 0.0132464i
\(727\) 8.65722 + 1.37117i 0.321078 + 0.0508538i 0.314893 0.949127i \(-0.398031\pi\)
0.00618506 + 0.999981i \(0.498031\pi\)
\(728\) −15.5687 + 14.0754i −0.577016 + 0.521670i
\(729\) −23.8224 7.74037i −0.882312 0.286681i
\(730\) 0 0
\(731\) −16.9084 + 5.49386i −0.625378 + 0.203198i
\(732\) −0.450729 0.314697i −0.0166594 0.0116315i
\(733\) 0.119518 0.234567i 0.00441450 0.00866394i −0.888789 0.458317i \(-0.848452\pi\)
0.893203 + 0.449653i \(0.148452\pi\)
\(734\) 4.93920 8.23282i 0.182309 0.303879i
\(735\) 0 0
\(736\) −12.1957 + 22.1780i −0.449538 + 0.817493i
\(737\) 17.0437 2.69946i 0.627814 0.0994360i
\(738\) 12.7854 3.19695i 0.470638 0.117681i
\(739\) 5.97506 4.34113i 0.219796 0.159691i −0.472439 0.881363i \(-0.656626\pi\)
0.692235 + 0.721672i \(0.256626\pi\)
\(740\) 0 0
\(741\) 2.14841 + 1.56091i 0.0789238 + 0.0573415i
\(742\) 6.47886 + 2.61254i 0.237846 + 0.0959092i
\(743\) 7.03452 7.03452i 0.258071 0.258071i −0.566198 0.824269i \(-0.691586\pi\)
0.824269 + 0.566198i \(0.191586\pi\)
\(744\) 2.17920 + 3.34083i 0.0798935 + 0.122481i
\(745\) 0 0
\(746\) 15.8316 + 3.64373i 0.579634 + 0.133406i
\(747\) 8.87719 4.52315i 0.324799 0.165494i
\(748\) 0.897500 + 47.7200i 0.0328159 + 1.74482i
\(749\) 30.6785i 1.12097i
\(750\) 0 0
\(751\) 29.2029i 1.06563i −0.846232 0.532814i \(-0.821134\pi\)
0.846232 0.532814i \(-0.178866\pi\)
\(752\) −34.5624 + 6.81530i −1.26036 + 0.248529i
\(753\) 0.923203 0.470395i 0.0336434 0.0171422i
\(754\) −0.195709 + 0.850332i −0.00712731 + 0.0309673i
\(755\) 0 0
\(756\) 2.87348 + 5.38664i 0.104507 + 0.195910i
\(757\) 20.1848 20.1848i 0.733630 0.733630i −0.237707 0.971337i \(-0.576396\pi\)
0.971337 + 0.237707i \(0.0763959\pi\)
\(758\) 6.77172 16.7933i 0.245960 0.609959i
\(759\) 3.52933 + 2.56421i 0.128107 + 0.0930749i
\(760\) 0 0
\(761\) 7.93313 5.76375i 0.287576 0.208936i −0.434639 0.900605i \(-0.643124\pi\)
0.722215 + 0.691669i \(0.243124\pi\)
\(762\) −1.05221 4.20807i −0.0381176 0.152442i
\(763\) 41.1103 6.51124i 1.48829 0.235723i
\(764\) 21.8688 22.7071i 0.791184 0.821516i
\(765\) 0 0
\(766\) 22.3523 + 13.4100i 0.807620 + 0.484524i
\(767\) −11.3988 + 22.3715i −0.411589 + 0.807788i
\(768\) 0.249980 3.04700i 0.00902038 0.109949i
\(769\) 17.2976 5.62032i 0.623766 0.202674i 0.0199544 0.999801i \(-0.493648\pi\)
0.603812 + 0.797127i \(0.293648\pi\)
\(770\) 0 0
\(771\) 2.06162 + 0.669862i 0.0742475 + 0.0241245i
\(772\) −10.9974 14.5531i −0.395807 0.523778i
\(773\) −42.7233 6.76671i −1.53665 0.243382i −0.670025 0.742339i \(-0.733717\pi\)
−0.866627 + 0.498957i \(0.833717\pi\)
\(774\) 1.39931 + 15.8706i 0.0502970 + 0.570455i
\(775\) 0 0
\(776\) 8.24751 + 30.5323i 0.296068 + 1.09604i
\(777\) 0.350388 2.21226i 0.0125701 0.0793644i
\(778\) −18.6603 29.8179i −0.669006 1.06902i
\(779\) 4.87557 15.0055i 0.174685 0.537626i
\(780\) 0 0
\(781\) 9.04296 + 27.8314i 0.323582 + 0.995884i
\(782\) −19.0060 + 22.6816i −0.679653 + 0.811091i
\(783\) 0.226151 + 0.115230i 0.00808199 + 0.00411798i
\(784\) −0.192752 + 0.679133i −0.00688401 + 0.0242547i
\(785\) 0 0
\(786\) −2.41432 2.77356i −0.0861158 0.0989297i
\(787\) −1.89589 11.9702i −0.0675813 0.426691i −0.998162 0.0606043i \(-0.980697\pi\)
0.930581 0.366087i \(-0.119303\pi\)
\(788\) 3.73729 + 10.8064i 0.133135 + 0.384961i
\(789\) −2.23378 3.07453i −0.0795245 0.109456i
\(790\) 0 0
\(791\) 12.7693 17.5755i 0.454025 0.624911i
\(792\) 41.8549 + 8.80785i 1.48725 + 0.312973i
\(793\) −2.81747 2.81747i −0.100051 0.100051i
\(794\) −15.4140 36.2449i −0.547022 1.28628i
\(795\) 0 0
\(796\) 48.8094 + 6.79243i 1.73000 + 0.240751i
\(797\) 7.47486 + 14.6702i 0.264773 + 0.519646i 0.984668 0.174436i \(-0.0558103\pi\)
−0.719895 + 0.694083i \(0.755810\pi\)
\(798\) 3.62342 + 0.250912i 0.128268 + 0.00888221i
\(799\) −41.1877 −1.45712
\(800\) 0 0
\(801\) −2.56770 −0.0907253
\(802\) 14.7590 + 1.02202i 0.521158 + 0.0360889i
\(803\) 0.0438956 + 0.0861499i 0.00154904 + 0.00304016i
\(804\) −1.28000 0.178128i −0.0451423 0.00628210i
\(805\) 0 0
\(806\) 11.3146 + 26.6055i 0.398540 + 0.937139i
\(807\) 1.36921 + 1.36921i 0.0481985 + 0.0481985i
\(808\) −32.6833 6.87780i −1.14980 0.241960i
\(809\) 12.5671 17.2972i 0.441837 0.608136i −0.528782 0.848757i \(-0.677351\pi\)
0.970619 + 0.240621i \(0.0773512\pi\)
\(810\) 0 0
\(811\) −18.5355 25.5120i −0.650871 0.895847i 0.348265 0.937396i \(-0.386771\pi\)
−0.999136 + 0.0415488i \(0.986771\pi\)
\(812\) 0.390066 + 1.12788i 0.0136886 + 0.0395807i
\(813\) −0.0564703 0.356539i −0.00198050 0.0125044i
\(814\) −20.7326 23.8176i −0.726677 0.834806i
\(815\) 0 0
\(816\) 0.975957 3.43863i 0.0341653 0.120376i
\(817\) 16.9947 + 8.65922i 0.594569 + 0.302948i
\(818\) −14.0988 + 16.8254i −0.492953 + 0.588286i
\(819\) 6.79540 + 20.9141i 0.237451 + 0.730798i
\(820\) 0 0
\(821\) −6.22378 + 19.1548i −0.217211 + 0.668508i 0.781778 + 0.623557i \(0.214313\pi\)
−0.998989 + 0.0449507i \(0.985687\pi\)
\(822\) 2.70867 + 4.32826i 0.0944757 + 0.150966i
\(823\) 6.60034 41.6729i 0.230073 1.45263i −0.554289 0.832324i \(-0.687010\pi\)
0.784363 0.620302i \(-0.212990\pi\)
\(824\) −1.43105 5.29776i −0.0498531 0.184556i
\(825\) 0 0
\(826\) 3.01613 + 34.2082i 0.104945 + 1.19026i
\(827\) −13.5996 2.15397i −0.472905 0.0749008i −0.0845669 0.996418i \(-0.526951\pi\)
−0.388338 + 0.921517i \(0.626951\pi\)
\(828\) 15.9879 + 21.1571i 0.555620 + 0.735261i
\(829\) 35.5980 + 11.5665i 1.23637 + 0.401721i 0.853018 0.521881i \(-0.174770\pi\)
0.383352 + 0.923602i \(0.374770\pi\)
\(830\) 0 0
\(831\) 2.08074 0.676072i 0.0721800 0.0234527i
\(832\) 5.64848 21.4277i 0.195826 0.742872i
\(833\) −0.374718 + 0.735426i −0.0129832 + 0.0254810i
\(834\) 1.68864 + 1.01308i 0.0584727 + 0.0350802i
\(835\) 0 0
\(836\) 35.5203 36.8820i 1.22850 1.27559i
\(837\) 8.30637 1.31560i 0.287110 0.0454738i
\(838\) −12.3858 49.5339i −0.427859 1.71112i
\(839\) −6.53213 + 4.74587i −0.225514 + 0.163846i −0.694805 0.719198i \(-0.744509\pi\)
0.469291 + 0.883044i \(0.344509\pi\)
\(840\) 0 0
\(841\) −23.4214 17.0166i −0.807633 0.586780i
\(842\) 8.47419 21.0153i 0.292040 0.724234i
\(843\) 3.13022 3.13022i 0.107810 0.107810i
\(844\) −18.6899 35.0362i −0.643332 1.20600i
\(845\) 0 0
\(846\) −8.27867 + 35.9698i −0.284626 + 1.23667i
\(847\) 35.8955 18.2897i 1.23338 0.628440i
\(848\) −7.23635 + 1.42692i −0.248497 + 0.0490008i
\(849\) 3.64092i 0.124956i
\(850\) 0 0
\(851\) 19.5780i 0.671126i
\(852\) −0.0412114 2.19121i −0.00141188 0.0750695i
\(853\) 31.0768 15.8344i 1.06405 0.542160i 0.167851 0.985812i \(-0.446317\pi\)
0.896199 + 0.443652i \(0.146317\pi\)
\(854\) −5.31085 1.22232i −0.181733 0.0418271i
\(855\) 0 0
\(856\) −17.6964 27.1294i −0.604850 0.927265i
\(857\) −31.7738 + 31.7738i −1.08537 + 1.08537i −0.0893726 + 0.995998i \(0.528486\pi\)
−0.995998 + 0.0893726i \(0.971514\pi\)
\(858\) −3.54234 1.42841i −0.120933 0.0487652i
\(859\) 34.2690 + 24.8979i 1.16924 + 0.849504i 0.990918 0.134468i \(-0.0429325\pi\)
0.178324 + 0.983972i \(0.442932\pi\)
\(860\) 0 0
\(861\) −1.30223 + 0.946129i −0.0443800 + 0.0322440i
\(862\) −9.24400 + 2.31143i −0.314852 + 0.0787275i
\(863\) 16.4649 2.60778i 0.560472 0.0887700i 0.130230 0.991484i \(-0.458428\pi\)
0.430242 + 0.902714i \(0.358428\pi\)
\(864\) −5.64826 3.10597i −0.192158 0.105667i
\(865\) 0 0
\(866\) −7.67388 + 12.7911i −0.260769 + 0.434658i
\(867\) 0.422595 0.829389i 0.0143521 0.0281675i
\(868\) 32.4222 + 22.6370i 1.10048 + 0.768350i
\(869\) −32.7340 + 10.6359i −1.11043 + 0.360799i
\(870\) 0 0
\(871\) −8.90876 2.89463i −0.301862 0.0980809i
\(872\) −32.5986 + 29.4718i −1.10393 + 0.998042i
\(873\) 32.7288 + 5.18374i 1.10770 + 0.175443i
\(874\) 31.6248 2.78836i 1.06973 0.0943177i
\(875\) 0 0
\(876\) −0.00126705 0.00712941i −4.28096e−5 0.000240880i
\(877\) 2.32444 14.6759i 0.0784907 0.495571i −0.916856 0.399217i \(-0.869282\pi\)
0.995347 0.0963539i \(-0.0307181\pi\)
\(878\) −12.5541 + 7.85645i −0.423679 + 0.265142i
\(879\) 0.770780 2.37222i 0.0259978 0.0800129i
\(880\) 0 0
\(881\) −15.1162 46.5230i −0.509279 1.56740i −0.793456 0.608628i \(-0.791720\pi\)
0.284177 0.958772i \(-0.408280\pi\)
\(882\) 0.566939 + 0.475066i 0.0190898 + 0.0159963i
\(883\) −1.45332 0.740506i −0.0489083 0.0249200i 0.429365 0.903131i \(-0.358737\pi\)
−0.478274 + 0.878211i \(0.658737\pi\)
\(884\) 11.3261 23.3018i 0.380937 0.783725i
\(885\) 0 0
\(886\) 4.93478 4.29560i 0.165787 0.144313i
\(887\) 4.23212 + 26.7206i 0.142101 + 0.897189i 0.950989 + 0.309226i \(0.100070\pi\)
−0.808888 + 0.587963i \(0.799930\pi\)
\(888\) 0.966254 + 2.15845i 0.0324254 + 0.0724329i
\(889\) −25.2757 34.7890i −0.847719 1.16679i
\(890\) 0 0
\(891\) 26.0125 35.8032i 0.871452 1.19945i
\(892\) 6.73800 22.1461i 0.225605 0.741505i
\(893\) 31.2456 + 31.2456i 1.04560 + 1.04560i
\(894\) 0.529300 0.225097i 0.0177024 0.00752837i
\(895\) 0 0
\(896\) −8.99834 28.9417i −0.300614 0.966873i
\(897\) −1.07510 2.11000i −0.0358965 0.0704508i
\(898\) −1.76764 + 25.5264i −0.0589870 + 0.851828i
\(899\) 1.64396 0.0548290
\(900\) 0 0
\(901\) −8.62349 −0.287290
\(902\) −1.56767 + 22.6386i −0.0521976 + 0.753784i
\(903\) −0.883420 1.73381i −0.0293984 0.0576976i
\(904\) −1.15397 + 22.9080i −0.0383806 + 0.761910i
\(905\) 0 0
\(906\) −1.51781 + 0.645485i −0.0504260 + 0.0214448i
\(907\) 35.5508 + 35.5508i 1.18045 + 1.18045i 0.979629 + 0.200818i \(0.0643600\pi\)
0.200818 + 0.979629i \(0.435640\pi\)
\(908\) 29.7094 + 9.03918i 0.985942 + 0.299976i
\(909\) −20.5690 + 28.3108i −0.682230 + 0.939009i
\(910\) 0 0
\(911\) 3.41319 + 4.69785i 0.113084 + 0.155647i 0.861807 0.507236i \(-0.169333\pi\)
−0.748723 + 0.662883i \(0.769333\pi\)
\(912\) −3.34898 + 1.86823i −0.110896 + 0.0618631i
\(913\) 2.68368 + 16.9441i 0.0888169 + 0.560768i
\(914\) −35.3920 + 30.8078i −1.17066 + 1.01903i
\(915\) 0 0
\(916\) −30.3204 14.7375i −1.00181 0.486941i
\(917\) −32.4808 16.5498i −1.07261 0.546522i
\(918\) −5.77650 4.84041i −0.190653 0.159757i
\(919\) 13.3369 + 41.0468i 0.439944 + 1.35401i 0.887934 + 0.459971i \(0.152140\pi\)
−0.447990 + 0.894039i \(0.647860\pi\)
\(920\) 0 0
\(921\) −0.765886 + 2.35716i −0.0252368 + 0.0776709i
\(922\) −38.7938 + 24.2775i −1.27760 + 0.799537i
\(923\) 2.48500 15.6897i 0.0817948 0.516432i
\(924\) −5.14340 + 0.914093i −0.169205 + 0.0300714i
\(925\) 0 0
\(926\) −43.2004 + 3.80897i −1.41965 + 0.125171i
\(927\) −5.67890 0.899449i −0.186520 0.0295418i
\(928\) −0.995540 0.772396i −0.0326802 0.0253551i
\(929\) 34.3019 + 11.1453i 1.12541 + 0.365667i 0.811829 0.583895i \(-0.198472\pi\)
0.313578 + 0.949562i \(0.398472\pi\)
\(930\) 0 0
\(931\) 0.842173 0.273639i 0.0276011 0.00896814i
\(932\) 33.4397 47.8946i 1.09535 1.56884i
\(933\) 0.361052 0.708605i 0.0118203 0.0231987i
\(934\) 11.3406 18.9028i 0.371075 0.618520i
\(935\) 0 0
\(936\) −18.0733 14.5748i −0.590743 0.476394i
\(937\) −37.4056 + 5.92447i −1.22199 + 0.193544i −0.733905 0.679252i \(-0.762304\pi\)
−0.488084 + 0.872796i \(0.662304\pi\)
\(938\) −12.4291 + 3.10785i −0.405824 + 0.101475i
\(939\) −3.46333 + 2.51626i −0.113022 + 0.0821149i
\(940\) 0 0
\(941\) 25.8261 + 18.7637i 0.841906 + 0.611680i 0.922902 0.385034i \(-0.125810\pi\)
−0.0809965 + 0.996714i \(0.525810\pi\)
\(942\) −4.06886 1.64073i −0.132571 0.0534578i
\(943\) −9.94877 + 9.94877i −0.323977 + 0.323977i
\(944\) −22.3997 28.5110i −0.729047 0.927954i
\(945\) 0 0
\(946\) −26.7343 6.15307i −0.869208 0.200054i
\(947\) 3.14898 1.60449i 0.102328 0.0521388i −0.402077 0.915606i \(-0.631712\pi\)
0.504405 + 0.863467i \(0.331712\pi\)
\(948\) 2.57720 0.0484710i 0.0837035 0.00157426i
\(949\) 0.0524856i 0.00170375i
\(950\) 0 0
\(951\) 1.20369i 0.0390325i
\(952\) −3.77551 35.2340i −0.122365 1.14194i
\(953\) −48.0361 + 24.4756i −1.55604 + 0.792843i −0.999284 0.0378308i \(-0.987955\pi\)
−0.556759 + 0.830674i \(0.687955\pi\)
\(954\) −1.73331 + 7.53101i −0.0561179 + 0.243825i
\(955\) 0 0
\(956\) 0.807001 0.430491i 0.0261003 0.0139231i
\(957\) −0.153571 + 0.153571i −0.00496426 + 0.00496426i
\(958\) 3.68402 9.13605i 0.119025 0.295172i
\(959\) 40.9512 + 29.7528i 1.32238 + 0.960767i
\(960\) 0 0
\(961\) 18.9882 13.7957i 0.612523 0.445024i
\(962\) 4.15806 + 16.6292i 0.134061 + 0.536146i
\(963\) −33.5198 + 5.30901i −1.08016 + 0.171080i
\(964\) 31.4630 + 30.3014i 1.01336 + 0.975943i
\(965\) 0 0
\(966\) −2.77741 1.66628i −0.0893618 0.0536118i
\(967\) 7.03165 13.8004i 0.226123 0.443791i −0.749873 0.661582i \(-0.769885\pi\)
0.975995 + 0.217792i \(0.0698853\pi\)
\(968\) −21.1928 + 36.8796i −0.681163 + 1.18535i
\(969\) −4.26415 + 1.38551i −0.136984 + 0.0445089i
\(970\) 0 0
\(971\) −16.7721 5.44959i −0.538242 0.174886i 0.0272659 0.999628i \(-0.491320\pi\)
−0.565508 + 0.824743i \(0.691320\pi\)
\(972\) −8.09889 + 6.12014i −0.259772 + 0.196303i
\(973\) 19.2817 + 3.05393i 0.618144 + 0.0979044i
\(974\) 2.59016 + 29.3769i 0.0829940 + 0.941295i
\(975\) 0 0
\(976\) 5.40154 1.98256i 0.172899 0.0634602i
\(977\) 8.24291 52.0437i 0.263714 1.66502i −0.399605 0.916687i \(-0.630853\pi\)
0.663319 0.748337i \(-0.269147\pi\)
\(978\) −1.13408 1.81219i −0.0362640 0.0579473i
\(979\) 1.36625 4.20489i 0.0436656 0.134389i
\(980\) 0 0
\(981\) 14.2286 + 43.7910i 0.454283 + 1.39814i
\(982\) 4.46875 5.33297i 0.142603 0.170182i
\(983\) −15.6381 7.96803i −0.498779 0.254141i 0.186455 0.982463i \(-0.440300\pi\)
−0.685234 + 0.728323i \(0.740300\pi\)
\(984\) 0.605826 1.58785i 0.0193130 0.0506188i
\(985\) 0 0
\(986\) −0.967261 1.11119i −0.0308039 0.0353875i
\(987\) −0.705221 4.45259i −0.0224474 0.141728i
\(988\) −26.2693 + 9.08498i −0.835736 + 0.289032i
\(989\) −9.99752 13.7604i −0.317903 0.437555i
\(990\) 0 0
\(991\) −20.0939 + 27.6568i −0.638302 + 0.878548i −0.998524 0.0543192i \(-0.982701\pi\)
0.360221 + 0.932867i \(0.382701\pi\)
\(992\) −41.7293 1.31600i −1.32491 0.0417832i
\(993\) −2.18931 2.18931i −0.0694756 0.0694756i
\(994\) −8.50278 19.9937i −0.269692 0.634161i
\(995\) 0 0
\(996\) 0.177087 1.27252i 0.00561122 0.0403214i
\(997\) −0.954518 1.87335i −0.0302299 0.0593295i 0.875398 0.483404i \(-0.160600\pi\)
−0.905628 + 0.424074i \(0.860600\pi\)
\(998\) −27.9542 1.93576i −0.884875 0.0612754i
\(999\) 4.98610 0.157753
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 500.2.l.f.343.12 96
4.3 odd 2 inner 500.2.l.f.343.1 96
5.2 odd 4 500.2.l.d.407.5 96
5.3 odd 4 500.2.l.e.407.8 96
5.4 even 2 100.2.l.b.23.1 96
15.14 odd 2 900.2.bj.d.523.12 96
20.3 even 4 500.2.l.e.407.7 96
20.7 even 4 500.2.l.d.407.6 96
20.19 odd 2 100.2.l.b.23.12 yes 96
25.9 even 10 500.2.l.e.43.7 96
25.12 odd 20 inner 500.2.l.f.207.1 96
25.13 odd 20 100.2.l.b.87.12 yes 96
25.16 even 5 500.2.l.d.43.6 96
60.59 even 2 900.2.bj.d.523.1 96
75.38 even 20 900.2.bj.d.487.1 96
100.59 odd 10 500.2.l.e.43.8 96
100.63 even 20 100.2.l.b.87.1 yes 96
100.87 even 20 inner 500.2.l.f.207.12 96
100.91 odd 10 500.2.l.d.43.5 96
300.263 odd 20 900.2.bj.d.487.12 96
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
100.2.l.b.23.1 96 5.4 even 2
100.2.l.b.23.12 yes 96 20.19 odd 2
100.2.l.b.87.1 yes 96 100.63 even 20
100.2.l.b.87.12 yes 96 25.13 odd 20
500.2.l.d.43.5 96 100.91 odd 10
500.2.l.d.43.6 96 25.16 even 5
500.2.l.d.407.5 96 5.2 odd 4
500.2.l.d.407.6 96 20.7 even 4
500.2.l.e.43.7 96 25.9 even 10
500.2.l.e.43.8 96 100.59 odd 10
500.2.l.e.407.7 96 20.3 even 4
500.2.l.e.407.8 96 5.3 odd 4
500.2.l.f.207.1 96 25.12 odd 20 inner
500.2.l.f.207.12 96 100.87 even 20 inner
500.2.l.f.343.1 96 4.3 odd 2 inner
500.2.l.f.343.12 96 1.1 even 1 trivial
900.2.bj.d.487.1 96 75.38 even 20
900.2.bj.d.487.12 96 300.263 odd 20
900.2.bj.d.523.1 96 60.59 even 2
900.2.bj.d.523.12 96 15.14 odd 2