L(s) = 1 | + 3·7-s − 9-s − 2·11-s + 9·13-s + 6·17-s + 13·19-s + 2·23-s + 11·29-s + 4·31-s − 12·37-s − 2·41-s + 11·43-s + 7·47-s − 6·49-s − 2·53-s + 7·59-s − 4·61-s − 3·63-s + 14·67-s − 15·71-s + 22·73-s − 6·77-s + 5·79-s − 8·81-s − 18·83-s + 8·89-s + 27·91-s + ⋯ |
L(s) = 1 | + 1.13·7-s − 1/3·9-s − 0.603·11-s + 2.49·13-s + 1.45·17-s + 2.98·19-s + 0.417·23-s + 2.04·29-s + 0.718·31-s − 1.97·37-s − 0.312·41-s + 1.67·43-s + 1.02·47-s − 6/7·49-s − 0.274·53-s + 0.911·59-s − 0.512·61-s − 0.377·63-s + 1.71·67-s − 1.78·71-s + 2.57·73-s − 0.683·77-s + 0.562·79-s − 8/9·81-s − 1.97·83-s + 0.847·89-s + 2.83·91-s + ⋯ |
Λ(s)=(=(25000000s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(25000000s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
25000000
= 26⋅58
|
Sign: |
1
|
Analytic conductor: |
1594.02 |
Root analytic conductor: |
6.31863 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 25000000, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
6.105334261 |
L(21) |
≈ |
6.105334261 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 5 | | 1 |
good | 3 | C22 | 1+T2+p2T4 |
| 7 | D4 | 1−3T+15T2−3pT3+p2T4 |
| 11 | D4 | 1+2T+18T2+2pT3+p2T4 |
| 13 | D4 | 1−9T+45T2−9pT3+p2T4 |
| 17 | D4 | 1−6T+38T2−6pT3+p2T4 |
| 19 | C4 | 1−13T+79T2−13pT3+p2T4 |
| 23 | D4 | 1−2T+27T2−2pT3+p2T4 |
| 29 | D4 | 1−11T+3pT2−11pT3+p2T4 |
| 31 | D4 | 1−4T+21T2−4pT3+p2T4 |
| 37 | D4 | 1+12T+105T2+12pT3+p2T4 |
| 41 | D4 | 1+2T+38T2+2pT3+p2T4 |
| 43 | D4 | 1−11T+115T2−11pT3+p2T4 |
| 47 | D4 | 1−7T+95T2−7pT3+p2T4 |
| 53 | D4 | 1+2T+27T2+2pT3+p2T4 |
| 59 | D4 | 1−7T+129T2−7pT3+p2T4 |
| 61 | D4 | 1+4T+T2+4pT3+p2T4 |
| 67 | D4 | 1−14T+138T2−14pT3+p2T4 |
| 71 | D4 | 1+15T+197T2+15pT3+p2T4 |
| 73 | C2 | (1−11T+pT2)2 |
| 79 | D4 | 1−5T+103T2−5pT3+p2T4 |
| 83 | D4 | 1+18T+227T2+18pT3+p2T4 |
| 89 | C2 | (1−4T+pT2)2 |
| 97 | D4 | 1−3T−85T2−3pT3+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.192660890612915937822827089075, −8.171468694813778809144105003464, −7.906789520717673940418250839956, −7.39545509050943832331015684352, −6.93989234591975969654859890725, −6.80169174494682962693753143714, −6.09304979740468563550205765905, −5.82163544502398333233585073069, −5.40321432622224000307388270604, −5.31193522432327444491710009300, −4.85700885409352141610756859134, −4.39466907416120587769116232784, −3.82990876918081890920588906452, −3.45365841968313447796631580677, −2.99440252639100394478674746036, −2.97055251605350105672258357243, −2.07009313886406504464342892506, −1.40296079073813550058691134081, −0.990239120071540947013169629800, −0.925563979991074371201302994640,
0.925563979991074371201302994640, 0.990239120071540947013169629800, 1.40296079073813550058691134081, 2.07009313886406504464342892506, 2.97055251605350105672258357243, 2.99440252639100394478674746036, 3.45365841968313447796631580677, 3.82990876918081890920588906452, 4.39466907416120587769116232784, 4.85700885409352141610756859134, 5.31193522432327444491710009300, 5.40321432622224000307388270604, 5.82163544502398333233585073069, 6.09304979740468563550205765905, 6.80169174494682962693753143714, 6.93989234591975969654859890725, 7.39545509050943832331015684352, 7.906789520717673940418250839956, 8.171468694813778809144105003464, 8.192660890612915937822827089075