Properties

Label 900.2.bj.d.523.1
Level $900$
Weight $2$
Character 900.523
Analytic conductor $7.187$
Analytic rank $0$
Dimension $96$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [900,2,Mod(127,900)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(900, base_ring=CyclotomicField(20))
 
chi = DirichletCharacter(H, H._module([10, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("900.127");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 900 = 2^{2} \cdot 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 900.bj (of order \(20\), degree \(8\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.18653618192\)
Analytic rank: \(0\)
Dimension: \(96\)
Relative dimension: \(12\) over \(\Q(\zeta_{20})\)
Twist minimal: no (minimal twist has level 100)
Sato-Tate group: $\mathrm{SU}(2)[C_{20}]$

Embedding invariants

Embedding label 523.1
Character \(\chi\) \(=\) 900.523
Dual form 900.2.bj.d.487.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.37197 - 0.343057i) q^{2} +(1.76462 + 0.941330i) q^{4} +(1.18066 - 1.89896i) q^{5} +(-1.89427 - 1.89427i) q^{7} +(-2.09809 - 1.89685i) q^{8} +(-2.27128 + 2.20029i) q^{10} +(2.99934 + 4.12824i) q^{11} +(0.433317 + 2.73586i) q^{13} +(1.94904 + 3.24872i) q^{14} +(2.22780 + 3.32219i) q^{16} +(4.16697 + 2.12318i) q^{17} +(1.55045 + 4.77181i) q^{19} +(3.87097 - 2.23956i) q^{20} +(-2.69880 - 6.69278i) q^{22} +(0.699923 - 4.41914i) q^{23} +(-2.21209 - 4.48404i) q^{25} +(0.344055 - 3.90218i) q^{26} +(-1.55954 - 5.12580i) q^{28} +(0.211843 + 0.0688321i) q^{29} +(7.01920 - 2.28068i) q^{31} +(-1.91678 - 5.32221i) q^{32} +(-4.98861 - 4.34246i) q^{34} +(-5.83362 + 1.36065i) q^{35} +(4.32186 - 0.684516i) q^{37} +(-0.490182 - 7.07869i) q^{38} +(-6.07916 + 1.74466i) q^{40} +(-2.54404 - 1.84835i) q^{41} +(-2.68807 + 2.68807i) q^{43} +(1.40668 + 10.1082i) q^{44} +(-2.47629 + 5.82283i) q^{46} +(7.84709 - 3.99829i) q^{47} +0.176489i q^{49} +(1.49665 + 6.91086i) q^{50} +(-1.81070 + 5.23565i) q^{52} +(-1.64295 + 0.837124i) q^{53} +(11.3806 - 0.821587i) q^{55} +(0.381206 + 7.56747i) q^{56} +(-0.267030 - 0.167110i) q^{58} +(-7.33328 - 5.32794i) q^{59} +(1.16375 - 0.845512i) q^{61} +(-10.4126 + 0.721044i) q^{62} +(0.803948 + 7.95950i) q^{64} +(5.70688 + 2.40726i) q^{65} +(1.53527 - 3.01313i) q^{67} +(5.35453 + 7.66911i) q^{68} +(8.47035 + 0.134481i) q^{70} +(5.45415 + 1.77216i) q^{71} +(-0.0187149 - 0.00296414i) q^{73} +(-6.16431 - 0.543507i) q^{74} +(-1.75588 + 9.87994i) q^{76} +(2.13843 - 13.5015i) q^{77} +(2.08434 - 6.41493i) q^{79} +(8.93896 - 0.308126i) q^{80} +(2.85627 + 3.40864i) q^{82} +(-2.99552 - 1.52629i) q^{83} +(8.95160 - 5.40616i) q^{85} +(4.61012 - 2.76580i) q^{86} +(1.53775 - 14.3507i) q^{88} +(0.509284 + 0.700969i) q^{89} +(4.36162 - 6.00326i) q^{91} +(5.39497 - 7.13927i) q^{92} +(-12.1376 + 2.79355i) q^{94} +(10.8920 + 2.68963i) q^{95} +(-5.07638 - 9.96296i) q^{97} +(0.0605458 - 0.242139i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 96 q + 10 q^{2} - 10 q^{4} + 20 q^{5} + 10 q^{8} - 10 q^{10} - 20 q^{13} + 10 q^{14} - 14 q^{16} + 20 q^{17} - 10 q^{20} - 10 q^{22} - 20 q^{25} + 12 q^{26} - 10 q^{28} + 20 q^{29} + 50 q^{32} - 60 q^{34}+ \cdots + 130 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/900\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(451\) \(577\)
\(\chi(n)\) \(1\) \(-1\) \(e\left(\frac{11}{20}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.37197 0.343057i −0.970132 0.242578i
\(3\) 0 0
\(4\) 1.76462 + 0.941330i 0.882312 + 0.470665i
\(5\) 1.18066 1.89896i 0.528006 0.849240i
\(6\) 0 0
\(7\) −1.89427 1.89427i −0.715965 0.715965i 0.251811 0.967776i \(-0.418974\pi\)
−0.967776 + 0.251811i \(0.918974\pi\)
\(8\) −2.09809 1.89685i −0.741786 0.670636i
\(9\) 0 0
\(10\) −2.27128 + 2.20029i −0.718243 + 0.695793i
\(11\) 2.99934 + 4.12824i 0.904336 + 1.24471i 0.969064 + 0.246809i \(0.0793819\pi\)
−0.0647283 + 0.997903i \(0.520618\pi\)
\(12\) 0 0
\(13\) 0.433317 + 2.73586i 0.120181 + 0.758790i 0.972005 + 0.234962i \(0.0754966\pi\)
−0.851824 + 0.523828i \(0.824503\pi\)
\(14\) 1.94904 + 3.24872i 0.520904 + 0.868258i
\(15\) 0 0
\(16\) 2.22780 + 3.32219i 0.556949 + 0.830547i
\(17\) 4.16697 + 2.12318i 1.01064 + 0.514947i 0.879238 0.476383i \(-0.158052\pi\)
0.131402 + 0.991329i \(0.458052\pi\)
\(18\) 0 0
\(19\) 1.55045 + 4.77181i 0.355699 + 1.09473i 0.955603 + 0.294657i \(0.0952052\pi\)
−0.599905 + 0.800072i \(0.704795\pi\)
\(20\) 3.87097 2.23956i 0.865574 0.500781i
\(21\) 0 0
\(22\) −2.69880 6.69278i −0.575386 1.42691i
\(23\) 0.699923 4.41914i 0.145944 0.921455i −0.800675 0.599100i \(-0.795525\pi\)
0.946619 0.322355i \(-0.104475\pi\)
\(24\) 0 0
\(25\) −2.21209 4.48404i −0.442418 0.896809i
\(26\) 0.344055 3.90218i 0.0674747 0.765280i
\(27\) 0 0
\(28\) −1.55954 5.12580i −0.294725 0.968685i
\(29\) 0.211843 + 0.0688321i 0.0393383 + 0.0127818i 0.328620 0.944462i \(-0.393416\pi\)
−0.289282 + 0.957244i \(0.593416\pi\)
\(30\) 0 0
\(31\) 7.01920 2.28068i 1.26069 0.409622i 0.398947 0.916974i \(-0.369376\pi\)
0.861739 + 0.507352i \(0.169376\pi\)
\(32\) −1.91678 5.32221i −0.338842 0.940843i
\(33\) 0 0
\(34\) −4.98861 4.34246i −0.855539 0.744725i
\(35\) −5.83362 + 1.36065i −0.986061 + 0.229992i
\(36\) 0 0
\(37\) 4.32186 0.684516i 0.710510 0.112534i 0.209290 0.977854i \(-0.432885\pi\)
0.501220 + 0.865320i \(0.332885\pi\)
\(38\) −0.490182 7.07869i −0.0795179 1.14832i
\(39\) 0 0
\(40\) −6.07916 + 1.74466i −0.961199 + 0.275854i
\(41\) −2.54404 1.84835i −0.397312 0.288664i 0.371133 0.928580i \(-0.378969\pi\)
−0.768445 + 0.639915i \(0.778969\pi\)
\(42\) 0 0
\(43\) −2.68807 + 2.68807i −0.409927 + 0.409927i −0.881713 0.471786i \(-0.843609\pi\)
0.471786 + 0.881713i \(0.343609\pi\)
\(44\) 1.40668 + 10.1082i 0.212064 + 1.52386i
\(45\) 0 0
\(46\) −2.47629 + 5.82283i −0.365110 + 0.858530i
\(47\) 7.84709 3.99829i 1.14462 0.583211i 0.224351 0.974508i \(-0.427974\pi\)
0.920264 + 0.391298i \(0.127974\pi\)
\(48\) 0 0
\(49\) 0.176489i 0.0252127i
\(50\) 1.49665 + 6.91086i 0.211658 + 0.977344i
\(51\) 0 0
\(52\) −1.81070 + 5.23565i −0.251099 + 0.726055i
\(53\) −1.64295 + 0.837124i −0.225676 + 0.114988i −0.563173 0.826339i \(-0.690420\pi\)
0.337497 + 0.941327i \(0.390420\pi\)
\(54\) 0 0
\(55\) 11.3806 0.821587i 1.53455 0.110783i
\(56\) 0.381206 + 7.56747i 0.0509407 + 1.01125i
\(57\) 0 0
\(58\) −0.267030 0.167110i −0.0350628 0.0219426i
\(59\) −7.33328 5.32794i −0.954712 0.693639i −0.00279513 0.999996i \(-0.500890\pi\)
−0.951917 + 0.306357i \(0.900890\pi\)
\(60\) 0 0
\(61\) 1.16375 0.845512i 0.149003 0.108257i −0.510786 0.859708i \(-0.670646\pi\)
0.659789 + 0.751451i \(0.270646\pi\)
\(62\) −10.4126 + 0.721044i −1.32240 + 0.0915727i
\(63\) 0 0
\(64\) 0.803948 + 7.95950i 0.100493 + 0.994938i
\(65\) 5.70688 + 2.40726i 0.707852 + 0.298584i
\(66\) 0 0
\(67\) 1.53527 3.01313i 0.187563 0.368113i −0.778007 0.628255i \(-0.783769\pi\)
0.965570 + 0.260142i \(0.0837695\pi\)
\(68\) 5.35453 + 7.66911i 0.649332 + 0.930016i
\(69\) 0 0
\(70\) 8.47035 + 0.134481i 1.01240 + 0.0160736i
\(71\) 5.45415 + 1.77216i 0.647288 + 0.210317i 0.614218 0.789136i \(-0.289471\pi\)
0.0330703 + 0.999453i \(0.489471\pi\)
\(72\) 0 0
\(73\) −0.0187149 0.00296414i −0.00219041 0.000346927i 0.155339 0.987861i \(-0.450353\pi\)
−0.157530 + 0.987514i \(0.550353\pi\)
\(74\) −6.16431 0.543507i −0.716586 0.0631814i
\(75\) 0 0
\(76\) −1.75588 + 9.87994i −0.201413 + 1.13331i
\(77\) 2.13843 13.5015i 0.243697 1.53864i
\(78\) 0 0
\(79\) 2.08434 6.41493i 0.234506 0.721736i −0.762680 0.646776i \(-0.776117\pi\)
0.997187 0.0749601i \(-0.0238830\pi\)
\(80\) 8.93896 0.308126i 0.999406 0.0344495i
\(81\) 0 0
\(82\) 2.85627 + 3.40864i 0.315422 + 0.376422i
\(83\) −2.99552 1.52629i −0.328801 0.167532i 0.281795 0.959475i \(-0.409070\pi\)
−0.610596 + 0.791942i \(0.709070\pi\)
\(84\) 0 0
\(85\) 8.95160 5.40616i 0.970938 0.586381i
\(86\) 4.61012 2.76580i 0.497122 0.298244i
\(87\) 0 0
\(88\) 1.53775 14.3507i 0.163925 1.52979i
\(89\) 0.509284 + 0.700969i 0.0539840 + 0.0743026i 0.835156 0.550014i \(-0.185378\pi\)
−0.781172 + 0.624316i \(0.785378\pi\)
\(90\) 0 0
\(91\) 4.36162 6.00326i 0.457222 0.629313i
\(92\) 5.39497 7.13927i 0.562465 0.744320i
\(93\) 0 0
\(94\) −12.1376 + 2.79355i −1.25190 + 0.288133i
\(95\) 10.8920 + 2.68963i 1.11750 + 0.275950i
\(96\) 0 0
\(97\) −5.07638 9.96296i −0.515428 1.01158i −0.991244 0.132040i \(-0.957847\pi\)
0.475816 0.879545i \(-0.342153\pi\)
\(98\) 0.0605458 0.242139i 0.00611605 0.0244597i
\(99\) 0 0
\(100\) 0.317454 9.99496i 0.0317454 0.999496i
\(101\) 11.8084 1.17498 0.587489 0.809232i \(-0.300116\pi\)
0.587489 + 0.809232i \(0.300116\pi\)
\(102\) 0 0
\(103\) −0.880821 1.72871i −0.0867899 0.170335i 0.843532 0.537079i \(-0.180472\pi\)
−0.930322 + 0.366744i \(0.880472\pi\)
\(104\) 4.28036 6.56201i 0.419724 0.643458i
\(105\) 0 0
\(106\) 2.54126 0.584888i 0.246829 0.0568093i
\(107\) 8.09772 + 8.09772i 0.782836 + 0.782836i 0.980308 0.197472i \(-0.0632733\pi\)
−0.197472 + 0.980308i \(0.563273\pi\)
\(108\) 0 0
\(109\) −9.13259 + 12.5699i −0.874743 + 1.20398i 0.103106 + 0.994670i \(0.467122\pi\)
−0.977849 + 0.209310i \(0.932878\pi\)
\(110\) −15.8957 2.77698i −1.51559 0.264775i
\(111\) 0 0
\(112\) 2.07307 10.5131i 0.195887 0.993399i
\(113\) 1.26860 + 8.00964i 0.119340 + 0.753483i 0.972684 + 0.232135i \(0.0745710\pi\)
−0.853344 + 0.521349i \(0.825429\pi\)
\(114\) 0 0
\(115\) −7.56540 6.54662i −0.705477 0.610476i
\(116\) 0.309030 + 0.320877i 0.0286927 + 0.0297927i
\(117\) 0 0
\(118\) 8.23328 + 9.82552i 0.757935 + 0.904513i
\(119\) −3.87149 11.9152i −0.354899 1.09227i
\(120\) 0 0
\(121\) −4.64713 + 14.3024i −0.422467 + 1.30022i
\(122\) −1.88669 + 0.760789i −0.170813 + 0.0688786i
\(123\) 0 0
\(124\) 14.5331 + 2.58285i 1.30511 + 0.231947i
\(125\) −11.1267 1.09345i −0.995206 0.0978013i
\(126\) 0 0
\(127\) 15.8543 + 2.51108i 1.40684 + 0.222822i 0.813237 0.581932i \(-0.197703\pi\)
0.593608 + 0.804755i \(0.297703\pi\)
\(128\) 1.62757 11.1960i 0.143858 0.989598i
\(129\) 0 0
\(130\) −7.00386 5.26048i −0.614280 0.461375i
\(131\) 12.9418 4.20505i 1.13073 0.367397i 0.316878 0.948466i \(-0.397365\pi\)
0.813854 + 0.581069i \(0.197365\pi\)
\(132\) 0 0
\(133\) 6.10210 11.9761i 0.529119 1.03846i
\(134\) −3.14002 + 3.60726i −0.271257 + 0.311619i
\(135\) 0 0
\(136\) −4.71533 12.3587i −0.404337 1.05975i
\(137\) −18.6626 + 2.95587i −1.59445 + 0.252537i −0.889575 0.456790i \(-0.848999\pi\)
−0.704880 + 0.709327i \(0.748999\pi\)
\(138\) 0 0
\(139\) 5.89560 4.28340i 0.500058 0.363313i −0.308981 0.951068i \(-0.599988\pi\)
0.809039 + 0.587755i \(0.199988\pi\)
\(140\) −11.5750 3.09032i −0.978263 0.261179i
\(141\) 0 0
\(142\) −6.87500 4.30244i −0.576937 0.361053i
\(143\) −9.99461 + 9.99461i −0.835792 + 0.835792i
\(144\) 0 0
\(145\) 0.380824 0.321015i 0.0316257 0.0266588i
\(146\) 0.0246594 + 0.0104870i 0.00204083 + 0.000867909i
\(147\) 0 0
\(148\) 8.27082 + 2.86039i 0.679857 + 0.235122i
\(149\) 2.12851i 0.174375i −0.996192 0.0871873i \(-0.972212\pi\)
0.996192 0.0871873i \(-0.0277879\pi\)
\(150\) 0 0
\(151\) 6.10369i 0.496712i 0.968669 + 0.248356i \(0.0798902\pi\)
−0.968669 + 0.248356i \(0.920110\pi\)
\(152\) 5.79840 12.9527i 0.470312 1.05060i
\(153\) 0 0
\(154\) −7.56567 + 17.7902i −0.609659 + 1.43357i
\(155\) 3.95637 16.0219i 0.317783 1.28691i
\(156\) 0 0
\(157\) −11.4802 + 11.4802i −0.916218 + 0.916218i −0.996752 0.0805335i \(-0.974338\pi\)
0.0805335 + 0.996752i \(0.474338\pi\)
\(158\) −5.06034 + 8.08607i −0.402579 + 0.643293i
\(159\) 0 0
\(160\) −12.3697 2.64383i −0.977913 0.209013i
\(161\) −9.69687 + 7.04519i −0.764221 + 0.555239i
\(162\) 0 0
\(163\) 7.81379 1.23758i 0.612023 0.0969349i 0.157275 0.987555i \(-0.449729\pi\)
0.454748 + 0.890620i \(0.349729\pi\)
\(164\) −2.74936 5.65643i −0.214689 0.441693i
\(165\) 0 0
\(166\) 3.58617 + 3.12167i 0.278341 + 0.242288i
\(167\) −6.13600 + 12.0426i −0.474818 + 0.931883i 0.522059 + 0.852910i \(0.325164\pi\)
−0.996877 + 0.0789735i \(0.974836\pi\)
\(168\) 0 0
\(169\) 5.06658 1.64623i 0.389737 0.126633i
\(170\) −14.1360 + 4.34621i −1.08418 + 0.333339i
\(171\) 0 0
\(172\) −7.27379 + 2.21307i −0.554621 + 0.168745i
\(173\) −1.08340 0.171594i −0.0823695 0.0130460i 0.115114 0.993352i \(-0.463277\pi\)
−0.197483 + 0.980306i \(0.563277\pi\)
\(174\) 0 0
\(175\) −4.30368 + 12.6843i −0.325328 + 0.958840i
\(176\) −7.03287 + 19.1613i −0.530122 + 1.44433i
\(177\) 0 0
\(178\) −0.458252 1.13642i −0.0343474 0.0851786i
\(179\) −7.45601 + 22.9472i −0.557289 + 1.71516i 0.132533 + 0.991179i \(0.457689\pi\)
−0.689822 + 0.723979i \(0.742311\pi\)
\(180\) 0 0
\(181\) −2.15964 6.64670i −0.160525 0.494045i 0.838154 0.545434i \(-0.183635\pi\)
−0.998679 + 0.0513890i \(0.983635\pi\)
\(182\) −8.04349 + 6.74003i −0.596223 + 0.499604i
\(183\) 0 0
\(184\) −9.85094 + 7.94410i −0.726221 + 0.585647i
\(185\) 3.80277 9.01522i 0.279586 0.662812i
\(186\) 0 0
\(187\) 3.73319 + 23.5704i 0.272998 + 1.72364i
\(188\) 17.6109 + 0.331219i 1.28440 + 0.0241566i
\(189\) 0 0
\(190\) −14.0209 7.42668i −1.01718 0.538788i
\(191\) 9.26511 12.7523i 0.670400 0.922727i −0.329369 0.944201i \(-0.606836\pi\)
0.999769 + 0.0214746i \(0.00683611\pi\)
\(192\) 0 0
\(193\) 6.44920 + 6.44920i 0.464223 + 0.464223i 0.900037 0.435814i \(-0.143539\pi\)
−0.435814 + 0.900037i \(0.643539\pi\)
\(194\) 3.54680 + 15.4104i 0.254645 + 1.10640i
\(195\) 0 0
\(196\) −0.166135 + 0.311437i −0.0118668 + 0.0222455i
\(197\) 2.59555 + 5.09406i 0.184925 + 0.362936i 0.964794 0.263007i \(-0.0847142\pi\)
−0.779869 + 0.625943i \(0.784714\pi\)
\(198\) 0 0
\(199\) −24.6399 −1.74668 −0.873338 0.487115i \(-0.838049\pi\)
−0.873338 + 0.487115i \(0.838049\pi\)
\(200\) −3.86438 + 13.6039i −0.273253 + 0.961942i
\(201\) 0 0
\(202\) −16.2008 4.05095i −1.13988 0.285024i
\(203\) −0.270901 0.531674i −0.0190136 0.0373162i
\(204\) 0 0
\(205\) −6.51359 + 2.64875i −0.454929 + 0.184997i
\(206\) 0.615418 + 2.67391i 0.0428782 + 0.186300i
\(207\) 0 0
\(208\) −8.12369 + 7.53449i −0.563276 + 0.522423i
\(209\) −15.0488 + 20.7129i −1.04095 + 1.43274i
\(210\) 0 0
\(211\) 11.6703 + 16.0628i 0.803419 + 1.10581i 0.992306 + 0.123813i \(0.0395122\pi\)
−0.188886 + 0.981999i \(0.560488\pi\)
\(212\) −3.68720 0.0693474i −0.253238 0.00476280i
\(213\) 0 0
\(214\) −8.33188 13.8878i −0.569556 0.949353i
\(215\) 1.93084 + 8.27822i 0.131682 + 0.564570i
\(216\) 0 0
\(217\) −17.6165 8.97603i −1.19588 0.609333i
\(218\) 16.8419 14.1126i 1.14068 0.955827i
\(219\) 0 0
\(220\) 20.8558 + 9.26307i 1.40610 + 0.624516i
\(221\) −4.00309 + 12.3203i −0.269277 + 0.828750i
\(222\) 0 0
\(223\) 1.81060 11.4317i 0.121247 0.765524i −0.849883 0.526972i \(-0.823327\pi\)
0.971130 0.238552i \(-0.0766727\pi\)
\(224\) −6.45080 + 13.7126i −0.431012 + 0.916210i
\(225\) 0 0
\(226\) 1.00727 11.4242i 0.0670028 0.759928i
\(227\) −15.3359 2.42897i −1.01788 0.161216i −0.374872 0.927077i \(-0.622313\pi\)
−0.643007 + 0.765861i \(0.722313\pi\)
\(228\) 0 0
\(229\) −16.0312 5.20884i −1.05937 0.344210i −0.273030 0.962006i \(-0.588026\pi\)
−0.786339 + 0.617796i \(0.788026\pi\)
\(230\) 8.13367 + 11.5772i 0.536318 + 0.763375i
\(231\) 0 0
\(232\) −0.313902 0.546250i −0.0206087 0.0358631i
\(233\) 13.2595 26.0233i 0.868660 1.70484i 0.174963 0.984575i \(-0.444019\pi\)
0.693697 0.720267i \(-0.255981\pi\)
\(234\) 0 0
\(235\) 1.67214 19.6219i 0.109078 1.27999i
\(236\) −7.92513 16.3048i −0.515882 1.06136i
\(237\) 0 0
\(238\) 1.22399 + 17.6755i 0.0793392 + 1.14573i
\(239\) 0.369981 0.268807i 0.0239321 0.0173877i −0.575755 0.817622i \(-0.695292\pi\)
0.599687 + 0.800235i \(0.295292\pi\)
\(240\) 0 0
\(241\) 17.6697 + 12.8378i 1.13820 + 0.826953i 0.986868 0.161530i \(-0.0516429\pi\)
0.151335 + 0.988483i \(0.451643\pi\)
\(242\) 11.2823 18.0283i 0.725252 1.15890i
\(243\) 0 0
\(244\) 2.84948 0.396541i 0.182419 0.0253859i
\(245\) 0.335146 + 0.208373i 0.0214117 + 0.0133125i
\(246\) 0 0
\(247\) −12.3832 + 6.30953i −0.787921 + 0.401466i
\(248\) −19.0530 8.52929i −1.20987 0.541610i
\(249\) 0 0
\(250\) 14.8905 + 5.31729i 0.941757 + 0.336295i
\(251\) 5.42259i 0.342271i 0.985248 + 0.171135i \(0.0547436\pi\)
−0.985248 + 0.171135i \(0.945256\pi\)
\(252\) 0 0
\(253\) 20.3426 10.3651i 1.27893 0.651647i
\(254\) −20.8903 8.88407i −1.31077 0.557436i
\(255\) 0 0
\(256\) −6.07385 + 14.8023i −0.379616 + 0.925144i
\(257\) −8.02192 + 8.02192i −0.500394 + 0.500394i −0.911560 0.411166i \(-0.865121\pi\)
0.411166 + 0.911560i \(0.365121\pi\)
\(258\) 0 0
\(259\) −9.48341 6.89010i −0.589271 0.428130i
\(260\) 7.80447 + 9.61997i 0.484013 + 0.596605i
\(261\) 0 0
\(262\) −19.1984 + 1.32944i −1.18608 + 0.0821332i
\(263\) −19.6441 + 3.11132i −1.21131 + 0.191852i −0.729224 0.684275i \(-0.760119\pi\)
−0.482081 + 0.876127i \(0.660119\pi\)
\(264\) 0 0
\(265\) −0.350096 + 4.10825i −0.0215063 + 0.252368i
\(266\) −12.4804 + 14.3375i −0.765222 + 0.879086i
\(267\) 0 0
\(268\) 5.54552 3.87185i 0.338747 0.236511i
\(269\) 9.63789 3.13154i 0.587633 0.190933i −8.44003e−5 1.00000i \(-0.500027\pi\)
0.587717 + 0.809067i \(0.300027\pi\)
\(270\) 0 0
\(271\) −1.79674 0.583795i −0.109144 0.0354630i 0.253936 0.967221i \(-0.418275\pi\)
−0.363080 + 0.931758i \(0.618275\pi\)
\(272\) 2.22957 + 18.5735i 0.135187 + 1.12618i
\(273\) 0 0
\(274\) 26.6186 + 2.34696i 1.60809 + 0.141785i
\(275\) 11.8764 22.5812i 0.716173 1.36170i
\(276\) 0 0
\(277\) 1.79116 11.3089i 0.107620 0.679488i −0.873607 0.486632i \(-0.838225\pi\)
0.981227 0.192855i \(-0.0617748\pi\)
\(278\) −9.55805 + 3.85419i −0.573254 + 0.231159i
\(279\) 0 0
\(280\) 14.8204 + 8.21070i 0.885688 + 0.490683i
\(281\) −7.15917 22.0337i −0.427080 1.31442i −0.900988 0.433844i \(-0.857157\pi\)
0.473908 0.880574i \(-0.342843\pi\)
\(282\) 0 0
\(283\) −16.9779 8.65065i −1.00923 0.514228i −0.130449 0.991455i \(-0.541642\pi\)
−0.878780 + 0.477227i \(0.841642\pi\)
\(284\) 7.95633 + 8.26135i 0.472122 + 0.490221i
\(285\) 0 0
\(286\) 17.1411 10.2836i 1.01357 0.608084i
\(287\) 1.31782 + 8.32036i 0.0777882 + 0.491135i
\(288\) 0 0
\(289\) 2.86343 + 3.94118i 0.168437 + 0.231834i
\(290\) −0.632607 + 0.309780i −0.0371479 + 0.0181909i
\(291\) 0 0
\(292\) −0.0302344 0.0228475i −0.00176934 0.00133705i
\(293\) 9.23047 + 9.23047i 0.539250 + 0.539250i 0.923309 0.384059i \(-0.125474\pi\)
−0.384059 + 0.923309i \(0.625474\pi\)
\(294\) 0 0
\(295\) −18.7756 + 7.63512i −1.09316 + 0.444534i
\(296\) −10.3661 6.76173i −0.602515 0.393018i
\(297\) 0 0
\(298\) −0.730201 + 2.92026i −0.0422994 + 0.169166i
\(299\) 12.3934 0.716731
\(300\) 0 0
\(301\) 10.1838 0.586986
\(302\) 2.09391 8.37411i 0.120491 0.481876i
\(303\) 0 0
\(304\) −12.3987 + 15.7815i −0.711117 + 0.905132i
\(305\) −0.231605 3.20817i −0.0132616 0.183699i
\(306\) 0 0
\(307\) −9.17187 9.17187i −0.523466 0.523466i 0.395150 0.918616i \(-0.370692\pi\)
−0.918616 + 0.395150i \(0.870692\pi\)
\(308\) 16.4829 21.8122i 0.939203 1.24286i
\(309\) 0 0
\(310\) −10.9245 + 20.6243i −0.620467 + 1.17138i
\(311\) 2.44643 + 3.36722i 0.138724 + 0.190938i 0.872726 0.488209i \(-0.162350\pi\)
−0.734002 + 0.679147i \(0.762350\pi\)
\(312\) 0 0
\(313\) 3.50477 + 22.1282i 0.198101 + 1.25076i 0.863529 + 0.504300i \(0.168249\pi\)
−0.665427 + 0.746462i \(0.731751\pi\)
\(314\) 19.6889 11.8122i 1.11111 0.666598i
\(315\) 0 0
\(316\) 9.71663 9.35789i 0.546603 0.526422i
\(317\) −5.61291 2.85992i −0.315252 0.160629i 0.289204 0.957268i \(-0.406609\pi\)
−0.604456 + 0.796639i \(0.706609\pi\)
\(318\) 0 0
\(319\) 0.351235 + 1.08099i 0.0196654 + 0.0605239i
\(320\) 16.0640 + 7.87079i 0.898002 + 0.439990i
\(321\) 0 0
\(322\) 15.7208 6.33924i 0.876084 0.353272i
\(323\) −3.67070 + 23.1759i −0.204243 + 1.28954i
\(324\) 0 0
\(325\) 11.3092 7.99498i 0.627320 0.443482i
\(326\) −11.1449 0.982643i −0.617257 0.0544235i
\(327\) 0 0
\(328\) 1.83158 + 8.70366i 0.101132 + 0.480579i
\(329\) −22.4383 7.29065i −1.23706 0.401946i
\(330\) 0 0
\(331\) −15.4106 + 5.00720i −0.847042 + 0.275221i −0.700206 0.713940i \(-0.746909\pi\)
−0.146835 + 0.989161i \(0.546909\pi\)
\(332\) −3.84922 5.51311i −0.211253 0.302571i
\(333\) 0 0
\(334\) 12.5497 14.4171i 0.686690 0.788869i
\(335\) −3.90919 6.47289i −0.213582 0.353652i
\(336\) 0 0
\(337\) −19.9748 + 3.16369i −1.08809 + 0.172337i −0.674610 0.738174i \(-0.735688\pi\)
−0.413484 + 0.910511i \(0.635688\pi\)
\(338\) −7.51597 + 0.520462i −0.408815 + 0.0283094i
\(339\) 0 0
\(340\) 20.8852 1.11343i 1.13266 0.0603845i
\(341\) 30.4682 + 22.1364i 1.64995 + 1.19876i
\(342\) 0 0
\(343\) −12.9255 + 12.9255i −0.697914 + 0.697914i
\(344\) 10.7387 0.540952i 0.578990 0.0291662i
\(345\) 0 0
\(346\) 1.42753 + 0.607091i 0.0767446 + 0.0326374i
\(347\) −5.16571 + 2.63206i −0.277310 + 0.141296i −0.587115 0.809504i \(-0.699736\pi\)
0.309805 + 0.950800i \(0.399736\pi\)
\(348\) 0 0
\(349\) 0.0528810i 0.00283065i 0.999999 + 0.00141533i \(0.000450513\pi\)
−0.999999 + 0.00141533i \(0.999549\pi\)
\(350\) 10.2560 15.9261i 0.548204 0.851284i
\(351\) 0 0
\(352\) 16.2223 23.8761i 0.864652 1.27260i
\(353\) 3.66865 1.86927i 0.195263 0.0994913i −0.353626 0.935387i \(-0.615051\pi\)
0.548888 + 0.835896i \(0.315051\pi\)
\(354\) 0 0
\(355\) 9.80475 8.26489i 0.520382 0.438655i
\(356\) 0.238851 + 1.71635i 0.0126591 + 0.0909664i
\(357\) 0 0
\(358\) 18.1017 28.9252i 0.956703 1.52874i
\(359\) −22.3556 16.2423i −1.17989 0.857237i −0.187726 0.982221i \(-0.560112\pi\)
−0.992159 + 0.124985i \(0.960112\pi\)
\(360\) 0 0
\(361\) −4.99493 + 3.62903i −0.262891 + 0.191002i
\(362\) 0.682778 + 9.85997i 0.0358860 + 0.518229i
\(363\) 0 0
\(364\) 13.3477 6.48777i 0.699608 0.340052i
\(365\) −0.0277246 + 0.0320391i −0.00145117 + 0.00167700i
\(366\) 0 0
\(367\) 3.08204 6.04885i 0.160881 0.315747i −0.796468 0.604681i \(-0.793301\pi\)
0.957349 + 0.288934i \(0.0933007\pi\)
\(368\) 16.2405 7.51967i 0.846595 0.391990i
\(369\) 0 0
\(370\) −8.31004 + 11.0641i −0.432018 + 0.575194i
\(371\) 4.69792 + 1.52645i 0.243904 + 0.0792492i
\(372\) 0 0
\(373\) −11.3458 1.79701i −0.587466 0.0930454i −0.144376 0.989523i \(-0.546118\pi\)
−0.443089 + 0.896477i \(0.646118\pi\)
\(374\) 2.96416 33.6187i 0.153273 1.73838i
\(375\) 0 0
\(376\) −24.0480 6.49595i −1.24018 0.335003i
\(377\) −0.0965194 + 0.609399i −0.00497100 + 0.0313857i
\(378\) 0 0
\(379\) −3.95657 + 12.1771i −0.203235 + 0.625494i 0.796546 + 0.604578i \(0.206658\pi\)
−0.999781 + 0.0209157i \(0.993342\pi\)
\(380\) 16.6885 + 14.9992i 0.856102 + 0.769441i
\(381\) 0 0
\(382\) −17.0863 + 14.3174i −0.874210 + 0.732542i
\(383\) −16.4227 8.36780i −0.839163 0.427575i −0.0190788 0.999818i \(-0.506073\pi\)
−0.820084 + 0.572243i \(0.806073\pi\)
\(384\) 0 0
\(385\) −23.1141 20.0015i −1.17800 1.01937i
\(386\) −6.63569 11.0606i −0.337748 0.562968i
\(387\) 0 0
\(388\) 0.420528 22.3594i 0.0213491 1.13513i
\(389\) 14.6199 + 20.1226i 0.741258 + 1.02025i 0.998545 + 0.0539190i \(0.0171713\pi\)
−0.257287 + 0.966335i \(0.582829\pi\)
\(390\) 0 0
\(391\) 12.2992 16.9284i 0.621997 0.856105i
\(392\) 0.334773 0.370290i 0.0169086 0.0187025i
\(393\) 0 0
\(394\) −1.81348 7.87933i −0.0913617 0.396955i
\(395\) −9.72080 11.5319i −0.489106 0.580233i
\(396\) 0 0
\(397\) 12.6438 + 24.8148i 0.634574 + 1.24542i 0.954566 + 0.298001i \(0.0963199\pi\)
−0.319992 + 0.947420i \(0.603680\pi\)
\(398\) 33.8053 + 8.45289i 1.69451 + 0.423705i
\(399\) 0 0
\(400\) 9.96874 17.3385i 0.498437 0.866926i
\(401\) −10.4612 −0.522406 −0.261203 0.965284i \(-0.584119\pi\)
−0.261203 + 0.965284i \(0.584119\pi\)
\(402\) 0 0
\(403\) 9.28115 + 18.2153i 0.462327 + 0.907368i
\(404\) 20.8374 + 11.1156i 1.03670 + 0.553021i
\(405\) 0 0
\(406\) 0.189275 + 0.822377i 0.00939357 + 0.0408139i
\(407\) 15.7886 + 15.7886i 0.782611 + 0.782611i
\(408\) 0 0
\(409\) −9.12365 + 12.5576i −0.451136 + 0.620935i −0.972641 0.232313i \(-0.925371\pi\)
0.521505 + 0.853248i \(0.325371\pi\)
\(410\) 9.84515 1.39949i 0.486217 0.0691159i
\(411\) 0 0
\(412\) 0.0729673 3.87966i 0.00359484 0.191137i
\(413\) 3.79865 + 23.9837i 0.186919 + 1.18016i
\(414\) 0 0
\(415\) −6.43505 + 3.88634i −0.315884 + 0.190773i
\(416\) 13.7302 7.55024i 0.673181 0.370181i
\(417\) 0 0
\(418\) 27.7523 23.2550i 1.35741 1.13744i
\(419\) −11.1568 34.3371i −0.545045 1.67748i −0.720883 0.693056i \(-0.756264\pi\)
0.175838 0.984419i \(-0.443736\pi\)
\(420\) 0 0
\(421\) 4.95128 15.2385i 0.241311 0.742678i −0.754911 0.655828i \(-0.772320\pi\)
0.996221 0.0868504i \(-0.0276802\pi\)
\(422\) −10.5009 26.0414i −0.511177 1.26768i
\(423\) 0 0
\(424\) 5.03495 + 1.36006i 0.244519 + 0.0660504i
\(425\) 0.302700 23.3816i 0.0146831 1.13417i
\(426\) 0 0
\(427\) −3.80607 0.602823i −0.184189 0.0291726i
\(428\) 6.66680 + 21.9121i 0.322252 + 1.05916i
\(429\) 0 0
\(430\) 0.190836 12.0199i 0.00920295 0.579651i
\(431\) −6.40797 + 2.08208i −0.308661 + 0.100290i −0.459252 0.888306i \(-0.651882\pi\)
0.150591 + 0.988596i \(0.451882\pi\)
\(432\) 0 0
\(433\) 4.78847 9.39790i 0.230119 0.451634i −0.746857 0.664985i \(-0.768438\pi\)
0.976976 + 0.213351i \(0.0684378\pi\)
\(434\) 21.0900 + 18.3583i 1.01235 + 0.881228i
\(435\) 0 0
\(436\) −27.9480 + 13.5844i −1.33847 + 0.650576i
\(437\) 22.1725 3.51178i 1.06065 0.167991i
\(438\) 0 0
\(439\) 8.47207 6.15532i 0.404350 0.293778i −0.366960 0.930237i \(-0.619602\pi\)
0.771311 + 0.636459i \(0.219602\pi\)
\(440\) −25.4358 19.8634i −1.21261 0.946951i
\(441\) 0 0
\(442\) 9.71869 15.5298i 0.462271 0.738676i
\(443\) −3.27124 + 3.27124i −0.155421 + 0.155421i −0.780534 0.625113i \(-0.785053\pi\)
0.625113 + 0.780534i \(0.285053\pi\)
\(444\) 0 0
\(445\) 1.93240 0.139504i 0.0916046 0.00661314i
\(446\) −6.40583 + 15.0629i −0.303325 + 0.713247i
\(447\) 0 0
\(448\) 13.5545 16.6003i 0.640391 0.784291i
\(449\) 18.0931i 0.853868i −0.904283 0.426934i \(-0.859594\pi\)
0.904283 0.426934i \(-0.140406\pi\)
\(450\) 0 0
\(451\) 16.0463i 0.755589i
\(452\) −5.30111 + 15.3282i −0.249343 + 0.720977i
\(453\) 0 0
\(454\) 20.2072 + 8.59356i 0.948369 + 0.403316i
\(455\) −6.25036 15.3703i −0.293021 0.720573i
\(456\) 0 0
\(457\) 23.4612 23.4612i 1.09747 1.09747i 0.102764 0.994706i \(-0.467231\pi\)
0.994706 0.102764i \(-0.0327687\pi\)
\(458\) 20.2074 + 12.6460i 0.944230 + 0.590908i
\(459\) 0 0
\(460\) −7.18756 18.6739i −0.335122 0.870674i
\(461\) 26.1799 19.0208i 1.21932 0.885887i 0.223275 0.974755i \(-0.428325\pi\)
0.996043 + 0.0888686i \(0.0283251\pi\)
\(462\) 0 0
\(463\) −30.2882 + 4.79718i −1.40761 + 0.222944i −0.813560 0.581481i \(-0.802473\pi\)
−0.594054 + 0.804425i \(0.702473\pi\)
\(464\) 0.243271 + 0.857127i 0.0112936 + 0.0397911i
\(465\) 0 0
\(466\) −27.1192 + 31.1545i −1.25627 + 1.44320i
\(467\) −7.07648 + 13.8884i −0.327460 + 0.642677i −0.994774 0.102100i \(-0.967444\pi\)
0.667314 + 0.744777i \(0.267444\pi\)
\(468\) 0 0
\(469\) −8.61588 + 2.79947i −0.397844 + 0.129268i
\(470\) −9.02556 + 26.3471i −0.416318 + 1.21530i
\(471\) 0 0
\(472\) 5.27958 + 25.0886i 0.243013 + 1.15480i
\(473\) −19.1594 3.03456i −0.880952 0.139529i
\(474\) 0 0
\(475\) 17.9673 17.5080i 0.824394 0.803322i
\(476\) 4.38443 24.6702i 0.200960 1.13076i
\(477\) 0 0
\(478\) −0.599821 + 0.241872i −0.0274352 + 0.0110630i
\(479\) 2.15249 6.62469i 0.0983498 0.302690i −0.889762 0.456424i \(-0.849130\pi\)
0.988112 + 0.153734i \(0.0491300\pi\)
\(480\) 0 0
\(481\) 3.74547 + 11.5274i 0.170779 + 0.525604i
\(482\) −19.8382 23.6748i −0.903606 1.07836i
\(483\) 0 0
\(484\) −21.6637 + 20.8639i −0.984715 + 0.948358i
\(485\) −24.9127 2.12301i −1.13123 0.0964009i
\(486\) 0 0
\(487\) 3.26215 + 20.5964i 0.147822 + 0.933313i 0.944405 + 0.328784i \(0.106639\pi\)
−0.796583 + 0.604529i \(0.793361\pi\)
\(488\) −4.04545 0.433491i −0.183129 0.0196232i
\(489\) 0 0
\(490\) −0.388327 0.400857i −0.0175428 0.0181089i
\(491\) 2.89183 3.98026i 0.130506 0.179627i −0.738763 0.673965i \(-0.764590\pi\)
0.869269 + 0.494339i \(0.164590\pi\)
\(492\) 0 0
\(493\) 0.736603 + 0.736603i 0.0331749 + 0.0331749i
\(494\) 19.1539 4.40839i 0.861774 0.198343i
\(495\) 0 0
\(496\) 23.2142 + 18.2382i 1.04235 + 0.818921i
\(497\) −6.97467 13.6886i −0.312857 0.614016i
\(498\) 0 0
\(499\) 19.8140 0.886994 0.443497 0.896276i \(-0.353738\pi\)
0.443497 + 0.896276i \(0.353738\pi\)
\(500\) −18.6052 12.4035i −0.832051 0.554700i
\(501\) 0 0
\(502\) 1.86026 7.43965i 0.0830273 0.332048i
\(503\) 12.4717 + 24.4770i 0.556084 + 1.09138i 0.982398 + 0.186801i \(0.0598118\pi\)
−0.426314 + 0.904575i \(0.640188\pi\)
\(504\) 0 0
\(505\) 13.9417 22.4237i 0.620396 0.997839i
\(506\) −31.4653 + 7.24194i −1.39880 + 0.321943i
\(507\) 0 0
\(508\) 25.6132 + 19.3553i 1.13640 + 0.858751i
\(509\) 8.04575 11.0740i 0.356622 0.490847i −0.592582 0.805510i \(-0.701891\pi\)
0.949204 + 0.314663i \(0.101891\pi\)
\(510\) 0 0
\(511\) 0.0298360 + 0.0410658i 0.00131987 + 0.00181664i
\(512\) 13.4112 18.2247i 0.592697 0.805426i
\(513\) 0 0
\(514\) 13.7578 8.25389i 0.606832 0.364064i
\(515\) −4.32270 0.368371i −0.190481 0.0162324i
\(516\) 0 0
\(517\) 40.0420 + 20.4024i 1.76105 + 0.897298i
\(518\) 10.6473 + 12.7064i 0.467815 + 0.558287i
\(519\) 0 0
\(520\) −7.40734 15.8757i −0.324833 0.696197i
\(521\) −1.41202 + 4.34576i −0.0618618 + 0.190391i −0.977211 0.212270i \(-0.931915\pi\)
0.915349 + 0.402661i \(0.131915\pi\)
\(522\) 0 0
\(523\) −5.67302 + 35.8180i −0.248064 + 1.56621i 0.477859 + 0.878437i \(0.341413\pi\)
−0.725923 + 0.687776i \(0.758587\pi\)
\(524\) 26.7958 + 4.76219i 1.17058 + 0.208037i
\(525\) 0 0
\(526\) 28.0185 + 2.47039i 1.22167 + 0.107714i
\(527\) 34.0911 + 5.39950i 1.48503 + 0.235206i
\(528\) 0 0
\(529\) 2.83537 + 0.921267i 0.123277 + 0.0400551i
\(530\) 1.88969 5.51631i 0.0820828 0.239613i
\(531\) 0 0
\(532\) 22.0413 15.3891i 0.955613 0.667204i
\(533\) 3.95446 7.76106i 0.171286 0.336169i
\(534\) 0 0
\(535\) 24.9379 5.81660i 1.07816 0.251473i
\(536\) −8.93658 + 3.40965i −0.386001 + 0.147274i
\(537\) 0 0
\(538\) −14.2972 + 0.990047i −0.616397 + 0.0426840i
\(539\) −0.728590 + 0.529352i −0.0313826 + 0.0228008i
\(540\) 0 0
\(541\) −23.6895 17.2114i −1.01849 0.739976i −0.0525174 0.998620i \(-0.516724\pi\)
−0.965973 + 0.258644i \(0.916724\pi\)
\(542\) 2.26480 + 1.41733i 0.0972815 + 0.0608797i
\(543\) 0 0
\(544\) 3.31285 26.2472i 0.142037 1.12534i
\(545\) 13.0873 + 32.1832i 0.560599 + 1.37858i
\(546\) 0 0
\(547\) −31.1849 + 15.8895i −1.33337 + 0.679385i −0.967876 0.251429i \(-0.919100\pi\)
−0.365493 + 0.930814i \(0.619100\pi\)
\(548\) −35.7149 12.3517i −1.52567 0.527638i
\(549\) 0 0
\(550\) −24.0407 + 26.9066i −1.02510 + 1.14730i
\(551\) 1.11760i 0.0476112i
\(552\) 0 0
\(553\) −16.0999 + 8.20329i −0.684636 + 0.348839i
\(554\) −6.33703 + 14.9011i −0.269235 + 0.633086i
\(555\) 0 0
\(556\) 14.4356 2.00889i 0.612206 0.0851960i
\(557\) 25.1416 25.1416i 1.06528 1.06528i 0.0675692 0.997715i \(-0.478476\pi\)
0.997715 0.0675692i \(-0.0215243\pi\)
\(558\) 0 0
\(559\) −8.51896 6.18939i −0.360314 0.261783i
\(560\) −17.5164 16.3491i −0.740205 0.690876i
\(561\) 0 0
\(562\) 2.26340 + 32.6856i 0.0954756 + 1.37876i
\(563\) 27.3038 4.32450i 1.15072 0.182256i 0.448208 0.893929i \(-0.352063\pi\)
0.702510 + 0.711674i \(0.252063\pi\)
\(564\) 0 0
\(565\) 16.7078 + 7.04762i 0.702901 + 0.296496i
\(566\) 20.3255 + 17.6928i 0.854345 + 0.743686i
\(567\) 0 0
\(568\) −8.08177 14.0638i −0.339104 0.590105i
\(569\) −8.77237 + 2.85032i −0.367757 + 0.119491i −0.487065 0.873366i \(-0.661932\pi\)
0.119308 + 0.992857i \(0.461932\pi\)
\(570\) 0 0
\(571\) −17.2235 5.59625i −0.720780 0.234196i −0.0744189 0.997227i \(-0.523710\pi\)
−0.646362 + 0.763031i \(0.723710\pi\)
\(572\) −27.0450 + 8.22851i −1.13081 + 0.344051i
\(573\) 0 0
\(574\) 1.04635 11.8674i 0.0436737 0.495336i
\(575\) −21.3639 + 6.63706i −0.890937 + 0.276785i
\(576\) 0 0
\(577\) 1.72312 10.8794i 0.0717345 0.452914i −0.925510 0.378724i \(-0.876363\pi\)
0.997244 0.0741898i \(-0.0236371\pi\)
\(578\) −2.57651 6.38951i −0.107169 0.265769i
\(579\) 0 0
\(580\) 0.974192 0.207989i 0.0404511 0.00863629i
\(581\) 2.78310 + 8.56552i 0.115463 + 0.355357i
\(582\) 0 0
\(583\) −8.38362 4.27167i −0.347214 0.176914i
\(584\) 0.0336429 + 0.0417182i 0.00139215 + 0.00172631i
\(585\) 0 0
\(586\) −9.49738 15.8305i −0.392333 0.653953i
\(587\) 7.33025 + 46.2814i 0.302552 + 1.91024i 0.402825 + 0.915277i \(0.368028\pi\)
−0.100273 + 0.994960i \(0.531972\pi\)
\(588\) 0 0
\(589\) 21.7659 + 29.9582i 0.896849 + 1.23441i
\(590\) 28.3790 4.03408i 1.16834 0.166080i
\(591\) 0 0
\(592\) 11.9023 + 12.8331i 0.489182 + 0.527436i
\(593\) 11.5238 + 11.5238i 0.473225 + 0.473225i 0.902957 0.429731i \(-0.141392\pi\)
−0.429731 + 0.902957i \(0.641392\pi\)
\(594\) 0 0
\(595\) −27.1974 6.71601i −1.11499 0.275329i
\(596\) 2.00363 3.75603i 0.0820720 0.153853i
\(597\) 0 0
\(598\) −17.0035 4.25165i −0.695324 0.173863i
\(599\) −7.21615 −0.294844 −0.147422 0.989074i \(-0.547098\pi\)
−0.147422 + 0.989074i \(0.547098\pi\)
\(600\) 0 0
\(601\) −15.0642 −0.614483 −0.307241 0.951632i \(-0.599406\pi\)
−0.307241 + 0.951632i \(0.599406\pi\)
\(602\) −13.9720 3.49363i −0.569454 0.142390i
\(603\) 0 0
\(604\) −5.74559 + 10.7707i −0.233785 + 0.438255i
\(605\) 21.6730 + 25.7110i 0.881133 + 1.04530i
\(606\) 0 0
\(607\) −3.59194 3.59194i −0.145792 0.145792i 0.630443 0.776235i \(-0.282873\pi\)
−0.776235 + 0.630443i \(0.782873\pi\)
\(608\) 22.4247 17.3984i 0.909442 0.705596i
\(609\) 0 0
\(610\) −0.782829 + 4.48098i −0.0316958 + 0.181430i
\(611\) 14.3390 + 19.7360i 0.580095 + 0.798433i
\(612\) 0 0
\(613\) −0.788465 4.97817i −0.0318458 0.201066i 0.966636 0.256155i \(-0.0824558\pi\)
−0.998481 + 0.0550888i \(0.982456\pi\)
\(614\) 9.43709 + 15.7300i 0.380850 + 0.634812i
\(615\) 0 0
\(616\) −30.0970 + 24.2711i −1.21264 + 0.977912i
\(617\) 16.5627 + 8.43913i 0.666790 + 0.339746i 0.754406 0.656408i \(-0.227925\pi\)
−0.0876162 + 0.996154i \(0.527925\pi\)
\(618\) 0 0
\(619\) −6.54265 20.1362i −0.262971 0.809343i −0.992154 0.125024i \(-0.960099\pi\)
0.729182 0.684320i \(-0.239901\pi\)
\(620\) 22.0634 24.5484i 0.886087 0.985886i
\(621\) 0 0
\(622\) −2.20129 5.45901i −0.0882637 0.218886i
\(623\) 0.363103 2.29254i 0.0145474 0.0918487i
\(624\) 0 0
\(625\) −15.2133 + 19.8382i −0.608532 + 0.793529i
\(626\) 2.78279 31.5617i 0.111223 1.26146i
\(627\) 0 0
\(628\) −31.0648 + 9.45157i −1.23962 + 0.377159i
\(629\) 19.4624 + 6.32373i 0.776018 + 0.252144i
\(630\) 0 0
\(631\) 3.22756 1.04870i 0.128487 0.0417480i −0.244068 0.969758i \(-0.578482\pi\)
0.372555 + 0.928010i \(0.378482\pi\)
\(632\) −16.5413 + 9.50542i −0.657976 + 0.378105i
\(633\) 0 0
\(634\) 6.71965 + 5.84928i 0.266871 + 0.232305i
\(635\) 23.4870 27.1420i 0.932053 1.07710i
\(636\) 0 0
\(637\) −0.482849 + 0.0764758i −0.0191312 + 0.00303008i
\(638\) −0.111044 1.60359i −0.00439629 0.0634866i
\(639\) 0 0
\(640\) −19.3392 16.3094i −0.764449 0.644684i
\(641\) −31.0401 22.5519i −1.22601 0.890748i −0.229425 0.973326i \(-0.573685\pi\)
−0.996585 + 0.0825780i \(0.973685\pi\)
\(642\) 0 0
\(643\) 6.79295 6.79295i 0.267888 0.267888i −0.560361 0.828249i \(-0.689338\pi\)
0.828249 + 0.560361i \(0.189338\pi\)
\(644\) −23.7432 + 3.30416i −0.935613 + 0.130202i
\(645\) 0 0
\(646\) 12.9868 30.5375i 0.510957 1.20148i
\(647\) −30.3148 + 15.4461i −1.19180 + 0.607251i −0.933417 0.358793i \(-0.883188\pi\)
−0.258379 + 0.966044i \(0.583188\pi\)
\(648\) 0 0
\(649\) 46.2539i 1.81562i
\(650\) −18.2586 + 7.08922i −0.716162 + 0.278062i
\(651\) 0 0
\(652\) 14.9534 + 5.17148i 0.585619 + 0.202531i
\(653\) −5.70477 + 2.90673i −0.223245 + 0.113749i −0.562036 0.827112i \(-0.689982\pi\)
0.338791 + 0.940862i \(0.389982\pi\)
\(654\) 0 0
\(655\) 7.29465 29.5407i 0.285025 1.15425i
\(656\) 0.472973 12.5695i 0.0184665 0.490758i
\(657\) 0 0
\(658\) 28.2837 + 17.7002i 1.10261 + 0.690025i
\(659\) −11.5792 8.41281i −0.451063 0.327716i 0.338952 0.940804i \(-0.389927\pi\)
−0.790015 + 0.613087i \(0.789927\pi\)
\(660\) 0 0
\(661\) −0.382235 + 0.277710i −0.0148672 + 0.0108017i −0.595194 0.803582i \(-0.702925\pi\)
0.580327 + 0.814384i \(0.302925\pi\)
\(662\) 22.8607 1.58304i 0.888505 0.0615267i
\(663\) 0 0
\(664\) 3.38972 + 8.88434i 0.131547 + 0.344779i
\(665\) −15.5375 25.7273i −0.602520 0.997661i
\(666\) 0 0
\(667\) 0.452453 0.887989i 0.0175190 0.0343831i
\(668\) −22.1638 + 15.4746i −0.857543 + 0.598731i
\(669\) 0 0
\(670\) 3.14274 + 10.2217i 0.121414 + 0.394899i
\(671\) 6.98096 + 2.26825i 0.269497 + 0.0875648i
\(672\) 0 0
\(673\) −21.1799 3.35456i −0.816424 0.129309i −0.265764 0.964038i \(-0.585624\pi\)
−0.550660 + 0.834729i \(0.685624\pi\)
\(674\) 28.4902 + 2.51198i 1.09740 + 0.0967578i
\(675\) 0 0
\(676\) 10.4903 + 1.86434i 0.403471 + 0.0717055i
\(677\) −6.95245 + 43.8961i −0.267204 + 1.68706i 0.380191 + 0.924908i \(0.375858\pi\)
−0.647395 + 0.762155i \(0.724142\pi\)
\(678\) 0 0
\(679\) −9.25648 + 28.4885i −0.355231 + 1.09329i
\(680\) −29.0359 5.63721i −1.11348 0.216177i
\(681\) 0 0
\(682\) −34.2075 40.8229i −1.30987 1.56319i
\(683\) −21.8180 11.1168i −0.834843 0.425374i −0.0163335 0.999867i \(-0.505199\pi\)
−0.818510 + 0.574493i \(0.805199\pi\)
\(684\) 0 0
\(685\) −16.4211 + 38.9294i −0.627418 + 1.48742i
\(686\) 22.1677 13.2993i 0.846367 0.507770i
\(687\) 0 0
\(688\) −14.9187 2.94180i −0.568771 0.112155i
\(689\) −3.00217 4.13213i −0.114374 0.157422i
\(690\) 0 0
\(691\) 9.83947 13.5429i 0.374311 0.515195i −0.579755 0.814791i \(-0.696852\pi\)
0.954066 + 0.299596i \(0.0968518\pi\)
\(692\) −1.75027 1.32264i −0.0665353 0.0502791i
\(693\) 0 0
\(694\) 7.99017 1.83899i 0.303303 0.0698070i
\(695\) −1.17332 16.2527i −0.0445065 0.616501i
\(696\) 0 0
\(697\) −6.67656 13.1035i −0.252893 0.496330i
\(698\) 0.0181412 0.0725513i 0.000686654 0.00274611i
\(699\) 0 0
\(700\) −19.5345 + 18.3318i −0.738333 + 0.692876i
\(701\) −50.9450 −1.92417 −0.962083 0.272757i \(-0.912064\pi\)
−0.962083 + 0.272757i \(0.912064\pi\)
\(702\) 0 0
\(703\) 9.96723 + 19.5618i 0.375921 + 0.737787i
\(704\) −30.4474 + 27.1922i −1.14753 + 1.02484i
\(705\) 0 0
\(706\) −5.67456 + 1.30604i −0.213565 + 0.0491533i
\(707\) −22.3682 22.3682i −0.841244 0.841244i
\(708\) 0 0
\(709\) 23.6335 32.5288i 0.887576 1.22164i −0.0866885 0.996235i \(-0.527628\pi\)
0.974264 0.225408i \(-0.0723715\pi\)
\(710\) −16.2872 + 7.97563i −0.611247 + 0.299320i
\(711\) 0 0
\(712\) 0.261108 2.43673i 0.00978544 0.0913202i
\(713\) −5.16574 32.6152i −0.193458 1.22145i
\(714\) 0 0
\(715\) 7.17914 + 30.7796i 0.268485 + 1.15109i
\(716\) −34.7580 + 33.4747i −1.29897 + 1.25101i
\(717\) 0 0
\(718\) 25.0993 + 29.9533i 0.936698 + 1.11785i
\(719\) 3.14270 + 9.67223i 0.117203 + 0.360713i 0.992400 0.123053i \(-0.0392685\pi\)
−0.875197 + 0.483766i \(0.839269\pi\)
\(720\) 0 0
\(721\) −1.60612 + 4.94314i −0.0598152 + 0.184092i
\(722\) 8.09788 3.26539i 0.301372 0.121525i
\(723\) 0 0
\(724\) 2.44578 13.7619i 0.0908966 0.511455i
\(725\) −0.159971 1.10218i −0.00594117 0.0409339i
\(726\) 0 0
\(727\) 8.65722 + 1.37117i 0.321078 + 0.0508538i 0.314893 0.949127i \(-0.398031\pi\)
0.00618506 + 0.999981i \(0.498031\pi\)
\(728\) −20.5383 + 4.32204i −0.761201 + 0.160185i
\(729\) 0 0
\(730\) 0.0490287 0.0344457i 0.00181463 0.00127489i
\(731\) −16.9084 + 5.49386i −0.625378 + 0.203198i
\(732\) 0 0
\(733\) −0.119518 + 0.234567i −0.00441450 + 0.00866394i −0.893203 0.449653i \(-0.851548\pi\)
0.888789 + 0.458317i \(0.151548\pi\)
\(734\) −6.30358 + 7.24154i −0.232669 + 0.267290i
\(735\) 0 0
\(736\) −24.8612 + 4.74538i −0.916397 + 0.174917i
\(737\) 17.0437 2.69946i 0.627814 0.0994360i
\(738\) 0 0
\(739\) −5.97506 + 4.34113i −0.219796 + 0.159691i −0.692235 0.721672i \(-0.743374\pi\)
0.472439 + 0.881363i \(0.343374\pi\)
\(740\) 15.1968 12.3288i 0.558644 0.453216i
\(741\) 0 0
\(742\) −5.92176 3.70590i −0.217395 0.136048i
\(743\) −7.03452 + 7.03452i −0.258071 + 0.258071i −0.824269 0.566198i \(-0.808414\pi\)
0.566198 + 0.824269i \(0.308414\pi\)
\(744\) 0 0
\(745\) −4.04196 2.51305i −0.148086 0.0920709i
\(746\) 14.9497 + 6.35772i 0.547349 + 0.232772i
\(747\) 0 0
\(748\) −15.5999 + 45.1071i −0.570388 + 1.64928i
\(749\) 30.6785i 1.12097i
\(750\) 0 0
\(751\) 29.2029i 1.06563i 0.846232 + 0.532814i \(0.178866\pi\)
−0.846232 + 0.532814i \(0.821134\pi\)
\(752\) 30.7648 + 17.1621i 1.12188 + 0.625838i
\(753\) 0 0
\(754\) 0.341481 0.802968i 0.0124360 0.0292424i
\(755\) 11.5907 + 7.20638i 0.421827 + 0.262267i
\(756\) 0 0
\(757\) −20.1848 + 20.1848i −0.733630 + 0.733630i −0.971337 0.237707i \(-0.923604\pi\)
0.237707 + 0.971337i \(0.423604\pi\)
\(758\) 9.60573 15.3493i 0.348896 0.557511i
\(759\) 0 0
\(760\) −17.7506 26.3036i −0.643883 0.954131i
\(761\) −7.93313 + 5.76375i −0.287576 + 0.208936i −0.722215 0.691669i \(-0.756876\pi\)
0.434639 + 0.900605i \(0.356876\pi\)
\(762\) 0 0
\(763\) 41.1103 6.51124i 1.48829 0.235723i
\(764\) 28.3536 13.7815i 1.02580 0.498599i
\(765\) 0 0
\(766\) 19.6609 + 17.1143i 0.710378 + 0.618366i
\(767\) 11.3988 22.3715i 0.411589 0.807788i
\(768\) 0 0
\(769\) 17.2976 5.62032i 0.623766 0.202674i 0.0199544 0.999801i \(-0.493648\pi\)
0.603812 + 0.797127i \(0.293648\pi\)
\(770\) 24.8503 + 35.3710i 0.895543 + 1.27468i
\(771\) 0 0
\(772\) 5.30959 + 17.4512i 0.191096 + 0.628084i
\(773\) −42.7233 6.76671i −1.53665 0.243382i −0.670025 0.742339i \(-0.733717\pi\)
−0.866627 + 0.498957i \(0.833717\pi\)
\(774\) 0 0
\(775\) −25.7538 26.4294i −0.925103 0.949370i
\(776\) −8.24751 + 30.5323i −0.296068 + 1.09604i
\(777\) 0 0
\(778\) −13.1549 32.6231i −0.471627 1.16959i
\(779\) 4.87557 15.0055i 0.174685 0.537626i
\(780\) 0 0
\(781\) 9.04296 + 27.8314i 0.323582 + 0.995884i
\(782\) −22.6816 + 19.0060i −0.811091 + 0.679653i
\(783\) 0 0
\(784\) −0.586330 + 0.393182i −0.0209404 + 0.0140422i
\(785\) 8.24623 + 35.3546i 0.294320 + 1.26186i
\(786\) 0 0
\(787\) −1.89589 11.9702i −0.0675813 0.426691i −0.998162 0.0606043i \(-0.980697\pi\)
0.930581 0.366087i \(-0.119303\pi\)
\(788\) −0.215016 + 11.4324i −0.00765962 + 0.407261i
\(789\) 0 0
\(790\) 9.38058 + 19.1563i 0.333746 + 0.681549i
\(791\) 12.7693 17.5755i 0.454025 0.624911i
\(792\) 0 0
\(793\) 2.81747 + 2.81747i 0.100051 + 0.100051i
\(794\) −8.83405 38.3829i −0.313509 1.36216i
\(795\) 0 0
\(796\) −43.4802 23.1943i −1.54111 0.822099i
\(797\) 7.47486 + 14.6702i 0.264773 + 0.519646i 0.984668 0.174436i \(-0.0558103\pi\)
−0.719895 + 0.694083i \(0.755810\pi\)
\(798\) 0 0
\(799\) 41.1877 1.45712
\(800\) −19.6250 + 20.3681i −0.693847 + 0.720123i
\(801\) 0 0
\(802\) 14.3525 + 3.58878i 0.506803 + 0.126724i
\(803\) −0.0438956 0.0861499i −0.00154904 0.00304016i
\(804\) 0 0
\(805\) 1.92984 + 26.7319i 0.0680178 + 0.942177i
\(806\) −6.48462 28.1749i −0.228411 0.992417i
\(807\) 0 0
\(808\) −24.7750 22.3987i −0.871583 0.787984i
\(809\) −12.5671 + 17.2972i −0.441837 + 0.608136i −0.970619 0.240621i \(-0.922649\pi\)
0.528782 + 0.848757i \(0.322649\pi\)
\(810\) 0 0
\(811\) 18.5355 + 25.5120i 0.650871 + 0.895847i 0.999136 0.0415488i \(-0.0132292\pi\)
−0.348265 + 0.937396i \(0.613229\pi\)
\(812\) 0.0224415 1.19321i 0.000787542 0.0418735i
\(813\) 0 0
\(814\) −16.2451 27.0779i −0.569392 0.949080i
\(815\) 6.87529 16.2992i 0.240831 0.570937i
\(816\) 0 0
\(817\) −16.9947 8.65922i −0.594569 0.302948i
\(818\) 16.8254 14.0988i 0.588286 0.492953i
\(819\) 0 0
\(820\) −13.9874 1.45738i −0.488461 0.0508940i
\(821\) 6.22378 19.1548i 0.217211 0.668508i −0.781778 0.623557i \(-0.785687\pi\)
0.998989 0.0449507i \(-0.0143131\pi\)
\(822\) 0 0
\(823\) 6.60034 41.6729i 0.230073 1.45263i −0.554289 0.832324i \(-0.687010\pi\)
0.784363 0.620302i \(-0.212990\pi\)
\(824\) −1.43105 + 5.29776i −0.0498531 + 0.184556i
\(825\) 0 0
\(826\) 3.01613 34.2082i 0.104945 1.19026i
\(827\) 13.5996 + 2.15397i 0.472905 + 0.0749008i 0.388338 0.921517i \(-0.373049\pi\)
0.0845669 + 0.996418i \(0.473049\pi\)
\(828\) 0 0
\(829\) 35.5980 + 11.5665i 1.23637 + 0.401721i 0.853018 0.521881i \(-0.174770\pi\)
0.383352 + 0.923602i \(0.374770\pi\)
\(830\) 10.1620 3.12436i 0.352727 0.108448i
\(831\) 0 0
\(832\) −21.4277 + 5.64848i −0.742872 + 0.195826i
\(833\) −0.374718 + 0.735426i −0.0129832 + 0.0254810i
\(834\) 0 0
\(835\) 15.6239 + 25.8702i 0.540686 + 0.895275i
\(836\) −46.0533 + 22.3846i −1.59279 + 0.774189i
\(837\) 0 0
\(838\) 3.52726 + 50.9370i 0.121847 + 1.75959i
\(839\) −6.53213 + 4.74587i −0.225514 + 0.163846i −0.694805 0.719198i \(-0.744509\pi\)
0.469291 + 0.883044i \(0.344509\pi\)
\(840\) 0 0
\(841\) −23.4214 17.0166i −0.807633 0.586780i
\(842\) −12.0207 + 19.2082i −0.414260 + 0.661959i
\(843\) 0 0
\(844\) 5.47332 + 39.3305i 0.188400 + 1.35381i
\(845\) 2.85577 11.5649i 0.0982416 0.397844i
\(846\) 0 0
\(847\) 35.8955 18.2897i 1.23338 0.628440i
\(848\) −6.44124 3.59324i −0.221193 0.123392i
\(849\) 0 0
\(850\) −8.43650 + 31.9750i −0.289370 + 1.09674i
\(851\) 19.5780i 0.671126i
\(852\) 0 0
\(853\) −31.0768 + 15.8344i −1.06405 + 0.542160i −0.896199 0.443652i \(-0.853683\pi\)
−0.167851 + 0.985812i \(0.553683\pi\)
\(854\) 5.01503 + 2.13276i 0.171611 + 0.0729814i
\(855\) 0 0
\(856\) −1.62960 32.3499i −0.0556986 1.10570i
\(857\) −31.7738 + 31.7738i −1.08537 + 1.08537i −0.0893726 + 0.995998i \(0.528486\pi\)
−0.995998 + 0.0893726i \(0.971514\pi\)
\(858\) 0 0
\(859\) −34.2690 24.8979i −1.16924 0.849504i −0.178324 0.983972i \(-0.557068\pi\)
−0.990918 + 0.134468i \(0.957068\pi\)
\(860\) −4.38533 + 16.4255i −0.149538 + 0.560105i
\(861\) 0 0
\(862\) 9.50584 0.658255i 0.323770 0.0224203i
\(863\) −16.4649 + 2.60778i −0.560472 + 0.0887700i −0.430242 0.902714i \(-0.641572\pi\)
−0.130230 + 0.991484i \(0.541572\pi\)
\(864\) 0 0
\(865\) −1.60498 + 1.85474i −0.0545708 + 0.0630631i
\(866\) −9.79367 + 11.2510i −0.332802 + 0.382323i
\(867\) 0 0
\(868\) −22.6370 32.4222i −0.768350 1.10048i
\(869\) 32.7340 10.6359i 1.11043 0.360799i
\(870\) 0 0
\(871\) 8.90876 + 2.89463i 0.301862 + 0.0980809i
\(872\) 43.0042 9.04970i 1.45631 0.306462i
\(873\) 0 0
\(874\) −31.6248 2.78836i −1.06973 0.0943177i
\(875\) 19.0057 + 23.1483i 0.642511 + 0.782555i
\(876\) 0 0
\(877\) −2.32444 + 14.6759i −0.0784907 + 0.495571i 0.916856 + 0.399217i \(0.130718\pi\)
−0.995347 + 0.0963539i \(0.969282\pi\)
\(878\) −13.7351 + 5.53854i −0.463537 + 0.186917i
\(879\) 0 0
\(880\) 28.0830 + 35.9780i 0.946679 + 1.21282i
\(881\) 15.1162 + 46.5230i 0.509279 + 1.56740i 0.793456 + 0.608628i \(0.208280\pi\)
−0.284177 + 0.958772i \(0.591720\pi\)
\(882\) 0 0
\(883\) −1.45332 0.740506i −0.0489083 0.0249200i 0.429365 0.903131i \(-0.358737\pi\)
−0.478274 + 0.878211i \(0.658737\pi\)
\(884\) −18.6614 + 17.9724i −0.627650 + 0.604477i
\(885\) 0 0
\(886\) 5.61028 3.36584i 0.188481 0.113078i
\(887\) −4.23212 26.7206i −0.142101 0.897189i −0.950989 0.309226i \(-0.899930\pi\)
0.808888 0.587963i \(-0.200070\pi\)
\(888\) 0 0
\(889\) −25.2757 34.7890i −0.847719 1.16679i
\(890\) −2.69906 0.471527i −0.0904728 0.0158056i
\(891\) 0 0
\(892\) 13.9560 18.4683i 0.467283 0.618364i
\(893\) 31.2456 + 31.2456i 1.04560 + 1.04560i
\(894\) 0 0
\(895\) 34.7729 + 41.2515i 1.16233 + 1.37889i
\(896\) −24.2913 + 18.1252i −0.811515 + 0.605521i
\(897\) 0 0
\(898\) −6.20698 + 24.8233i −0.207130 + 0.828365i
\(899\) 1.64396 0.0548290
\(900\) 0 0
\(901\) −8.62349 −0.287290
\(902\) −5.50478 + 22.0150i −0.183289 + 0.733021i
\(903\) 0 0
\(904\) 12.5314 19.2113i 0.416789 0.638957i
\(905\) −15.1716 3.74640i −0.504321 0.124535i
\(906\) 0 0
\(907\) 35.5508 + 35.5508i 1.18045 + 1.18045i 0.979629 + 0.200818i \(0.0643600\pi\)
0.200818 + 0.979629i \(0.435640\pi\)
\(908\) −24.7756 18.7223i −0.822208 0.621323i
\(909\) 0 0
\(910\) 3.30243 + 23.2319i 0.109474 + 0.770131i
\(911\) 3.41319 + 4.69785i 0.113084 + 0.155647i 0.861807 0.507236i \(-0.169333\pi\)
−0.748723 + 0.662883i \(0.769333\pi\)
\(912\) 0 0
\(913\) −2.68368 16.9441i −0.0888169 0.560768i
\(914\) −40.2367 + 24.1397i −1.33091 + 0.798469i
\(915\) 0 0
\(916\) −23.3857 24.2822i −0.772686 0.802308i
\(917\) −32.4808 16.5498i −1.07261 0.546522i
\(918\) 0 0
\(919\) −13.3369 41.0468i −0.439944 1.35401i −0.887934 0.459971i \(-0.847860\pi\)
0.447990 0.894039i \(-0.352140\pi\)
\(920\) 3.45494 + 28.0858i 0.113906 + 0.925961i
\(921\) 0 0
\(922\) −42.4433 + 17.1148i −1.39780 + 0.563647i
\(923\) −2.48500 + 15.6897i −0.0817948 + 0.516432i
\(924\) 0 0
\(925\) −12.6298 17.8652i −0.415264 0.587404i
\(926\) 43.2004 + 3.80897i 1.41965 + 0.125171i
\(927\) 0 0
\(928\) −0.0397177 1.25941i −0.00130380 0.0413422i
\(929\) −34.3019 11.1453i −1.12541 0.365667i −0.313578 0.949562i \(-0.601528\pi\)
−0.811829 + 0.583895i \(0.801528\pi\)
\(930\) 0 0
\(931\) −0.842173 + 0.273639i −0.0276011 + 0.00896814i
\(932\) 47.8946 33.4397i 1.56884 1.09535i
\(933\) 0 0
\(934\) 14.4732 16.6268i 0.473579 0.544047i
\(935\) 49.1669 + 20.7394i 1.60793 + 0.678252i
\(936\) 0 0
\(937\) 37.4056 5.92447i 1.22199 0.193544i 0.488084 0.872796i \(-0.337696\pi\)
0.733905 + 0.679252i \(0.237696\pi\)
\(938\) 12.7811 0.885062i 0.417319 0.0288983i
\(939\) 0 0
\(940\) 21.4214 33.0513i 0.698689 1.07801i
\(941\) −25.8261 18.7637i −0.841906 0.611680i 0.0809965 0.996714i \(-0.474190\pi\)
−0.922902 + 0.385034i \(0.874190\pi\)
\(942\) 0 0
\(943\) −9.94877 + 9.94877i −0.323977 + 0.323977i
\(944\) 1.36336 36.2321i 0.0443736 1.17925i
\(945\) 0 0
\(946\) 25.2452 + 10.7361i 0.820793 + 0.349061i
\(947\) −3.14898 + 1.60449i −0.102328 + 0.0521388i −0.504405 0.863467i \(-0.668288\pi\)
0.402077 + 0.915606i \(0.368288\pi\)
\(948\) 0 0
\(949\) 0.0524856i 0.00170375i
\(950\) −30.6568 + 17.8567i −0.994639 + 0.579348i
\(951\) 0 0
\(952\) −14.4786 + 32.3428i −0.469255 + 1.04824i
\(953\) −48.0361 + 24.4756i −1.55604 + 0.792843i −0.999284 0.0378308i \(-0.987955\pi\)
−0.556759 + 0.830674i \(0.687955\pi\)
\(954\) 0 0
\(955\) −13.2772 32.6502i −0.429641 1.05654i
\(956\) 0.905914 0.126069i 0.0292994 0.00407736i
\(957\) 0 0
\(958\) −5.22581 + 8.35047i −0.168838 + 0.269791i
\(959\) 40.9512 + 29.7528i 1.32238 + 0.960767i
\(960\) 0 0
\(961\) 18.9882 13.7957i 0.612523 0.445024i
\(962\) −1.18414 17.1002i −0.0381783 0.551332i
\(963\) 0 0
\(964\) 19.0957 + 39.2868i 0.615032 + 1.26534i
\(965\) 19.8611 4.63246i 0.639350 0.149124i
\(966\) 0 0
\(967\) 7.03165 13.8004i 0.226123 0.443791i −0.749873 0.661582i \(-0.769885\pi\)
0.975995 + 0.217792i \(0.0698853\pi\)
\(968\) 36.8796 21.1928i 1.18535 0.681163i
\(969\) 0 0
\(970\) 33.4513 + 11.4592i 1.07406 + 0.367932i
\(971\) −16.7721 5.44959i −0.538242 0.174886i 0.0272659 0.999628i \(-0.491320\pi\)
−0.565508 + 0.824743i \(0.691320\pi\)
\(972\) 0 0
\(973\) −19.2817 3.05393i −0.618144 0.0979044i
\(974\) 2.59016 29.3769i 0.0829940 0.941295i
\(975\) 0 0
\(976\) 5.40154 + 1.98256i 0.172899 + 0.0634602i
\(977\) 8.24291 52.0437i 0.263714 1.66502i −0.399605 0.916687i \(-0.630853\pi\)
0.663319 0.748337i \(-0.269147\pi\)
\(978\) 0 0
\(979\) −1.36625 + 4.20489i −0.0436656 + 0.134389i
\(980\) 0.395258 + 0.683183i 0.0126261 + 0.0218235i
\(981\) 0 0
\(982\) −5.33297 + 4.46875i −0.170182 + 0.142603i
\(983\) 15.6381 + 7.96803i 0.498779 + 0.254141i 0.685234 0.728323i \(-0.259700\pi\)
−0.186455 + 0.982463i \(0.559700\pi\)
\(984\) 0 0
\(985\) 12.7379 + 1.08549i 0.405862 + 0.0345867i
\(986\) −0.757903 1.26330i −0.0241366 0.0402316i
\(987\) 0 0
\(988\) −27.7910 0.522682i −0.884148 0.0166287i
\(989\) 9.99752 + 13.7604i 0.317903 + 0.437555i
\(990\) 0 0
\(991\) 20.0939 27.6568i 0.638302 0.878548i −0.360221 0.932867i \(-0.617299\pi\)
0.998524 + 0.0543192i \(0.0172988\pi\)
\(992\) −25.5925 32.9862i −0.812563 1.04731i
\(993\) 0 0
\(994\) 4.87311 + 21.1730i 0.154566 + 0.671568i
\(995\) −29.0913 + 46.7902i −0.922256 + 1.48335i
\(996\) 0 0
\(997\) 0.954518 + 1.87335i 0.0302299 + 0.0593295i 0.905628 0.424074i \(-0.139400\pi\)
−0.875398 + 0.483404i \(0.839400\pi\)
\(998\) −27.1842 6.79731i −0.860502 0.215165i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 900.2.bj.d.523.1 96
3.2 odd 2 100.2.l.b.23.12 yes 96
4.3 odd 2 inner 900.2.bj.d.523.12 96
12.11 even 2 100.2.l.b.23.1 96
15.2 even 4 500.2.l.e.407.7 96
15.8 even 4 500.2.l.d.407.6 96
15.14 odd 2 500.2.l.f.343.1 96
25.12 odd 20 inner 900.2.bj.d.487.12 96
60.23 odd 4 500.2.l.d.407.5 96
60.47 odd 4 500.2.l.e.407.8 96
60.59 even 2 500.2.l.f.343.12 96
75.38 even 20 500.2.l.f.207.12 96
75.41 odd 10 500.2.l.e.43.8 96
75.59 odd 10 500.2.l.d.43.5 96
75.62 even 20 100.2.l.b.87.1 yes 96
100.87 even 20 inner 900.2.bj.d.487.1 96
300.59 even 10 500.2.l.d.43.6 96
300.191 even 10 500.2.l.e.43.7 96
300.263 odd 20 500.2.l.f.207.1 96
300.287 odd 20 100.2.l.b.87.12 yes 96
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
100.2.l.b.23.1 96 12.11 even 2
100.2.l.b.23.12 yes 96 3.2 odd 2
100.2.l.b.87.1 yes 96 75.62 even 20
100.2.l.b.87.12 yes 96 300.287 odd 20
500.2.l.d.43.5 96 75.59 odd 10
500.2.l.d.43.6 96 300.59 even 10
500.2.l.d.407.5 96 60.23 odd 4
500.2.l.d.407.6 96 15.8 even 4
500.2.l.e.43.7 96 300.191 even 10
500.2.l.e.43.8 96 75.41 odd 10
500.2.l.e.407.7 96 15.2 even 4
500.2.l.e.407.8 96 60.47 odd 4
500.2.l.f.207.1 96 300.263 odd 20
500.2.l.f.207.12 96 75.38 even 20
500.2.l.f.343.1 96 15.14 odd 2
500.2.l.f.343.12 96 60.59 even 2
900.2.bj.d.487.1 96 100.87 even 20 inner
900.2.bj.d.487.12 96 25.12 odd 20 inner
900.2.bj.d.523.1 96 1.1 even 1 trivial
900.2.bj.d.523.12 96 4.3 odd 2 inner