Properties

Label 4-5000e2-1.1-c1e2-0-2
Degree $4$
Conductor $25000000$
Sign $1$
Analytic cond. $1594.02$
Root an. cond. $6.31863$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·7-s − 9-s − 2·11-s + 9·13-s + 6·17-s + 13·19-s + 2·23-s + 11·29-s + 4·31-s − 12·37-s − 2·41-s + 11·43-s + 7·47-s − 6·49-s − 2·53-s + 7·59-s − 4·61-s − 3·63-s + 14·67-s − 15·71-s + 22·73-s − 6·77-s + 5·79-s − 8·81-s − 18·83-s + 8·89-s + 27·91-s + ⋯
L(s)  = 1  + 1.13·7-s − 1/3·9-s − 0.603·11-s + 2.49·13-s + 1.45·17-s + 2.98·19-s + 0.417·23-s + 2.04·29-s + 0.718·31-s − 1.97·37-s − 0.312·41-s + 1.67·43-s + 1.02·47-s − 6/7·49-s − 0.274·53-s + 0.911·59-s − 0.512·61-s − 0.377·63-s + 1.71·67-s − 1.78·71-s + 2.57·73-s − 0.683·77-s + 0.562·79-s − 8/9·81-s − 1.97·83-s + 0.847·89-s + 2.83·91-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 25000000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 25000000 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(25000000\)    =    \(2^{6} \cdot 5^{8}\)
Sign: $1$
Analytic conductor: \(1594.02\)
Root analytic conductor: \(6.31863\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 25000000,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(6.105334261\)
\(L(\frac12)\) \(\approx\) \(6.105334261\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
good3$C_2^2$ \( 1 + T^{2} + p^{2} T^{4} \)
7$D_{4}$ \( 1 - 3 T + 15 T^{2} - 3 p T^{3} + p^{2} T^{4} \)
11$D_{4}$ \( 1 + 2 T + 18 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
13$D_{4}$ \( 1 - 9 T + 45 T^{2} - 9 p T^{3} + p^{2} T^{4} \)
17$D_{4}$ \( 1 - 6 T + 38 T^{2} - 6 p T^{3} + p^{2} T^{4} \)
19$C_4$ \( 1 - 13 T + 79 T^{2} - 13 p T^{3} + p^{2} T^{4} \)
23$D_{4}$ \( 1 - 2 T + 27 T^{2} - 2 p T^{3} + p^{2} T^{4} \)
29$D_{4}$ \( 1 - 11 T + 3 p T^{2} - 11 p T^{3} + p^{2} T^{4} \)
31$D_{4}$ \( 1 - 4 T + 21 T^{2} - 4 p T^{3} + p^{2} T^{4} \)
37$D_{4}$ \( 1 + 12 T + 105 T^{2} + 12 p T^{3} + p^{2} T^{4} \)
41$D_{4}$ \( 1 + 2 T + 38 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
43$D_{4}$ \( 1 - 11 T + 115 T^{2} - 11 p T^{3} + p^{2} T^{4} \)
47$D_{4}$ \( 1 - 7 T + 95 T^{2} - 7 p T^{3} + p^{2} T^{4} \)
53$D_{4}$ \( 1 + 2 T + 27 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
59$D_{4}$ \( 1 - 7 T + 129 T^{2} - 7 p T^{3} + p^{2} T^{4} \)
61$D_{4}$ \( 1 + 4 T + T^{2} + 4 p T^{3} + p^{2} T^{4} \)
67$D_{4}$ \( 1 - 14 T + 138 T^{2} - 14 p T^{3} + p^{2} T^{4} \)
71$D_{4}$ \( 1 + 15 T + 197 T^{2} + 15 p T^{3} + p^{2} T^{4} \)
73$C_2$ \( ( 1 - 11 T + p T^{2} )^{2} \)
79$D_{4}$ \( 1 - 5 T + 103 T^{2} - 5 p T^{3} + p^{2} T^{4} \)
83$D_{4}$ \( 1 + 18 T + 227 T^{2} + 18 p T^{3} + p^{2} T^{4} \)
89$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
97$D_{4}$ \( 1 - 3 T - 85 T^{2} - 3 p T^{3} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.192660890612915937822827089075, −8.171468694813778809144105003464, −7.906789520717673940418250839956, −7.39545509050943832331015684352, −6.93989234591975969654859890725, −6.80169174494682962693753143714, −6.09304979740468563550205765905, −5.82163544502398333233585073069, −5.40321432622224000307388270604, −5.31193522432327444491710009300, −4.85700885409352141610756859134, −4.39466907416120587769116232784, −3.82990876918081890920588906452, −3.45365841968313447796631580677, −2.99440252639100394478674746036, −2.97055251605350105672258357243, −2.07009313886406504464342892506, −1.40296079073813550058691134081, −0.990239120071540947013169629800, −0.925563979991074371201302994640, 0.925563979991074371201302994640, 0.990239120071540947013169629800, 1.40296079073813550058691134081, 2.07009313886406504464342892506, 2.97055251605350105672258357243, 2.99440252639100394478674746036, 3.45365841968313447796631580677, 3.82990876918081890920588906452, 4.39466907416120587769116232784, 4.85700885409352141610756859134, 5.31193522432327444491710009300, 5.40321432622224000307388270604, 5.82163544502398333233585073069, 6.09304979740468563550205765905, 6.80169174494682962693753143714, 6.93989234591975969654859890725, 7.39545509050943832331015684352, 7.906789520717673940418250839956, 8.171468694813778809144105003464, 8.192660890612915937822827089075

Graph of the $Z$-function along the critical line