Properties

Label 500.2.l.d.407.5
Level $500$
Weight $2$
Character 500.407
Analytic conductor $3.993$
Analytic rank $0$
Dimension $96$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [500,2,Mod(7,500)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(500, base_ring=CyclotomicField(20))
 
chi = DirichletCharacter(H, H._module([10, 17]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("500.7");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 500 = 2^{2} \cdot 5^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 500.l (of order \(20\), degree \(8\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.99252010106\)
Analytic rank: \(0\)
Dimension: \(96\)
Relative dimension: \(12\) over \(\Q(\zeta_{20})\)
Twist minimal: no (minimal twist has level 100)
Sato-Tate group: $\mathrm{SU}(2)[C_{20}]$

Embedding invariants

Embedding label 407.5
Character \(\chi\) \(=\) 500.407
Dual form 500.2.l.d.43.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.0976968 + 1.41083i) q^{2} +(-0.170251 + 0.0867473i) q^{3} +(-1.98091 - 0.275668i) q^{4} +(-0.105753 - 0.248671i) q^{6} +(1.89427 - 1.89427i) q^{7} +(0.582451 - 2.76781i) q^{8} +(-1.74190 + 2.39751i) q^{9} +(2.99934 + 4.12824i) q^{11} +(0.361166 - 0.124906i) q^{12} +(-2.73586 + 0.433317i) q^{13} +(2.48743 + 2.85756i) q^{14} +(3.84801 + 1.09215i) q^{16} +(-2.12318 + 4.16697i) q^{17} +(-3.21232 - 2.69176i) q^{18} +(1.55045 + 4.77181i) q^{19} +(-0.158179 + 0.486824i) q^{21} +(-6.11729 + 3.82826i) q^{22} +(4.41914 + 0.699923i) q^{23} +(0.140937 + 0.521748i) q^{24} +(-0.344055 - 3.90218i) q^{26} +(0.178255 - 1.12546i) q^{27} +(-4.27456 + 3.23018i) q^{28} +(0.211843 + 0.0688321i) q^{29} +(-7.01920 + 2.28068i) q^{31} +(-1.91678 + 5.32221i) q^{32} +(-0.868756 - 0.442653i) q^{33} +(-5.67148 - 3.40256i) q^{34} +(4.11146 - 4.26907i) q^{36} +(-0.684516 - 4.32186i) q^{37} +(-6.88371 + 1.72125i) q^{38} +(0.428194 - 0.311101i) q^{39} +(2.54404 + 1.84835i) q^{41} +(-0.671374 - 0.270725i) q^{42} +(2.68807 + 2.68807i) q^{43} +(-4.80341 - 9.00450i) q^{44} +(-1.41921 + 6.16630i) q^{46} +(-3.99829 - 7.84709i) q^{47} +(-0.749870 + 0.147866i) q^{48} -0.176489i q^{49} -0.893612i q^{51} +(5.53894 - 0.104174i) q^{52} +(0.837124 + 1.64295i) q^{53} +(1.57042 + 0.361442i) q^{54} +(-4.13965 - 6.34628i) q^{56} +(-0.677908 - 0.677908i) q^{57} +(-0.117807 + 0.292151i) q^{58} +(7.33328 + 5.32794i) q^{59} +(1.16375 - 0.845512i) q^{61} +(-2.53191 - 10.1258i) q^{62} +(1.24191 + 7.84114i) q^{63} +(-7.32150 - 3.22422i) q^{64} +(0.709385 - 1.18243i) q^{66} +(3.01313 + 1.53527i) q^{67} +(5.35453 - 7.66911i) q^{68} +(-0.813081 + 0.264186i) q^{69} +(5.45415 + 1.77216i) q^{71} +(5.62128 + 6.21766i) q^{72} +(0.00296414 - 0.0187149i) q^{73} +(6.16431 - 0.543507i) q^{74} +(-1.75588 - 9.87994i) q^{76} +(13.5015 + 2.13843i) q^{77} +(0.397079 + 0.634505i) q^{78} +(2.08434 - 6.41493i) q^{79} +(-2.68002 - 8.24826i) q^{81} +(-2.85627 + 3.40864i) q^{82} +(1.52629 - 2.99552i) q^{83} +(0.447539 - 0.920749i) q^{84} +(-4.05504 + 3.52981i) q^{86} +(-0.0420376 + 0.00665810i) q^{87} +(13.1731 - 5.89710i) q^{88} +(0.509284 + 0.700969i) q^{89} +(-4.36162 + 6.00326i) q^{91} +(-8.56098 - 2.60470i) q^{92} +(0.997185 - 0.997185i) q^{93} +(11.4616 - 4.87429i) q^{94} +(-0.135354 - 1.07239i) q^{96} +(-9.96296 + 5.07638i) q^{97} +(0.248997 + 0.0172424i) q^{98} -15.1221 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 96 q + 10 q^{4} - 6 q^{6} - 30 q^{8} + 20 q^{9} + 10 q^{14} - 14 q^{16} - 20 q^{18} - 12 q^{21} + 50 q^{22} - 12 q^{26} + 40 q^{28} + 20 q^{29} + 50 q^{32} + 60 q^{34} - 10 q^{36} + 40 q^{37} - 70 q^{38}+ \cdots + 70 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/500\mathbb{Z}\right)^\times\).

\(n\) \(251\) \(377\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{20}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.0976968 + 1.41083i −0.0690820 + 0.997611i
\(3\) −0.170251 + 0.0867473i −0.0982946 + 0.0500836i −0.502447 0.864608i \(-0.667567\pi\)
0.404152 + 0.914692i \(0.367567\pi\)
\(4\) −1.98091 0.275668i −0.990455 0.137834i
\(5\) 0 0
\(6\) −0.105753 0.248671i −0.0431735 0.101520i
\(7\) 1.89427 1.89427i 0.715965 0.715965i −0.251811 0.967776i \(-0.581026\pi\)
0.967776 + 0.251811i \(0.0810262\pi\)
\(8\) 0.582451 2.76781i 0.205927 0.978567i
\(9\) −1.74190 + 2.39751i −0.580632 + 0.799171i
\(10\) 0 0
\(11\) 2.99934 + 4.12824i 0.904336 + 1.24471i 0.969064 + 0.246809i \(0.0793819\pi\)
−0.0647283 + 0.997903i \(0.520618\pi\)
\(12\) 0.361166 0.124906i 0.104260 0.0360572i
\(13\) −2.73586 + 0.433317i −0.758790 + 0.120181i −0.523828 0.851824i \(-0.675497\pi\)
−0.234962 + 0.972005i \(0.575497\pi\)
\(14\) 2.48743 + 2.85756i 0.664795 + 0.763715i
\(15\) 0 0
\(16\) 3.84801 + 1.09215i 0.962004 + 0.273037i
\(17\) −2.12318 + 4.16697i −0.514947 + 1.01064i 0.476383 + 0.879238i \(0.341948\pi\)
−0.991329 + 0.131402i \(0.958052\pi\)
\(18\) −3.21232 2.69176i −0.757151 0.634453i
\(19\) 1.55045 + 4.77181i 0.355699 + 1.09473i 0.955603 + 0.294657i \(0.0952052\pi\)
−0.599905 + 0.800072i \(0.704795\pi\)
\(20\) 0 0
\(21\) −0.158179 + 0.486824i −0.0345174 + 0.106234i
\(22\) −6.11729 + 3.82826i −1.30421 + 0.816188i
\(23\) 4.41914 + 0.699923i 0.921455 + 0.145944i 0.599100 0.800675i \(-0.295525\pi\)
0.322355 + 0.946619i \(0.395525\pi\)
\(24\) 0.140937 + 0.521748i 0.0287686 + 0.106501i
\(25\) 0 0
\(26\) −0.344055 3.90218i −0.0674747 0.765280i
\(27\) 0.178255 1.12546i 0.0343052 0.216595i
\(28\) −4.27456 + 3.23018i −0.807816 + 0.610447i
\(29\) 0.211843 + 0.0688321i 0.0393383 + 0.0127818i 0.328620 0.944462i \(-0.393416\pi\)
−0.289282 + 0.957244i \(0.593416\pi\)
\(30\) 0 0
\(31\) −7.01920 + 2.28068i −1.26069 + 0.409622i −0.861739 0.507352i \(-0.830624\pi\)
−0.398947 + 0.916974i \(0.630624\pi\)
\(32\) −1.91678 + 5.32221i −0.338842 + 0.940843i
\(33\) −0.868756 0.442653i −0.151231 0.0770560i
\(34\) −5.67148 3.40256i −0.972652 0.583533i
\(35\) 0 0
\(36\) 4.11146 4.26907i 0.685243 0.711512i
\(37\) −0.684516 4.32186i −0.112534 0.710510i −0.977854 0.209290i \(-0.932885\pi\)
0.865320 0.501220i \(-0.167115\pi\)
\(38\) −6.88371 + 1.72125i −1.11669 + 0.279223i
\(39\) 0.428194 0.311101i 0.0685659 0.0498160i
\(40\) 0 0
\(41\) 2.54404 + 1.84835i 0.397312 + 0.288664i 0.768445 0.639915i \(-0.221031\pi\)
−0.371133 + 0.928580i \(0.621031\pi\)
\(42\) −0.671374 0.270725i −0.103595 0.0417738i
\(43\) 2.68807 + 2.68807i 0.409927 + 0.409927i 0.881713 0.471786i \(-0.156391\pi\)
−0.471786 + 0.881713i \(0.656391\pi\)
\(44\) −4.80341 9.00450i −0.724141 1.35748i
\(45\) 0 0
\(46\) −1.41921 + 6.16630i −0.209251 + 0.909171i
\(47\) −3.99829 7.84709i −0.583211 1.14462i −0.974508 0.224351i \(-0.927974\pi\)
0.391298 0.920264i \(-0.372026\pi\)
\(48\) −0.749870 + 0.147866i −0.108234 + 0.0213425i
\(49\) 0.176489i 0.0252127i
\(50\) 0 0
\(51\) 0.893612i 0.125131i
\(52\) 5.53894 0.104174i 0.768113 0.0144464i
\(53\) 0.837124 + 1.64295i 0.114988 + 0.225676i 0.941327 0.337497i \(-0.109580\pi\)
−0.826339 + 0.563173i \(0.809580\pi\)
\(54\) 1.57042 + 0.361442i 0.213707 + 0.0491861i
\(55\) 0 0
\(56\) −4.13965 6.34628i −0.553183 0.848057i
\(57\) −0.677908 0.677908i −0.0897912 0.0897912i
\(58\) −0.117807 + 0.292151i −0.0154688 + 0.0383614i
\(59\) 7.33328 + 5.32794i 0.954712 + 0.693639i 0.951917 0.306357i \(-0.0991103\pi\)
0.00279513 + 0.999996i \(0.499110\pi\)
\(60\) 0 0
\(61\) 1.16375 0.845512i 0.149003 0.108257i −0.510786 0.859708i \(-0.670646\pi\)
0.659789 + 0.751451i \(0.270646\pi\)
\(62\) −2.53191 10.1258i −0.321552 1.28597i
\(63\) 1.24191 + 7.84114i 0.156467 + 0.987891i
\(64\) −7.32150 3.22422i −0.915188 0.403028i
\(65\) 0 0
\(66\) 0.709385 1.18243i 0.0873193 0.145546i
\(67\) 3.01313 + 1.53527i 0.368113 + 0.187563i 0.628255 0.778007i \(-0.283769\pi\)
−0.260142 + 0.965570i \(0.583769\pi\)
\(68\) 5.35453 7.66911i 0.649332 0.930016i
\(69\) −0.813081 + 0.264186i −0.0978834 + 0.0318043i
\(70\) 0 0
\(71\) 5.45415 + 1.77216i 0.647288 + 0.210317i 0.614218 0.789136i \(-0.289471\pi\)
0.0330703 + 0.999453i \(0.489471\pi\)
\(72\) 5.62128 + 6.21766i 0.662475 + 0.732759i
\(73\) 0.00296414 0.0187149i 0.000346927 0.00219041i −0.987514 0.157530i \(-0.949647\pi\)
0.987861 + 0.155339i \(0.0496470\pi\)
\(74\) 6.16431 0.543507i 0.716586 0.0631814i
\(75\) 0 0
\(76\) −1.75588 9.87994i −0.201413 1.13331i
\(77\) 13.5015 + 2.13843i 1.53864 + 0.243697i
\(78\) 0.397079 + 0.634505i 0.0449604 + 0.0718435i
\(79\) 2.08434 6.41493i 0.234506 0.721736i −0.762680 0.646776i \(-0.776117\pi\)
0.997187 0.0749601i \(-0.0238830\pi\)
\(80\) 0 0
\(81\) −2.68002 8.24826i −0.297780 0.916474i
\(82\) −2.85627 + 3.40864i −0.315422 + 0.376422i
\(83\) 1.52629 2.99552i 0.167532 0.328801i −0.791942 0.610596i \(-0.790930\pi\)
0.959475 + 0.281795i \(0.0909299\pi\)
\(84\) 0.447539 0.920749i 0.0488305 0.100462i
\(85\) 0 0
\(86\) −4.05504 + 3.52981i −0.437266 + 0.380629i
\(87\) −0.0420376 + 0.00665810i −0.00450690 + 0.000713823i
\(88\) 13.1731 5.89710i 1.40426 0.628633i
\(89\) 0.509284 + 0.700969i 0.0539840 + 0.0743026i 0.835156 0.550014i \(-0.185378\pi\)
−0.781172 + 0.624316i \(0.785378\pi\)
\(90\) 0 0
\(91\) −4.36162 + 6.00326i −0.457222 + 0.629313i
\(92\) −8.56098 2.60470i −0.892544 0.271559i
\(93\) 0.997185 0.997185i 0.103403 0.103403i
\(94\) 11.4616 4.87429i 1.18217 0.502745i
\(95\) 0 0
\(96\) −0.135354 1.07239i −0.0138145 0.109450i
\(97\) −9.96296 + 5.07638i −1.01158 + 0.515428i −0.879545 0.475816i \(-0.842153\pi\)
−0.132040 + 0.991244i \(0.542153\pi\)
\(98\) 0.248997 + 0.0172424i 0.0251525 + 0.00174175i
\(99\) −15.1221 −1.51982
\(100\) 0 0
\(101\) −11.8084 −1.17498 −0.587489 0.809232i \(-0.699884\pi\)
−0.587489 + 0.809232i \(0.699884\pi\)
\(102\) 1.26074 + 0.0873030i 0.124832 + 0.00864429i
\(103\) −1.72871 + 0.880821i −0.170335 + 0.0867899i −0.537079 0.843532i \(-0.680472\pi\)
0.366744 + 0.930322i \(0.380472\pi\)
\(104\) −0.394164 + 7.82471i −0.0386509 + 0.767276i
\(105\) 0 0
\(106\) −2.39971 + 1.02053i −0.233081 + 0.0991230i
\(107\) 8.09772 8.09772i 0.782836 0.782836i −0.197472 0.980308i \(-0.563273\pi\)
0.980308 + 0.197472i \(0.0632733\pi\)
\(108\) −0.663361 + 2.18029i −0.0638319 + 0.209799i
\(109\) 9.13259 12.5699i 0.874743 1.20398i −0.103106 0.994670i \(-0.532878\pi\)
0.977849 0.209310i \(-0.0671219\pi\)
\(110\) 0 0
\(111\) 0.491450 + 0.676422i 0.0466463 + 0.0642032i
\(112\) 9.35798 5.22035i 0.884246 0.493276i
\(113\) 8.00964 1.26860i 0.753483 0.119340i 0.232135 0.972684i \(-0.425429\pi\)
0.521349 + 0.853344i \(0.325429\pi\)
\(114\) 1.02265 0.890188i 0.0957796 0.0833737i
\(115\) 0 0
\(116\) −0.400668 0.194749i −0.0372011 0.0180820i
\(117\) 3.72669 7.31405i 0.344533 0.676184i
\(118\) −8.23328 + 9.82552i −0.757935 + 0.904513i
\(119\) 3.87149 + 11.9152i 0.354899 + 1.09227i
\(120\) 0 0
\(121\) −4.64713 + 14.3024i −0.422467 + 1.30022i
\(122\) 1.07918 + 1.72446i 0.0977047 + 0.156125i
\(123\) −0.593466 0.0939957i −0.0535110 0.00847531i
\(124\) 14.5331 2.58285i 1.30511 0.231947i
\(125\) 0 0
\(126\) −11.1839 + 0.986083i −0.996340 + 0.0878472i
\(127\) −2.51108 + 15.8543i −0.222822 + 1.40684i 0.581932 + 0.813237i \(0.302297\pi\)
−0.804755 + 0.593608i \(0.797703\pi\)
\(128\) 5.26413 10.0144i 0.465288 0.885159i
\(129\) −0.690830 0.224464i −0.0608242 0.0197630i
\(130\) 0 0
\(131\) 12.9418 4.20505i 1.13073 0.367397i 0.316878 0.948466i \(-0.397365\pi\)
0.813854 + 0.581069i \(0.197365\pi\)
\(132\) 1.59890 + 1.11634i 0.139167 + 0.0971653i
\(133\) 11.9761 + 6.10210i 1.03846 + 0.529119i
\(134\) −2.46038 + 4.10104i −0.212545 + 0.354276i
\(135\) 0 0
\(136\) 10.2967 + 8.30361i 0.882937 + 0.712028i
\(137\) −2.95587 18.6626i −0.252537 1.59445i −0.709327 0.704880i \(-0.751001\pi\)
0.456790 0.889575i \(-0.348999\pi\)
\(138\) −0.293287 1.17293i −0.0249663 0.0998467i
\(139\) 5.89560 4.28340i 0.500058 0.363313i −0.308981 0.951068i \(-0.599988\pi\)
0.809039 + 0.587755i \(0.199988\pi\)
\(140\) 0 0
\(141\) 1.36143 + 0.989135i 0.114653 + 0.0833002i
\(142\) −3.03308 + 7.52177i −0.254530 + 0.631213i
\(143\) −9.99461 9.99461i −0.835792 0.835792i
\(144\) −9.32128 + 7.32326i −0.776773 + 0.610272i
\(145\) 0 0
\(146\) 0.0261140 + 0.00601030i 0.00216121 + 0.000497416i
\(147\) 0.0153100 + 0.0300475i 0.00126274 + 0.00247828i
\(148\) 0.164565 + 8.74992i 0.0135272 + 0.719239i
\(149\) 2.12851i 0.174375i −0.996192 0.0871873i \(-0.972212\pi\)
0.996192 0.0871873i \(-0.0277879\pi\)
\(150\) 0 0
\(151\) 6.10369i 0.496712i −0.968669 0.248356i \(-0.920110\pi\)
0.968669 0.248356i \(-0.0798902\pi\)
\(152\) 14.1105 1.51202i 1.14451 0.122641i
\(153\) −6.29202 12.3488i −0.508680 0.998340i
\(154\) −4.33603 + 18.8395i −0.349408 + 1.51813i
\(155\) 0 0
\(156\) −0.933975 + 0.498224i −0.0747778 + 0.0398899i
\(157\) 11.4802 + 11.4802i 0.916218 + 0.916218i 0.996752 0.0805335i \(-0.0256624\pi\)
−0.0805335 + 0.996752i \(0.525662\pi\)
\(158\) 8.84677 + 3.56737i 0.703811 + 0.283805i
\(159\) −0.285043 0.207096i −0.0226054 0.0164238i
\(160\) 0 0
\(161\) 9.69687 7.04519i 0.764221 0.555239i
\(162\) 11.8988 2.97524i 0.934856 0.233757i
\(163\) −1.23758 7.81379i −0.0969349 0.612023i −0.987555 0.157275i \(-0.949729\pi\)
0.890620 0.454748i \(-0.150271\pi\)
\(164\) −4.52998 4.36273i −0.353732 0.340672i
\(165\) 0 0
\(166\) 4.07707 + 2.44600i 0.316442 + 0.189846i
\(167\) 12.0426 + 6.13600i 0.931883 + 0.474818i 0.852910 0.522059i \(-0.174836\pi\)
0.0789735 + 0.996877i \(0.474836\pi\)
\(168\) 1.25530 + 0.721358i 0.0968487 + 0.0556540i
\(169\) −5.06658 + 1.64623i −0.389737 + 0.126633i
\(170\) 0 0
\(171\) −14.1412 4.59476i −1.08141 0.351370i
\(172\) −4.58381 6.06584i −0.349512 0.462516i
\(173\) −0.171594 + 1.08340i −0.0130460 + 0.0823695i −0.993352 0.115114i \(-0.963277\pi\)
0.980306 + 0.197483i \(0.0632768\pi\)
\(174\) −0.00528654 0.0599586i −0.000400772 0.00454545i
\(175\) 0 0
\(176\) 7.03287 + 19.1613i 0.530122 + 1.44433i
\(177\) −1.71068 0.270946i −0.128583 0.0203655i
\(178\) −1.03871 + 0.650033i −0.0778544 + 0.0487220i
\(179\) 7.45601 22.9472i 0.557289 1.71516i −0.132533 0.991179i \(-0.542311\pi\)
0.689822 0.723979i \(-0.257689\pi\)
\(180\) 0 0
\(181\) −2.15964 6.64670i −0.160525 0.494045i 0.838154 0.545434i \(-0.183635\pi\)
−0.998679 + 0.0513890i \(0.983635\pi\)
\(182\) −8.04349 6.74003i −0.596223 0.499604i
\(183\) −0.124784 + 0.244901i −0.00922426 + 0.0181036i
\(184\) 4.51119 11.8237i 0.332569 0.871652i
\(185\) 0 0
\(186\) 1.30944 + 1.50429i 0.0960130 + 0.110300i
\(187\) −23.5704 + 3.73319i −1.72364 + 0.272998i
\(188\) 5.75707 + 16.6466i 0.419877 + 1.21408i
\(189\) −1.79426 2.46958i −0.130513 0.179636i
\(190\) 0 0
\(191\) 9.26511 12.7523i 0.670400 0.922727i −0.329369 0.944201i \(-0.606836\pi\)
0.999769 + 0.0214746i \(0.00683611\pi\)
\(192\) 1.52619 0.0861932i 0.110143 0.00622046i
\(193\) −6.44920 + 6.44920i −0.464223 + 0.464223i −0.900037 0.435814i \(-0.856461\pi\)
0.435814 + 0.900037i \(0.356461\pi\)
\(194\) −6.18859 14.5520i −0.444315 1.04478i
\(195\) 0 0
\(196\) −0.0486524 + 0.349609i −0.00347517 + 0.0249721i
\(197\) −5.09406 + 2.59555i −0.362936 + 0.184925i −0.625943 0.779869i \(-0.715286\pi\)
0.263007 + 0.964794i \(0.415286\pi\)
\(198\) 1.47738 21.3347i 0.104993 1.51619i
\(199\) −24.6399 −1.74668 −0.873338 0.487115i \(-0.838049\pi\)
−0.873338 + 0.487115i \(0.838049\pi\)
\(200\) 0 0
\(201\) −0.646170 −0.0455773
\(202\) 1.15364 16.6597i 0.0811699 1.17217i
\(203\) 0.531674 0.270901i 0.0373162 0.0190136i
\(204\) −0.246340 + 1.77017i −0.0172473 + 0.123936i
\(205\) 0 0
\(206\) −1.07380 2.52498i −0.0748155 0.175923i
\(207\) −9.37576 + 9.37576i −0.651660 + 0.651660i
\(208\) −11.0009 1.32055i −0.762773 0.0915636i
\(209\) −15.0488 + 20.7129i −1.04095 + 1.43274i
\(210\) 0 0
\(211\) −11.6703 16.0628i −0.803419 1.10581i −0.992306 0.123813i \(-0.960488\pi\)
0.188886 0.981999i \(-0.439512\pi\)
\(212\) −1.20536 3.48530i −0.0827845 0.239372i
\(213\) −1.08231 + 0.171420i −0.0741584 + 0.0117455i
\(214\) 10.6334 + 12.2157i 0.726886 + 0.835046i
\(215\) 0 0
\(216\) −3.01123 1.14890i −0.204888 0.0781728i
\(217\) −8.97603 + 17.6165i −0.609333 + 1.19588i
\(218\) 16.8419 + 14.1126i 1.14068 + 0.955827i
\(219\) 0.00111881 + 0.00344336i 7.56025e−5 + 0.000232681i
\(220\) 0 0
\(221\) 4.00309 12.3203i 0.269277 0.828750i
\(222\) −1.00233 + 0.627270i −0.0672722 + 0.0420996i
\(223\) −11.4317 1.81060i −0.765524 0.121247i −0.238552 0.971130i \(-0.576673\pi\)
−0.526972 + 0.849883i \(0.676673\pi\)
\(224\) 6.45080 + 13.7126i 0.431012 + 0.916210i
\(225\) 0 0
\(226\) 1.00727 + 11.4242i 0.0670028 + 0.759928i
\(227\) −2.42897 + 15.3359i −0.161216 + 1.01788i 0.765861 + 0.643007i \(0.222313\pi\)
−0.927077 + 0.374872i \(0.877687\pi\)
\(228\) 1.15600 + 1.52975i 0.0765579 + 0.101310i
\(229\) 16.0312 + 5.20884i 1.05937 + 0.344210i 0.786339 0.617796i \(-0.211974\pi\)
0.273030 + 0.962006i \(0.411974\pi\)
\(230\) 0 0
\(231\) −2.48416 + 0.807152i −0.163446 + 0.0531067i
\(232\) 0.313902 0.546250i 0.0206087 0.0358631i
\(233\) −26.0233 13.2595i −1.70484 0.868660i −0.984575 0.174963i \(-0.944019\pi\)
−0.720267 0.693697i \(-0.755981\pi\)
\(234\) 9.95483 + 5.97231i 0.650768 + 0.390422i
\(235\) 0 0
\(236\) −13.0578 12.5757i −0.849992 0.818610i
\(237\) 0.201617 + 1.27296i 0.0130964 + 0.0826876i
\(238\) −17.1886 + 4.29796i −1.11417 + 0.278595i
\(239\) −0.369981 + 0.268807i −0.0239321 + 0.0173877i −0.599687 0.800235i \(-0.704708\pi\)
0.575755 + 0.817622i \(0.304708\pi\)
\(240\) 0 0
\(241\) 17.6697 + 12.8378i 1.13820 + 0.826953i 0.986868 0.161530i \(-0.0516429\pi\)
0.151335 + 0.988483i \(0.451643\pi\)
\(242\) −19.7243 7.95364i −1.26793 0.511279i
\(243\) 3.58901 + 3.58901i 0.230235 + 0.230235i
\(244\) −2.53836 + 1.35408i −0.162502 + 0.0866858i
\(245\) 0 0
\(246\) 0.190592 0.828099i 0.0121517 0.0527977i
\(247\) −6.30953 12.3832i −0.401466 0.787921i
\(248\) 2.22413 + 20.7562i 0.141233 + 1.31802i
\(249\) 0.642393i 0.0407100i
\(250\) 0 0
\(251\) 5.42259i 0.342271i 0.985248 + 0.171135i \(0.0547436\pi\)
−0.985248 + 0.171135i \(0.945256\pi\)
\(252\) −0.298570 15.8750i −0.0188082 1.00003i
\(253\) 10.3651 + 20.3426i 0.651647 + 1.27893i
\(254\) −22.1225 5.09164i −1.38809 0.319478i
\(255\) 0 0
\(256\) 13.6144 + 8.40520i 0.850902 + 0.525325i
\(257\) −8.02192 8.02192i −0.500394 0.500394i 0.411166 0.911560i \(-0.365121\pi\)
−0.911560 + 0.411166i \(0.865121\pi\)
\(258\) 0.384174 0.952717i 0.0239176 0.0593136i
\(259\) −9.48341 6.89010i −0.589271 0.428130i
\(260\) 0 0
\(261\) −0.534035 + 0.387999i −0.0330559 + 0.0240165i
\(262\) 4.66826 + 18.6696i 0.288406 + 1.15341i
\(263\) −3.11132 19.6441i −0.191852 1.21131i −0.876127 0.482081i \(-0.839881\pi\)
0.684275 0.729224i \(-0.260119\pi\)
\(264\) −1.73119 + 2.14672i −0.106547 + 0.132122i
\(265\) 0 0
\(266\) −9.77908 + 16.3001i −0.599594 + 0.999422i
\(267\) −0.147513 0.0751618i −0.00902767 0.00459983i
\(268\) −5.54552 3.87185i −0.338747 0.236511i
\(269\) 9.63789 3.13154i 0.587633 0.190933i −8.44003e−5 1.00000i \(-0.500027\pi\)
0.587717 + 0.809067i \(0.300027\pi\)
\(270\) 0 0
\(271\) 1.79674 + 0.583795i 0.109144 + 0.0354630i 0.363080 0.931758i \(-0.381725\pi\)
−0.253936 + 0.967221i \(0.581725\pi\)
\(272\) −12.7210 + 13.7158i −0.771322 + 0.831640i
\(273\) 0.221805 1.40042i 0.0134243 0.0847574i
\(274\) 26.6186 2.34696i 1.60809 0.141785i
\(275\) 0 0
\(276\) 1.68347 0.299188i 0.101333 0.0180090i
\(277\) −11.3089 1.79116i −0.679488 0.107620i −0.192855 0.981227i \(-0.561775\pi\)
−0.486632 + 0.873607i \(0.661775\pi\)
\(278\) 5.46719 + 8.73619i 0.327900 + 0.523962i
\(279\) 6.75877 20.8013i 0.404637 1.24534i
\(280\) 0 0
\(281\) 7.15917 + 22.0337i 0.427080 + 1.31442i 0.900988 + 0.433844i \(0.142843\pi\)
−0.473908 + 0.880574i \(0.657157\pi\)
\(282\) −1.52851 + 1.82411i −0.0910217 + 0.108624i
\(283\) −8.65065 + 16.9779i −0.514228 + 1.00923i 0.477227 + 0.878780i \(0.341642\pi\)
−0.991455 + 0.130449i \(0.958358\pi\)
\(284\) −10.3157 5.01403i −0.612121 0.297528i
\(285\) 0 0
\(286\) 15.0772 13.1243i 0.891533 0.776057i
\(287\) 8.32036 1.31782i 0.491135 0.0777882i
\(288\) −9.42125 13.8662i −0.555153 0.817076i
\(289\) −2.86343 3.94118i −0.168437 0.231834i
\(290\) 0 0
\(291\) 1.25584 1.72852i 0.0736188 0.101328i
\(292\) −0.0110308 + 0.0362553i −0.000645528 + 0.00212168i
\(293\) 9.23047 9.23047i 0.539250 0.539250i −0.384059 0.923309i \(-0.625474\pi\)
0.923309 + 0.384059i \(0.125474\pi\)
\(294\) −0.0438878 + 0.0186643i −0.00255959 + 0.00108852i
\(295\) 0 0
\(296\) −12.3608 0.622665i −0.718455 0.0361916i
\(297\) 5.18082 2.63976i 0.300621 0.153174i
\(298\) 3.00298 + 0.207949i 0.173958 + 0.0120462i
\(299\) −12.3934 −0.716731
\(300\) 0 0
\(301\) 10.1838 0.586986
\(302\) 8.61130 + 0.596311i 0.495525 + 0.0343138i
\(303\) 2.01039 1.02435i 0.115494 0.0588472i
\(304\) 0.754653 + 20.0553i 0.0432823 + 1.15025i
\(305\) 0 0
\(306\) 18.0368 7.67056i 1.03110 0.438497i
\(307\) 9.17187 9.17187i 0.523466 0.523466i −0.395150 0.918616i \(-0.629308\pi\)
0.918616 + 0.395150i \(0.129308\pi\)
\(308\) −26.1559 7.95799i −1.49037 0.453449i
\(309\) 0.217906 0.299922i 0.0123962 0.0170619i
\(310\) 0 0
\(311\) 2.44643 + 3.36722i 0.138724 + 0.190938i 0.872726 0.488209i \(-0.162350\pi\)
−0.734002 + 0.679147i \(0.762350\pi\)
\(312\) −0.611666 1.36636i −0.0346288 0.0773548i
\(313\) −22.1282 + 3.50477i −1.25076 + 0.198101i −0.746462 0.665427i \(-0.768249\pi\)
−0.504300 + 0.863529i \(0.668249\pi\)
\(314\) −17.3182 + 15.0751i −0.977324 + 0.850735i
\(315\) 0 0
\(316\) −5.89727 + 12.1328i −0.331748 + 0.682524i
\(317\) 2.85992 5.61291i 0.160629 0.315252i −0.796639 0.604456i \(-0.793391\pi\)
0.957268 + 0.289204i \(0.0933905\pi\)
\(318\) 0.320026 0.381916i 0.0179462 0.0214168i
\(319\) 0.351235 + 1.08099i 0.0196654 + 0.0605239i
\(320\) 0 0
\(321\) −0.676191 + 2.08110i −0.0377413 + 0.116156i
\(322\) 8.99225 + 14.3690i 0.501118 + 0.800752i
\(323\) −23.1759 3.67070i −1.28954 0.204243i
\(324\) 3.03510 + 17.0779i 0.168617 + 0.948771i
\(325\) 0 0
\(326\) 11.1449 0.982643i 0.617257 0.0544235i
\(327\) −0.464426 + 2.93227i −0.0256828 + 0.162155i
\(328\) 6.59766 5.96484i 0.364295 0.329353i
\(329\) −22.4383 7.29065i −1.23706 0.401946i
\(330\) 0 0
\(331\) 15.4106 5.00720i 0.847042 0.275221i 0.146835 0.989161i \(-0.453091\pi\)
0.700206 + 0.713940i \(0.253091\pi\)
\(332\) −3.84922 + 5.51311i −0.211253 + 0.302571i
\(333\) 11.5541 + 5.88710i 0.633159 + 0.322611i
\(334\) −9.83341 + 16.3906i −0.538060 + 0.896855i
\(335\) 0 0
\(336\) −1.14036 + 1.70055i −0.0622116 + 0.0927726i
\(337\) 3.16369 + 19.9748i 0.172337 + 1.08809i 0.910511 + 0.413484i \(0.135688\pi\)
−0.738174 + 0.674610i \(0.764312\pi\)
\(338\) −1.82757 7.30894i −0.0994069 0.397554i
\(339\) −1.25360 + 0.910796i −0.0680864 + 0.0494676i
\(340\) 0 0
\(341\) −30.4682 22.1364i −1.64995 1.19876i
\(342\) 7.86399 19.5020i 0.425236 1.05455i
\(343\) 12.9255 + 12.9255i 0.697914 + 0.697914i
\(344\) 9.00572 5.87439i 0.485556 0.316726i
\(345\) 0 0
\(346\) −1.51174 0.347935i −0.0812714 0.0187051i
\(347\) 2.63206 + 5.16571i 0.141296 + 0.277310i 0.950800 0.309805i \(-0.100264\pi\)
−0.809504 + 0.587115i \(0.800264\pi\)
\(348\) 0.0851081 0.00160068i 0.00456227 8.58056e-5i
\(349\) 0.0528810i 0.00283065i −0.999999 0.00141533i \(-0.999549\pi\)
0.999999 0.00141533i \(-0.000450513\pi\)
\(350\) 0 0
\(351\) 3.15634i 0.168473i
\(352\) −27.7205 + 8.05022i −1.47751 + 0.429078i
\(353\) −1.86927 3.66865i −0.0994913 0.195263i 0.835896 0.548888i \(-0.184949\pi\)
−0.935387 + 0.353626i \(0.884949\pi\)
\(354\) 0.549388 2.38702i 0.0291996 0.126869i
\(355\) 0 0
\(356\) −0.815611 1.52895i −0.0432273 0.0810342i
\(357\) −1.69274 1.69274i −0.0895893 0.0895893i
\(358\) 31.6463 + 12.7611i 1.67256 + 0.674444i
\(359\) 22.3556 + 16.2423i 1.17989 + 0.857237i 0.992159 0.124985i \(-0.0398882\pi\)
0.187726 + 0.982221i \(0.439888\pi\)
\(360\) 0 0
\(361\) −4.99493 + 3.62903i −0.262891 + 0.191002i
\(362\) 9.58838 2.39754i 0.503954 0.126012i
\(363\) −0.449515 2.83813i −0.0235934 0.148963i
\(364\) 10.2949 10.6896i 0.539599 0.560285i
\(365\) 0 0
\(366\) −0.333325 0.199975i −0.0174232 0.0104529i
\(367\) 6.04885 + 3.08204i 0.315747 + 0.160881i 0.604681 0.796468i \(-0.293301\pi\)
−0.288934 + 0.957349i \(0.593301\pi\)
\(368\) 16.2405 + 7.51967i 0.846595 + 0.391990i
\(369\) −8.86290 + 2.87973i −0.461384 + 0.149913i
\(370\) 0 0
\(371\) 4.69792 + 1.52645i 0.243904 + 0.0792492i
\(372\) −2.25023 + 1.70044i −0.116669 + 0.0881639i
\(373\) 1.79701 11.3458i 0.0930454 0.587466i −0.896477 0.443089i \(-0.853882\pi\)
0.989523 0.144376i \(-0.0461176\pi\)
\(374\) −2.96416 33.6187i −0.153273 1.73838i
\(375\) 0 0
\(376\) −24.0480 + 6.49595i −1.24018 + 0.335003i
\(377\) −0.609399 0.0965194i −0.0313857 0.00497100i
\(378\) 3.65947 2.29013i 0.188223 0.117792i
\(379\) −3.95657 + 12.1771i −0.203235 + 0.625494i 0.796546 + 0.604578i \(0.206658\pi\)
−0.999781 + 0.0209157i \(0.993342\pi\)
\(380\) 0 0
\(381\) −0.947807 2.91705i −0.0485576 0.149445i
\(382\) 17.0863 + 14.3174i 0.874210 + 0.732542i
\(383\) 8.36780 16.4227i 0.427575 0.839163i −0.572243 0.820084i \(-0.693927\pi\)
0.999818 0.0190788i \(-0.00607333\pi\)
\(384\) −0.0274992 + 2.16162i −0.00140331 + 0.110310i
\(385\) 0 0
\(386\) −8.46869 9.72882i −0.431045 0.495184i
\(387\) −11.1270 + 1.76235i −0.565618 + 0.0895851i
\(388\) 21.1351 7.30939i 1.07297 0.371078i
\(389\) 14.6199 + 20.1226i 0.741258 + 1.02025i 0.998545 + 0.0539190i \(0.0171713\pi\)
−0.257287 + 0.966335i \(0.582829\pi\)
\(390\) 0 0
\(391\) −12.2992 + 16.9284i −0.621997 + 0.856105i
\(392\) −0.488488 0.102796i −0.0246724 0.00519199i
\(393\) −1.83858 + 1.83858i −0.0927443 + 0.0927443i
\(394\) −3.16422 7.44045i −0.159411 0.374844i
\(395\) 0 0
\(396\) 29.9554 + 4.16867i 1.50532 + 0.209483i
\(397\) 24.8148 12.6438i 1.24542 0.634574i 0.298001 0.954566i \(-0.403680\pi\)
0.947420 + 0.319992i \(0.103680\pi\)
\(398\) 2.40724 34.7628i 0.120664 1.74250i
\(399\) −2.56828 −0.128575
\(400\) 0 0
\(401\) 10.4612 0.522406 0.261203 0.965284i \(-0.415881\pi\)
0.261203 + 0.965284i \(0.415881\pi\)
\(402\) 0.0631287 0.911639i 0.00314857 0.0454684i
\(403\) 18.2153 9.28115i 0.907368 0.462327i
\(404\) 23.3914 + 3.25520i 1.16376 + 0.161952i
\(405\) 0 0
\(406\) 0.330254 + 0.776571i 0.0163903 + 0.0385405i
\(407\) 15.7886 15.7886i 0.782611 0.782611i
\(408\) −2.47335 0.520485i −0.122449 0.0257679i
\(409\) 9.12365 12.5576i 0.451136 0.620935i −0.521505 0.853248i \(-0.674629\pi\)
0.972641 + 0.232313i \(0.0746294\pi\)
\(410\) 0 0
\(411\) 2.12217 + 2.92092i 0.104679 + 0.144078i
\(412\) 3.66723 1.26828i 0.180672 0.0624836i
\(413\) 23.9837 3.79865i 1.18016 0.186919i
\(414\) −12.3117 14.1436i −0.605086 0.695122i
\(415\) 0 0
\(416\) 2.93783 15.3914i 0.144039 0.754625i
\(417\) −0.632159 + 1.24068i −0.0309569 + 0.0607564i
\(418\) −27.7523 23.2550i −1.35741 1.13744i
\(419\) 11.1568 + 34.3371i 0.545045 + 1.67748i 0.720883 + 0.693056i \(0.243736\pi\)
−0.175838 + 0.984419i \(0.556264\pi\)
\(420\) 0 0
\(421\) 4.95128 15.2385i 0.241311 0.742678i −0.754911 0.655828i \(-0.772320\pi\)
0.996221 0.0868504i \(-0.0276802\pi\)
\(422\) 23.8022 14.8956i 1.15867 0.725108i
\(423\) 25.7781 + 4.08285i 1.25337 + 0.198515i
\(424\) 5.03495 1.36006i 0.244519 0.0660504i
\(425\) 0 0
\(426\) −0.136108 1.54370i −0.00659446 0.0747926i
\(427\) 0.602823 3.80607i 0.0291726 0.184189i
\(428\) −18.2731 + 13.8086i −0.883266 + 0.667463i
\(429\) 2.56860 + 0.834589i 0.124013 + 0.0402943i
\(430\) 0 0
\(431\) −6.40797 + 2.08208i −0.308661 + 0.100290i −0.459252 0.888306i \(-0.651882\pi\)
0.150591 + 0.988596i \(0.451882\pi\)
\(432\) 1.91510 4.13610i 0.0921401 0.198998i
\(433\) 9.39790 + 4.78847i 0.451634 + 0.230119i 0.664985 0.746857i \(-0.268438\pi\)
−0.213351 + 0.976976i \(0.568438\pi\)
\(434\) −23.9770 14.3848i −1.15093 0.690491i
\(435\) 0 0
\(436\) −21.5560 + 22.3823i −1.03234 + 1.07192i
\(437\) 3.51178 + 22.1725i 0.167991 + 1.06065i
\(438\) −0.00496732 + 0.00124206i −0.000237347 + 5.93478e-5i
\(439\) 8.47207 6.15532i 0.404350 0.293778i −0.366960 0.930237i \(-0.619602\pi\)
0.771311 + 0.636459i \(0.219602\pi\)
\(440\) 0 0
\(441\) 0.423135 + 0.307426i 0.0201493 + 0.0146393i
\(442\) 16.9908 + 6.85136i 0.808168 + 0.325886i
\(443\) −3.27124 3.27124i −0.155421 0.155421i 0.625113 0.780534i \(-0.285053\pi\)
−0.780534 + 0.625113i \(0.785053\pi\)
\(444\) −0.787050 1.47541i −0.0373517 0.0700198i
\(445\) 0 0
\(446\) 3.67131 15.9514i 0.173841 0.755319i
\(447\) 0.184643 + 0.362382i 0.00873331 + 0.0171401i
\(448\) −19.9764 + 7.76134i −0.943797 + 0.366689i
\(449\) 18.0931i 0.853868i −0.904283 0.426934i \(-0.859594\pi\)
0.904283 0.426934i \(-0.140406\pi\)
\(450\) 0 0
\(451\) 16.0463i 0.755589i
\(452\) −16.2161 + 0.304986i −0.762741 + 0.0143453i
\(453\) 0.529479 + 1.03916i 0.0248771 + 0.0488241i
\(454\) −21.3991 4.92514i −1.00431 0.231148i
\(455\) 0 0
\(456\) −2.27117 + 1.48147i −0.106357 + 0.0693762i
\(457\) −23.4612 23.4612i −1.09747 1.09747i −0.994706 0.102764i \(-0.967231\pi\)
−0.102764 0.994706i \(-0.532769\pi\)
\(458\) −8.91500 + 22.1084i −0.416571 + 1.03306i
\(459\) 4.31129 + 3.13234i 0.201234 + 0.146205i
\(460\) 0 0
\(461\) −26.1799 + 19.0208i −1.21932 + 0.885887i −0.996043 0.0888686i \(-0.971675\pi\)
−0.223275 + 0.974755i \(0.571675\pi\)
\(462\) −0.896064 3.58359i −0.0416887 0.166724i
\(463\) 4.79718 + 30.2882i 0.222944 + 1.40761i 0.804425 + 0.594054i \(0.202473\pi\)
−0.581481 + 0.813560i \(0.697527\pi\)
\(464\) 0.740002 + 0.496231i 0.0343537 + 0.0230369i
\(465\) 0 0
\(466\) 21.2494 35.4191i 0.984359 1.64076i
\(467\) 13.8884 + 7.07648i 0.642677 + 0.327460i 0.744777 0.667314i \(-0.232556\pi\)
−0.102100 + 0.994774i \(0.532556\pi\)
\(468\) −9.39850 + 13.4611i −0.434446 + 0.622242i
\(469\) 8.61588 2.79947i 0.397844 0.129268i
\(470\) 0 0
\(471\) −2.95039 0.958640i −0.135947 0.0441718i
\(472\) 19.0180 17.1938i 0.875373 0.791410i
\(473\) −3.03456 + 19.1594i −0.139529 + 0.880952i
\(474\) −1.81563 + 0.160084i −0.0833948 + 0.00735291i
\(475\) 0 0
\(476\) −4.38443 24.6702i −0.200960 1.13076i
\(477\) −5.39718 0.854829i −0.247120 0.0391399i
\(478\) −0.343096 0.548244i −0.0156929 0.0250761i
\(479\) −2.15249 + 6.62469i −0.0983498 + 0.302690i −0.988112 0.153734i \(-0.950870\pi\)
0.889762 + 0.456424i \(0.150870\pi\)
\(480\) 0 0
\(481\) 3.74547 + 11.5274i 0.170779 + 0.525604i
\(482\) −19.8382 + 23.6748i −0.903606 + 1.07836i
\(483\) −1.03975 + 2.04063i −0.0473104 + 0.0928519i
\(484\) 13.1483 27.0507i 0.597649 1.22958i
\(485\) 0 0
\(486\) −5.41414 + 4.71287i −0.245590 + 0.213780i
\(487\) −20.5964 + 3.26215i −0.933313 + 0.147822i −0.604529 0.796583i \(-0.706639\pi\)
−0.328784 + 0.944405i \(0.606639\pi\)
\(488\) −1.66239 3.71350i −0.0752528 0.168102i
\(489\) 0.888525 + 1.22295i 0.0401805 + 0.0553037i
\(490\) 0 0
\(491\) 2.89183 3.98026i 0.130506 0.179627i −0.738763 0.673965i \(-0.764590\pi\)
0.869269 + 0.494339i \(0.164590\pi\)
\(492\) 1.14969 + 0.349797i 0.0518321 + 0.0157700i
\(493\) −0.736603 + 0.736603i −0.0331749 + 0.0331749i
\(494\) 18.0870 7.69191i 0.813773 0.346076i
\(495\) 0 0
\(496\) −29.5008 + 1.11007i −1.32463 + 0.0498438i
\(497\) 13.6886 6.97467i 0.614016 0.312857i
\(498\) −0.906310 0.0627597i −0.0406127 0.00281233i
\(499\) 19.8140 0.886994 0.443497 0.896276i \(-0.353738\pi\)
0.443497 + 0.896276i \(0.353738\pi\)
\(500\) 0 0
\(501\) −2.58255 −0.115380
\(502\) −7.65038 0.529770i −0.341453 0.0236448i
\(503\) −24.4770 + 12.4717i −1.09138 + 0.556084i −0.904575 0.426314i \(-0.859812\pi\)
−0.186801 + 0.982398i \(0.559812\pi\)
\(504\) 22.4261 + 1.12970i 0.998939 + 0.0503208i
\(505\) 0 0
\(506\) −29.7127 + 12.6360i −1.32089 + 0.561739i
\(507\) 0.719785 0.719785i 0.0319668 0.0319668i
\(508\) 9.34476 30.7138i 0.414607 1.36270i
\(509\) 8.04575 11.0740i 0.356622 0.490847i −0.592582 0.805510i \(-0.701891\pi\)
0.949204 + 0.314663i \(0.101891\pi\)
\(510\) 0 0
\(511\) −0.0298360 0.0410658i −0.00131987 0.00181664i
\(512\) −13.1884 + 18.3866i −0.582852 + 0.812578i
\(513\) 5.64685 0.894374i 0.249315 0.0394876i
\(514\) 12.1013 10.5339i 0.533767 0.464630i
\(515\) 0 0
\(516\) 1.30659 + 0.635083i 0.0575196 + 0.0279580i
\(517\) 20.4024 40.0420i 0.897298 1.76105i
\(518\) 10.6473 12.7064i 0.467815 0.558287i
\(519\) −0.0647681 0.199336i −0.00284300 0.00874987i
\(520\) 0 0
\(521\) 1.41202 4.34576i 0.0618618 0.190391i −0.915349 0.402661i \(-0.868085\pi\)
0.977211 + 0.212270i \(0.0680855\pi\)
\(522\) −0.495229 0.791341i −0.0216756 0.0346361i
\(523\) 35.8180 + 5.67302i 1.56621 + 0.248064i 0.878437 0.477859i \(-0.158587\pi\)
0.687776 + 0.725923i \(0.258587\pi\)
\(524\) −26.7958 + 4.76219i −1.17058 + 0.208037i
\(525\) 0 0
\(526\) 28.0185 2.47039i 1.22167 0.107714i
\(527\) 5.39950 34.0911i 0.235206 1.48503i
\(528\) −2.85954 2.65214i −0.124446 0.115420i
\(529\) −2.83537 0.921267i −0.123277 0.0400551i
\(530\) 0 0
\(531\) −25.5476 + 8.30092i −1.10867 + 0.360229i
\(532\) −22.0413 15.3891i −0.955613 0.667204i
\(533\) −7.76106 3.95446i −0.336169 0.171286i
\(534\) 0.120452 0.200774i 0.00521249 0.00868834i
\(535\) 0 0
\(536\) 6.00433 7.44555i 0.259347 0.321599i
\(537\) 0.721217 + 4.55359i 0.0311228 + 0.196502i
\(538\) 3.47650 + 13.9034i 0.149882 + 0.599419i
\(539\) 0.728590 0.529352i 0.0313826 0.0228008i
\(540\) 0 0
\(541\) −23.6895 17.2114i −1.01849 0.739976i −0.0525174 0.998620i \(-0.516724\pi\)
−0.965973 + 0.258644i \(0.916724\pi\)
\(542\) −0.999174 + 2.47786i −0.0429182 + 0.106433i
\(543\) 0.944265 + 0.944265i 0.0405223 + 0.0405223i
\(544\) −18.1079 19.2872i −0.776368 0.826931i
\(545\) 0 0
\(546\) 1.95409 + 0.449747i 0.0836275 + 0.0192474i
\(547\) −15.8895 31.1849i −0.679385 1.33337i −0.930814 0.365493i \(-0.880900\pi\)
0.251429 0.967876i \(-0.419100\pi\)
\(548\) 0.710624 + 37.7838i 0.0303563 + 1.61404i
\(549\) 4.26289i 0.181936i
\(550\) 0 0
\(551\) 1.11760i 0.0476112i
\(552\) 0.257636 + 2.40433i 0.0109657 + 0.102335i
\(553\) −8.20329 16.0999i −0.348839 0.684636i
\(554\) 3.63187 15.7800i 0.154304 0.670430i
\(555\) 0 0
\(556\) −12.8594 + 6.85981i −0.545362 + 0.290921i
\(557\) 25.1416 + 25.1416i 1.06528 + 1.06528i 0.997715 + 0.0675692i \(0.0215243\pi\)
0.0675692 + 0.997715i \(0.478476\pi\)
\(558\) 28.6869 + 11.5677i 1.21442 + 0.489701i
\(559\) −8.51896 6.18939i −0.360314 0.261783i
\(560\) 0 0
\(561\) 3.68905 2.68025i 0.155752 0.113160i
\(562\) −31.7853 + 7.94779i −1.34078 + 0.335257i
\(563\) 4.32450 + 27.3038i 0.182256 + 1.15072i 0.893929 + 0.448208i \(0.147937\pi\)
−0.711674 + 0.702510i \(0.752063\pi\)
\(564\) −2.42419 2.33469i −0.102077 0.0983082i
\(565\) 0 0
\(566\) −23.1078 13.8633i −0.971294 0.582719i
\(567\) −20.7011 10.5477i −0.869364 0.442963i
\(568\) 8.08177 14.0638i 0.339104 0.590105i
\(569\) −8.77237 + 2.85032i −0.367757 + 0.119491i −0.487065 0.873366i \(-0.661932\pi\)
0.119308 + 0.992857i \(0.461932\pi\)
\(570\) 0 0
\(571\) 17.2235 + 5.59625i 0.720780 + 0.234196i 0.646362 0.763031i \(-0.276290\pi\)
0.0744189 + 0.997227i \(0.476290\pi\)
\(572\) 17.0432 + 22.5536i 0.712614 + 0.943015i
\(573\) −0.471166 + 2.97482i −0.0196832 + 0.124275i
\(574\) 1.04635 + 11.8674i 0.0436737 + 0.495336i
\(575\) 0 0
\(576\) 20.4834 11.9371i 0.853475 0.497381i
\(577\) −10.8794 1.72312i −0.452914 0.0717345i −0.0741898 0.997244i \(-0.523637\pi\)
−0.378724 + 0.925510i \(0.623637\pi\)
\(578\) 5.84010 3.65479i 0.242916 0.152019i
\(579\) 0.538533 1.65743i 0.0223807 0.0688806i
\(580\) 0 0
\(581\) −2.78310 8.56552i −0.115463 0.355357i
\(582\) 2.31596 + 1.94066i 0.0959998 + 0.0804429i
\(583\) −4.27167 + 8.38362i −0.176914 + 0.347214i
\(584\) −0.0500726 0.0191047i −0.00207202 0.000790556i
\(585\) 0 0
\(586\) 12.1209 + 13.9245i 0.500709 + 0.575214i
\(587\) 46.2814 7.33025i 1.91024 0.302552i 0.915277 0.402825i \(-0.131972\pi\)
0.994960 + 0.100273i \(0.0319715\pi\)
\(588\) −0.0220445 0.0637419i −0.000909101 0.00262867i
\(589\) −21.7659 29.9582i −0.896849 1.23441i
\(590\) 0 0
\(591\) 0.642112 0.883792i 0.0264130 0.0363543i
\(592\) 2.08608 17.3782i 0.0857375 0.714239i
\(593\) 11.5238 11.5238i 0.473225 0.473225i −0.429731 0.902957i \(-0.641392\pi\)
0.902957 + 0.429731i \(0.141392\pi\)
\(594\) 3.21811 + 7.56717i 0.132041 + 0.310485i
\(595\) 0 0
\(596\) −0.586763 + 4.21640i −0.0240348 + 0.172710i
\(597\) 4.19497 2.13745i 0.171689 0.0874798i
\(598\) 1.21080 17.4851i 0.0495132 0.715019i
\(599\) 7.21615 0.294844 0.147422 0.989074i \(-0.452902\pi\)
0.147422 + 0.989074i \(0.452902\pi\)
\(600\) 0 0
\(601\) −15.0642 −0.614483 −0.307241 0.951632i \(-0.599406\pi\)
−0.307241 + 0.951632i \(0.599406\pi\)
\(602\) −0.994928 + 14.3677i −0.0405502 + 0.585584i
\(603\) −8.92939 + 4.54975i −0.363633 + 0.185280i
\(604\) −1.68259 + 12.0909i −0.0684637 + 0.491971i
\(605\) 0 0
\(606\) 1.24877 + 2.93641i 0.0507280 + 0.119283i
\(607\) 3.59194 3.59194i 0.145792 0.145792i −0.630443 0.776235i \(-0.717127\pi\)
0.776235 + 0.630443i \(0.217127\pi\)
\(608\) −28.3685 0.894649i −1.15049 0.0362828i
\(609\) −0.0670182 + 0.0922426i −0.00271571 + 0.00373786i
\(610\) 0 0
\(611\) 14.3390 + 19.7360i 0.580095 + 0.798433i
\(612\) 9.05976 + 26.1963i 0.366219 + 1.05892i
\(613\) 4.97817 0.788465i 0.201066 0.0318458i −0.0550888 0.998481i \(-0.517544\pi\)
0.256155 + 0.966636i \(0.417544\pi\)
\(614\) 12.0439 + 13.8360i 0.486053 + 0.558378i
\(615\) 0 0
\(616\) 13.7828 36.1241i 0.555323 1.45548i
\(617\) −8.43913 + 16.5627i −0.339746 + 0.666790i −0.996154 0.0876162i \(-0.972075\pi\)
0.656408 + 0.754406i \(0.272075\pi\)
\(618\) 0.401851 + 0.336731i 0.0161648 + 0.0135453i
\(619\) −6.54265 20.1362i −0.262971 0.809343i −0.992154 0.125024i \(-0.960099\pi\)
0.729182 0.684320i \(-0.239901\pi\)
\(620\) 0 0
\(621\) 1.57547 4.84880i 0.0632215 0.194576i
\(622\) −4.98960 + 3.12254i −0.200065 + 0.125203i
\(623\) 2.29254 + 0.363103i 0.0918487 + 0.0145474i
\(624\) 1.98746 0.729471i 0.0795623 0.0292022i
\(625\) 0 0
\(626\) −2.78279 31.5617i −0.111223 1.26146i
\(627\) 0.765290 4.83185i 0.0305627 0.192966i
\(628\) −19.5765 25.9059i −0.781187 1.03376i
\(629\) 19.4624 + 6.32373i 0.776018 + 0.252144i
\(630\) 0 0
\(631\) −3.22756 + 1.04870i −0.128487 + 0.0417480i −0.372555 0.928010i \(-0.621518\pi\)
0.244068 + 0.969758i \(0.421518\pi\)
\(632\) −16.5413 9.50542i −0.657976 0.378105i
\(633\) 3.38030 + 1.72235i 0.134355 + 0.0684572i
\(634\) 7.63948 + 4.58324i 0.303402 + 0.182024i
\(635\) 0 0
\(636\) 0.507555 + 0.488815i 0.0201259 + 0.0193828i
\(637\) 0.0764758 + 0.482849i 0.00303008 + 0.0191312i
\(638\) −1.55942 + 0.389926i −0.0617378 + 0.0154373i
\(639\) −13.7493 + 9.98948i −0.543915 + 0.395178i
\(640\) 0 0
\(641\) 31.0401 + 22.5519i 1.22601 + 0.890748i 0.996585 0.0825780i \(-0.0263153\pi\)
0.229425 + 0.973326i \(0.426315\pi\)
\(642\) −2.87003 1.15731i −0.113271 0.0456754i
\(643\) −6.79295 6.79295i −0.267888 0.267888i 0.560361 0.828249i \(-0.310662\pi\)
−0.828249 + 0.560361i \(0.810662\pi\)
\(644\) −21.1508 + 11.2828i −0.833457 + 0.444604i
\(645\) 0 0
\(646\) 7.44296 32.3388i 0.292840 1.27235i
\(647\) 15.4461 + 30.3148i 0.607251 + 1.19180i 0.966044 + 0.258379i \(0.0831884\pi\)
−0.358793 + 0.933417i \(0.616812\pi\)
\(648\) −24.3906 + 2.61358i −0.958152 + 0.102671i
\(649\) 46.2539i 1.81562i
\(650\) 0 0
\(651\) 3.77787i 0.148066i
\(652\) 0.297529 + 15.8196i 0.0116521 + 0.619542i
\(653\) 2.90673 + 5.70477i 0.113749 + 0.223245i 0.940862 0.338791i \(-0.110018\pi\)
−0.827112 + 0.562036i \(0.810018\pi\)
\(654\) −4.09158 0.941702i −0.159993 0.0368235i
\(655\) 0 0
\(656\) 7.77083 + 9.89096i 0.303400 + 0.386177i
\(657\) 0.0397059 + 0.0397059i 0.00154907 + 0.00154907i
\(658\) 12.4780 30.9445i 0.486445 1.20634i
\(659\) 11.5792 + 8.41281i 0.451063 + 0.327716i 0.790015 0.613087i \(-0.210073\pi\)
−0.338952 + 0.940804i \(0.610073\pi\)
\(660\) 0 0
\(661\) −0.382235 + 0.277710i −0.0148672 + 0.0108017i −0.595194 0.803582i \(-0.702925\pi\)
0.580327 + 0.814384i \(0.302925\pi\)
\(662\) 5.55877 + 22.2310i 0.216048 + 0.864031i
\(663\) 0.387218 + 2.44480i 0.0150383 + 0.0949480i
\(664\) −7.40203 5.96923i −0.287254 0.231651i
\(665\) 0 0
\(666\) −9.43452 + 15.7257i −0.365580 + 0.609360i
\(667\) 0.887989 + 0.452453i 0.0343831 + 0.0175190i
\(668\) −22.1638 15.4746i −0.857543 0.598731i
\(669\) 2.10333 0.683413i 0.0813193 0.0264223i
\(670\) 0 0
\(671\) 6.98096 + 2.26825i 0.269497 + 0.0875648i
\(672\) −2.28779 1.77499i −0.0882533 0.0684719i
\(673\) 3.35456 21.1799i 0.129309 0.816424i −0.834729 0.550660i \(-0.814376\pi\)
0.964038 0.265764i \(-0.0856241\pi\)
\(674\) −28.4902 + 2.51198i −1.09740 + 0.0967578i
\(675\) 0 0
\(676\) 10.4903 1.86434i 0.403471 0.0717055i
\(677\) −43.8961 6.95245i −1.68706 0.267204i −0.762155 0.647395i \(-0.775858\pi\)
−0.924908 + 0.380191i \(0.875858\pi\)
\(678\) −1.16251 1.85761i −0.0446459 0.0713410i
\(679\) −9.25648 + 28.4885i −0.355231 + 1.09329i
\(680\) 0 0
\(681\) −0.916813 2.82166i −0.0351323 0.108126i
\(682\) 34.2075 40.8229i 1.30987 1.56319i
\(683\) 11.1168 21.8180i 0.425374 0.834843i −0.574493 0.818510i \(-0.694801\pi\)
0.999867 0.0163335i \(-0.00519935\pi\)
\(684\) 26.7458 + 13.0001i 1.02265 + 0.497071i
\(685\) 0 0
\(686\) −19.4986 + 16.9730i −0.744460 + 0.648033i
\(687\) −3.18118 + 0.503849i −0.121369 + 0.0192230i
\(688\) 7.40796 + 13.2795i 0.282426 + 0.506276i
\(689\) −3.00217 4.13213i −0.114374 0.157422i
\(690\) 0 0
\(691\) −9.83947 + 13.5429i −0.374311 + 0.515195i −0.954066 0.299596i \(-0.903148\pi\)
0.579755 + 0.814791i \(0.303148\pi\)
\(692\) 0.638571 2.09882i 0.0242748 0.0797851i
\(693\) −28.6452 + 28.6452i −1.08814 + 1.08814i
\(694\) −7.54511 + 3.20873i −0.286408 + 0.121802i
\(695\) 0 0
\(696\) −0.00605649 + 0.120230i −0.000229571 + 0.00455730i
\(697\) −13.1035 + 6.67656i −0.496330 + 0.252893i
\(698\) 0.0746063 + 0.00516630i 0.00282389 + 0.000195547i
\(699\) 5.58072 0.211082
\(700\) 0 0
\(701\) 50.9450 1.92417 0.962083 0.272757i \(-0.0879356\pi\)
0.962083 + 0.272757i \(0.0879356\pi\)
\(702\) −4.45307 0.308364i −0.168070 0.0116384i
\(703\) 19.5618 9.96723i 0.737787 0.375921i
\(704\) −8.64933 39.8955i −0.325984 1.50362i
\(705\) 0 0
\(706\) 5.35848 2.27882i 0.201669 0.0857644i
\(707\) −22.3682 + 22.3682i −0.841244 + 0.841244i
\(708\) 3.31402 + 1.00830i 0.124549 + 0.0378942i
\(709\) −23.6335 + 32.5288i −0.887576 + 1.22164i 0.0866885 + 0.996235i \(0.472372\pi\)
−0.974264 + 0.225408i \(0.927628\pi\)
\(710\) 0 0
\(711\) 11.7492 + 16.1714i 0.440629 + 0.606473i
\(712\) 2.23678 1.00132i 0.0838268 0.0375260i
\(713\) −32.6152 + 5.16574i −1.22145 + 0.193458i
\(714\) 2.55355 2.22280i 0.0955643 0.0831863i
\(715\) 0 0
\(716\) −21.0955 + 43.4011i −0.788376 + 1.62197i
\(717\) 0.0396715 0.0778596i 0.00148156 0.00290772i
\(718\) −25.0993 + 29.9533i −0.936698 + 1.11785i
\(719\) −3.14270 9.67223i −0.117203 0.360713i 0.875197 0.483766i \(-0.160731\pi\)
−0.992400 + 0.123053i \(0.960731\pi\)
\(720\) 0 0
\(721\) −1.60612 + 4.94314i −0.0598152 + 0.184092i
\(722\) −4.63197 7.40157i −0.172384 0.275458i
\(723\) −4.12192 0.652848i −0.153296 0.0242797i
\(724\) 2.44578 + 13.7619i 0.0908966 + 0.511455i
\(725\) 0 0
\(726\) 4.04805 0.356916i 0.150237 0.0132464i
\(727\) −1.37117 + 8.65722i −0.0508538 + 0.321078i 0.949127 + 0.314893i \(0.101969\pi\)
−0.999981 + 0.00618506i \(0.998031\pi\)
\(728\) 14.0754 + 15.5687i 0.521670 + 0.577016i
\(729\) 23.8224 + 7.74037i 0.882312 + 0.286681i
\(730\) 0 0
\(731\) −16.9084 + 5.49386i −0.625378 + 0.203198i
\(732\) 0.314697 0.450729i 0.0116315 0.0166594i
\(733\) −0.234567 0.119518i −0.00866394 0.00441450i 0.449653 0.893203i \(-0.351548\pi\)
−0.458317 + 0.888789i \(0.651548\pi\)
\(734\) −4.93920 + 8.23282i −0.182309 + 0.303879i
\(735\) 0 0
\(736\) −12.1957 + 22.1780i −0.449538 + 0.817493i
\(737\) 2.69946 + 17.0437i 0.0994360 + 0.627814i
\(738\) −3.19695 12.7854i −0.117681 0.470638i
\(739\) −5.97506 + 4.34113i −0.219796 + 0.159691i −0.692235 0.721672i \(-0.743374\pi\)
0.472439 + 0.881363i \(0.343374\pi\)
\(740\) 0 0
\(741\) 2.14841 + 1.56091i 0.0789238 + 0.0573415i
\(742\) −2.61254 + 6.47886i −0.0959092 + 0.237846i
\(743\) −7.03452 7.03452i −0.258071 0.258071i 0.566198 0.824269i \(-0.308414\pi\)
−0.824269 + 0.566198i \(0.808414\pi\)
\(744\) −2.17920 3.34083i −0.0798935 0.122481i
\(745\) 0 0
\(746\) 15.8316 + 3.64373i 0.579634 + 0.133406i
\(747\) 4.52315 + 8.87719i 0.165494 + 0.324799i
\(748\) 47.7200 0.897500i 1.74482 0.0328159i
\(749\) 30.6785i 1.12097i
\(750\) 0 0
\(751\) 29.2029i 1.06563i −0.846232 0.532814i \(-0.821134\pi\)
0.846232 0.532814i \(-0.178866\pi\)
\(752\) −6.81530 34.5624i −0.248529 1.26036i
\(753\) −0.470395 0.923203i −0.0171422 0.0336434i
\(754\) 0.195709 0.850332i 0.00712731 0.0309673i
\(755\) 0 0
\(756\) 2.87348 + 5.38664i 0.104507 + 0.195910i
\(757\) 20.1848 + 20.1848i 0.733630 + 0.733630i 0.971337 0.237707i \(-0.0763959\pi\)
−0.237707 + 0.971337i \(0.576396\pi\)
\(758\) −16.7933 6.77172i −0.609959 0.245960i
\(759\) −3.52933 2.56421i −0.128107 0.0930749i
\(760\) 0 0
\(761\) 7.93313 5.76375i 0.287576 0.208936i −0.434639 0.900605i \(-0.643124\pi\)
0.722215 + 0.691669i \(0.243124\pi\)
\(762\) 4.20807 1.05221i 0.152442 0.0381176i
\(763\) −6.51124 41.1103i −0.235723 1.48829i
\(764\) −21.8688 + 22.7071i −0.791184 + 0.821516i
\(765\) 0 0
\(766\) 22.3523 + 13.4100i 0.807620 + 0.484524i
\(767\) −22.3715 11.3988i −0.807788 0.411589i
\(768\) −3.04700 0.249980i −0.109949 0.00902038i
\(769\) −17.2976 + 5.62032i −0.623766 + 0.202674i −0.603812 0.797127i \(-0.706352\pi\)
−0.0199544 + 0.999801i \(0.506352\pi\)
\(770\) 0 0
\(771\) 2.06162 + 0.669862i 0.0742475 + 0.0241245i
\(772\) 14.5531 10.9974i 0.523778 0.395807i
\(773\) −6.76671 + 42.7233i −0.243382 + 1.53665i 0.498957 + 0.866627i \(0.333717\pi\)
−0.742339 + 0.670025i \(0.766283\pi\)
\(774\) −1.39931 15.8706i −0.0502970 0.570455i
\(775\) 0 0
\(776\) 8.24751 + 30.5323i 0.296068 + 1.09604i
\(777\) 2.21226 + 0.350388i 0.0793644 + 0.0125701i
\(778\) −29.8179 + 18.6603i −1.06902 + 0.669006i
\(779\) −4.87557 + 15.0055i −0.174685 + 0.537626i
\(780\) 0 0
\(781\) 9.04296 + 27.8314i 0.323582 + 0.995884i
\(782\) −22.6816 19.0060i −0.811091 0.679653i
\(783\) 0.115230 0.226151i 0.00411798 0.00808199i
\(784\) 0.192752 0.679133i 0.00688401 0.0242547i
\(785\) 0 0
\(786\) −2.41432 2.77356i −0.0861158 0.0989297i
\(787\) 11.9702 1.89589i 0.426691 0.0675813i 0.0606043 0.998162i \(-0.480697\pi\)
0.366087 + 0.930581i \(0.380697\pi\)
\(788\) 10.8064 3.73729i 0.384961 0.133135i
\(789\) 2.23378 + 3.07453i 0.0795245 + 0.109456i
\(790\) 0 0
\(791\) 12.7693 17.5755i 0.454025 0.624911i
\(792\) −8.80785 + 41.8549i −0.312973 + 1.48725i
\(793\) −2.81747 + 2.81747i −0.100051 + 0.100051i
\(794\) 15.4140 + 36.2449i 0.547022 + 1.28628i
\(795\) 0 0
\(796\) 48.8094 + 6.79243i 1.73000 + 0.240751i
\(797\) −14.6702 + 7.47486i −0.519646 + 0.264773i −0.694083 0.719895i \(-0.744190\pi\)
0.174436 + 0.984668i \(0.444190\pi\)
\(798\) 0.250912 3.62342i 0.00888221 0.128268i
\(799\) 41.1877 1.45712
\(800\) 0 0
\(801\) −2.56770 −0.0907253
\(802\) −1.02202 + 14.7590i −0.0360889 + 0.521158i
\(803\) 0.0861499 0.0438956i 0.00304016 0.00154904i
\(804\) 1.28000 + 0.178128i 0.0451423 + 0.00628210i
\(805\) 0 0
\(806\) 11.3146 + 26.6055i 0.398540 + 0.937139i
\(807\) −1.36921 + 1.36921i −0.0481985 + 0.0481985i
\(808\) −6.87780 + 32.6833i −0.241960 + 1.14980i
\(809\) −12.5671 + 17.2972i −0.441837 + 0.608136i −0.970619 0.240621i \(-0.922649\pi\)
0.528782 + 0.848757i \(0.322649\pi\)
\(810\) 0 0
\(811\) −18.5355 25.5120i −0.650871 0.895847i 0.348265 0.937396i \(-0.386771\pi\)
−0.999136 + 0.0415488i \(0.986771\pi\)
\(812\) −1.12788 + 0.390066i −0.0395807 + 0.0136886i
\(813\) −0.356539 + 0.0564703i −0.0125044 + 0.00198050i
\(814\) 20.7326 + 23.8176i 0.726677 + 0.834806i
\(815\) 0 0
\(816\) 0.975957 3.43863i 0.0341653 0.120376i
\(817\) −8.65922 + 16.9947i −0.302948 + 0.594569i
\(818\) 16.8254 + 14.0988i 0.588286 + 0.492953i
\(819\) −6.79540 20.9141i −0.237451 0.730798i
\(820\) 0 0
\(821\) −6.22378 + 19.1548i −0.217211 + 0.668508i 0.781778 + 0.623557i \(0.214313\pi\)
−0.998989 + 0.0449507i \(0.985687\pi\)
\(822\) −4.32826 + 2.70867i −0.150966 + 0.0944757i
\(823\) −41.6729 6.60034i −1.45263 0.230073i −0.620302 0.784363i \(-0.712990\pi\)
−0.832324 + 0.554289i \(0.812990\pi\)
\(824\) 1.43105 + 5.29776i 0.0498531 + 0.184556i
\(825\) 0 0
\(826\) 3.01613 + 34.2082i 0.104945 + 1.19026i
\(827\) 2.15397 13.5996i 0.0749008 0.472905i −0.921517 0.388338i \(-0.873049\pi\)
0.996418 0.0845669i \(-0.0269507\pi\)
\(828\) 21.1571 15.9879i 0.735261 0.555620i
\(829\) −35.5980 11.5665i −1.23637 0.401721i −0.383352 0.923602i \(-0.625230\pi\)
−0.853018 + 0.521881i \(0.825230\pi\)
\(830\) 0 0
\(831\) 2.08074 0.676072i 0.0721800 0.0234527i
\(832\) 21.4277 + 5.64848i 0.742872 + 0.195826i
\(833\) 0.735426 + 0.374718i 0.0254810 + 0.0129832i
\(834\) −1.68864 1.01308i −0.0584727 0.0350802i
\(835\) 0 0
\(836\) 35.5203 36.8820i 1.22850 1.27559i
\(837\) 1.31560 + 8.30637i 0.0454738 + 0.287110i
\(838\) −49.5339 + 12.3858i −1.71112 + 0.427859i
\(839\) 6.53213 4.74587i 0.225514 0.163846i −0.469291 0.883044i \(-0.655491\pi\)
0.694805 + 0.719198i \(0.255491\pi\)
\(840\) 0 0
\(841\) −23.4214 17.0166i −0.807633 0.586780i
\(842\) 21.0153 + 8.47419i 0.724234 + 0.292040i
\(843\) −3.13022 3.13022i −0.107810 0.107810i
\(844\) 18.6899 + 35.0362i 0.643332 + 1.20600i
\(845\) 0 0
\(846\) −8.27867 + 35.9698i −0.284626 + 1.23667i
\(847\) 18.2897 + 35.8955i 0.628440 + 1.23338i
\(848\) 1.42692 + 7.23635i 0.0490008 + 0.248497i
\(849\) 3.64092i 0.124956i
\(850\) 0 0
\(851\) 19.5780i 0.671126i
\(852\) 2.19121 0.0412114i 0.0750695 0.00141188i
\(853\) −15.8344 31.0768i −0.542160 1.06405i −0.985812 0.167851i \(-0.946317\pi\)
0.443652 0.896199i \(-0.353683\pi\)
\(854\) 5.31085 + 1.22232i 0.181733 + 0.0418271i
\(855\) 0 0
\(856\) −17.6964 27.1294i −0.604850 0.927265i
\(857\) −31.7738 31.7738i −1.08537 1.08537i −0.995998 0.0893726i \(-0.971514\pi\)
−0.0893726 0.995998i \(-0.528486\pi\)
\(858\) −1.42841 + 3.54234i −0.0487652 + 0.120933i
\(859\) −34.2690 24.8979i −1.16924 0.849504i −0.178324 0.983972i \(-0.557068\pi\)
−0.990918 + 0.134468i \(0.957068\pi\)
\(860\) 0 0
\(861\) −1.30223 + 0.946129i −0.0443800 + 0.0322440i
\(862\) −2.31143 9.24400i −0.0787275 0.314852i
\(863\) −2.60778 16.4649i −0.0887700 0.560472i −0.991484 0.130230i \(-0.958428\pi\)
0.902714 0.430242i \(-0.141572\pi\)
\(864\) 5.64826 + 3.10597i 0.192158 + 0.105667i
\(865\) 0 0
\(866\) −7.67388 + 12.7911i −0.260769 + 0.434658i
\(867\) 0.829389 + 0.422595i 0.0281675 + 0.0143521i
\(868\) 22.6370 32.4222i 0.768350 1.10048i
\(869\) 32.7340 10.6359i 1.11043 0.360799i
\(870\) 0 0
\(871\) −8.90876 2.89463i −0.301862 0.0980809i
\(872\) −29.4718 32.5986i −0.998042 1.10393i
\(873\) 5.18374 32.7288i 0.175443 1.10770i
\(874\) −31.6248 + 2.78836i −1.06973 + 0.0943177i
\(875\) 0 0
\(876\) −0.00126705 0.00712941i −4.28096e−5 0.000240880i
\(877\) 14.6759 + 2.32444i 0.495571 + 0.0784907i 0.399217 0.916856i \(-0.369282\pi\)
0.0963539 + 0.995347i \(0.469282\pi\)
\(878\) 7.85645 + 12.5541i 0.265142 + 0.423679i
\(879\) −0.770780 + 2.37222i −0.0259978 + 0.0800129i
\(880\) 0 0
\(881\) −15.1162 46.5230i −0.509279 1.56740i −0.793456 0.608628i \(-0.791720\pi\)
0.284177 0.958772i \(-0.408280\pi\)
\(882\) −0.475066 + 0.566939i −0.0159963 + 0.0190898i
\(883\) −0.740506 + 1.45332i −0.0249200 + 0.0489083i −0.903131 0.429365i \(-0.858737\pi\)
0.878211 + 0.478274i \(0.158737\pi\)
\(884\) −11.3261 + 23.3018i −0.380937 + 0.783725i
\(885\) 0 0
\(886\) 4.93478 4.29560i 0.165787 0.144313i
\(887\) −26.7206 + 4.23212i −0.897189 + 0.142101i −0.587963 0.808888i \(-0.700070\pi\)
−0.309226 + 0.950989i \(0.600070\pi\)
\(888\) 2.15845 0.966254i 0.0724329 0.0324254i
\(889\) 25.2757 + 34.7890i 0.847719 + 1.16679i
\(890\) 0 0
\(891\) 26.0125 35.8032i 0.871452 1.19945i
\(892\) 22.1461 + 6.73800i 0.741505 + 0.225605i
\(893\) 31.2456 31.2456i 1.04560 1.04560i
\(894\) −0.529300 + 0.225097i −0.0177024 + 0.00752837i
\(895\) 0 0
\(896\) −8.99834 28.9417i −0.300614 0.966873i
\(897\) 2.11000 1.07510i 0.0704508 0.0358965i
\(898\) 25.5264 + 1.76764i 0.851828 + 0.0589870i
\(899\) −1.64396 −0.0548290
\(900\) 0 0
\(901\) −8.62349 −0.287290
\(902\) −22.6386 1.56767i −0.753784 0.0521976i
\(903\) −1.73381 + 0.883420i −0.0576976 + 0.0293984i
\(904\) 1.15397 22.9080i 0.0383806 0.761910i
\(905\) 0 0
\(906\) −1.51781 + 0.645485i −0.0504260 + 0.0214448i
\(907\) −35.5508 + 35.5508i −1.18045 + 1.18045i −0.200818 + 0.979629i \(0.564360\pi\)
−0.979629 + 0.200818i \(0.935640\pi\)
\(908\) 9.03918 29.7094i 0.299976 0.985942i
\(909\) 20.5690 28.3108i 0.682230 0.939009i
\(910\) 0 0
\(911\) 3.41319 + 4.69785i 0.113084 + 0.155647i 0.861807 0.507236i \(-0.169333\pi\)
−0.748723 + 0.662883i \(0.769333\pi\)
\(912\) −1.86823 3.34898i −0.0618631 0.110896i
\(913\) 16.9441 2.68368i 0.560768 0.0888169i
\(914\) 35.3920 30.8078i 1.17066 1.01903i
\(915\) 0 0
\(916\) −30.3204 14.7375i −1.00181 0.486941i
\(917\) 16.5498 32.4808i 0.546522 1.07261i
\(918\) −4.84041 + 5.77650i −0.159757 + 0.190653i
\(919\) −13.3369 41.0468i −0.439944 1.35401i −0.887934 0.459971i \(-0.847860\pi\)
0.447990 0.894039i \(-0.352140\pi\)
\(920\) 0 0
\(921\) −0.765886 + 2.35716i −0.0252368 + 0.0776709i
\(922\) −24.2775 38.7938i −0.799537 1.27760i
\(923\) −15.6897 2.48500i −0.516432 0.0817948i
\(924\) 5.14340 0.914093i 0.169205 0.0300714i
\(925\) 0 0
\(926\) −43.2004 + 3.80897i −1.41965 + 0.125171i
\(927\) 0.899449 5.67890i 0.0295418 0.186520i
\(928\) −0.772396 + 0.995540i −0.0253551 + 0.0326802i
\(929\) −34.3019 11.1453i −1.12541 0.365667i −0.313578 0.949562i \(-0.601528\pi\)
−0.811829 + 0.583895i \(0.801528\pi\)
\(930\) 0 0
\(931\) 0.842173 0.273639i 0.0276011 0.00896814i
\(932\) 47.8946 + 33.4397i 1.56884 + 1.09535i
\(933\) −0.708605 0.361052i −0.0231987 0.0118203i
\(934\) −11.3406 + 18.9028i −0.371075 + 0.618520i
\(935\) 0 0
\(936\) −18.0733 14.5748i −0.590743 0.476394i
\(937\) −5.92447 37.4056i −0.193544 1.22199i −0.872796 0.488084i \(-0.837696\pi\)
0.679252 0.733905i \(-0.262304\pi\)
\(938\) 3.10785 + 12.4291i 0.101475 + 0.405824i
\(939\) 3.46333 2.51626i 0.113022 0.0821149i
\(940\) 0 0
\(941\) 25.8261 + 18.7637i 0.841906 + 0.611680i 0.922902 0.385034i \(-0.125810\pi\)
−0.0809965 + 0.996714i \(0.525810\pi\)
\(942\) 1.64073 4.06886i 0.0534578 0.132571i
\(943\) 9.94877 + 9.94877i 0.323977 + 0.323977i
\(944\) 22.3997 + 28.5110i 0.729047 + 0.927954i
\(945\) 0 0
\(946\) −26.7343 6.15307i −0.869208 0.200054i
\(947\) 1.60449 + 3.14898i 0.0521388 + 0.102328i 0.915606 0.402077i \(-0.131712\pi\)
−0.863467 + 0.504405i \(0.831712\pi\)
\(948\) −0.0484710 2.57720i −0.00157426 0.0837035i
\(949\) 0.0524856i 0.00170375i
\(950\) 0 0
\(951\) 1.20369i 0.0390325i
\(952\) 35.2340 3.77551i 1.14194 0.122365i
\(953\) 24.4756 + 48.0361i 0.792843 + 1.55604i 0.830674 + 0.556759i \(0.187955\pi\)
−0.0378308 + 0.999284i \(0.512045\pi\)
\(954\) 1.73331 7.53101i 0.0561179 0.243825i
\(955\) 0 0
\(956\) 0.807001 0.430491i 0.0261003 0.0139231i
\(957\) −0.153571 0.153571i −0.00496426 0.00496426i
\(958\) −9.13605 3.68402i −0.295172 0.119025i
\(959\) −40.9512 29.7528i −1.32238 0.960767i
\(960\) 0 0
\(961\) 18.9882 13.7957i 0.612523 0.445024i
\(962\) −16.6292 + 4.15806i −0.536146 + 0.134061i
\(963\) 5.30901 + 33.5198i 0.171080 + 1.08016i
\(964\) −31.4630 30.3014i −1.01336 0.975943i
\(965\) 0 0
\(966\) −2.77741 1.66628i −0.0893618 0.0536118i
\(967\) 13.8004 + 7.03165i 0.443791 + 0.226123i 0.661582 0.749873i \(-0.269885\pi\)
−0.217792 + 0.975995i \(0.569885\pi\)
\(968\) 36.8796 + 21.1928i 1.18535 + 0.681163i
\(969\) 4.26415 1.38551i 0.136984 0.0445089i
\(970\) 0 0
\(971\) −16.7721 5.44959i −0.538242 0.174886i 0.0272659 0.999628i \(-0.491320\pi\)
−0.565508 + 0.824743i \(0.691320\pi\)
\(972\) −6.12014 8.09889i −0.196303 0.259772i
\(973\) 3.05393 19.2817i 0.0979044 0.618144i
\(974\) −2.59016 29.3769i −0.0829940 0.941295i
\(975\) 0 0
\(976\) 5.40154 1.98256i 0.172899 0.0634602i
\(977\) 52.0437 + 8.24291i 1.66502 + 0.263714i 0.916687 0.399605i \(-0.130853\pi\)
0.748337 + 0.663319i \(0.230853\pi\)
\(978\) −1.81219 + 1.13408i −0.0579473 + 0.0362640i
\(979\) −1.36625 + 4.20489i −0.0436656 + 0.134389i
\(980\) 0 0
\(981\) 14.2286 + 43.7910i 0.454283 + 1.39814i
\(982\) 5.33297 + 4.46875i 0.170182 + 0.142603i
\(983\) −7.96803 + 15.6381i −0.254141 + 0.498779i −0.982463 0.186455i \(-0.940300\pi\)
0.728323 + 0.685234i \(0.240300\pi\)
\(984\) −0.605826 + 1.58785i −0.0193130 + 0.0506188i
\(985\) 0 0
\(986\) −0.967261 1.11119i −0.0308039 0.0353875i
\(987\) 4.45259 0.705221i 0.141728 0.0224474i
\(988\) 9.08498 + 26.2693i 0.289032 + 0.835736i
\(989\) 9.99752 + 13.7604i 0.317903 + 0.437555i
\(990\) 0 0
\(991\) −20.0939 + 27.6568i −0.638302 + 0.878548i −0.998524 0.0543192i \(-0.982701\pi\)
0.360221 + 0.932867i \(0.382701\pi\)
\(992\) 1.31600 41.7293i 0.0417832 1.32491i
\(993\) −2.18931 + 2.18931i −0.0694756 + 0.0694756i
\(994\) 8.50278 + 19.9937i 0.269692 + 0.634161i
\(995\) 0 0
\(996\) 0.177087 1.27252i 0.00561122 0.0403214i
\(997\) 1.87335 0.954518i 0.0593295 0.0302299i −0.424074 0.905628i \(-0.639400\pi\)
0.483404 + 0.875398i \(0.339400\pi\)
\(998\) −1.93576 + 27.9542i −0.0612754 + 0.884875i
\(999\) −4.98610 −0.157753
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 500.2.l.d.407.5 96
4.3 odd 2 inner 500.2.l.d.407.6 96
5.2 odd 4 100.2.l.b.23.1 96
5.3 odd 4 500.2.l.f.343.12 96
5.4 even 2 500.2.l.e.407.8 96
15.2 even 4 900.2.bj.d.523.12 96
20.3 even 4 500.2.l.f.343.1 96
20.7 even 4 100.2.l.b.23.12 yes 96
20.19 odd 2 500.2.l.e.407.7 96
25.9 even 10 100.2.l.b.87.12 yes 96
25.12 odd 20 500.2.l.e.43.7 96
25.13 odd 20 inner 500.2.l.d.43.6 96
25.16 even 5 500.2.l.f.207.1 96
60.47 odd 4 900.2.bj.d.523.1 96
75.59 odd 10 900.2.bj.d.487.1 96
100.59 odd 10 100.2.l.b.87.1 yes 96
100.63 even 20 inner 500.2.l.d.43.5 96
100.87 even 20 500.2.l.e.43.8 96
100.91 odd 10 500.2.l.f.207.12 96
300.59 even 10 900.2.bj.d.487.12 96
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
100.2.l.b.23.1 96 5.2 odd 4
100.2.l.b.23.12 yes 96 20.7 even 4
100.2.l.b.87.1 yes 96 100.59 odd 10
100.2.l.b.87.12 yes 96 25.9 even 10
500.2.l.d.43.5 96 100.63 even 20 inner
500.2.l.d.43.6 96 25.13 odd 20 inner
500.2.l.d.407.5 96 1.1 even 1 trivial
500.2.l.d.407.6 96 4.3 odd 2 inner
500.2.l.e.43.7 96 25.12 odd 20
500.2.l.e.43.8 96 100.87 even 20
500.2.l.e.407.7 96 20.19 odd 2
500.2.l.e.407.8 96 5.4 even 2
500.2.l.f.207.1 96 25.16 even 5
500.2.l.f.207.12 96 100.91 odd 10
500.2.l.f.343.1 96 20.3 even 4
500.2.l.f.343.12 96 5.3 odd 4
900.2.bj.d.487.1 96 75.59 odd 10
900.2.bj.d.487.12 96 300.59 even 10
900.2.bj.d.523.1 96 60.47 odd 4
900.2.bj.d.523.12 96 15.2 even 4