gp: [N,k,chi] = [5000,2,Mod(1,5000)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(5000, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0]))
N = Newforms(chi, 2, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("5000.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
Newform invariants
sage: traces = [2,0,0,0,0,0,3,0,4,0,-2]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of β = 1 2 ( 1 + 5 ) \beta = \frac{1}{2}(1 + \sqrt{5}) β = 2 1 ( 1 + 5 ) .
We also show the integral q q q -expansion of the trace form .
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
p p p
Sign
2 2 2
− 1 -1 − 1
5 5 5
+ 1 +1 + 1
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 2 n e w ( Γ 0 ( 5000 ) ) S_{2}^{\mathrm{new}}(\Gamma_0(5000)) S 2 n e w ( Γ 0 ( 5 0 0 0 ) ) :
T 3 2 − 5 T_{3}^{2} - 5 T 3 2 − 5
T3^2 - 5
T 7 2 − 3 T 7 + 1 T_{7}^{2} - 3T_{7} + 1 T 7 2 − 3 T 7 + 1
T7^2 - 3*T7 + 1
T 11 2 + 2 T 11 − 4 T_{11}^{2} + 2T_{11} - 4 T 1 1 2 + 2 T 1 1 − 4
T11^2 + 2*T11 - 4
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 2 T^{2} T 2
T^2
3 3 3
T 2 − 5 T^{2} - 5 T 2 − 5
T^2 - 5
5 5 5
T 2 T^{2} T 2
T^2
7 7 7
T 2 − 3 T + 1 T^{2} - 3T + 1 T 2 − 3 T + 1
T^2 - 3*T + 1
11 11 1 1
T 2 + 2 T − 4 T^{2} + 2T - 4 T 2 + 2 T − 4
T^2 + 2*T - 4
13 13 1 3
T 2 − 9 T + 19 T^{2} - 9T + 19 T 2 − 9 T + 1 9
T^2 - 9*T + 19
17 17 1 7
T 2 − 6 T + 4 T^{2} - 6T + 4 T 2 − 6 T + 4
T^2 - 6*T + 4
19 19 1 9
T 2 − 13 T + 41 T^{2} - 13T + 41 T 2 − 1 3 T + 4 1
T^2 - 13*T + 41
23 23 2 3
T 2 − 2 T − 19 T^{2} - 2T - 19 T 2 − 2 T − 1 9
T^2 - 2*T - 19
29 29 2 9
T 2 − 11 T + 29 T^{2} - 11T + 29 T 2 − 1 1 T + 2 9
T^2 - 11*T + 29
31 31 3 1
T 2 − 4 T − 41 T^{2} - 4T - 41 T 2 − 4 T − 4 1
T^2 - 4*T - 41
37 37 3 7
T 2 + 12 T + 31 T^{2} + 12T + 31 T 2 + 1 2 T + 3 1
T^2 + 12*T + 31
41 41 4 1
T 2 + 2 T − 44 T^{2} + 2T - 44 T 2 + 2 T − 4 4
T^2 + 2*T - 44
43 43 4 3
T 2 − 11 T + 29 T^{2} - 11T + 29 T 2 − 1 1 T + 2 9
T^2 - 11*T + 29
47 47 4 7
T 2 − 7 T + 1 T^{2} - 7T + 1 T 2 − 7 T + 1
T^2 - 7*T + 1
53 53 5 3
T 2 + 2 T − 79 T^{2} + 2T - 79 T 2 + 2 T − 7 9
T^2 + 2*T - 79
59 59 5 9
T 2 − 7 T + 11 T^{2} - 7T + 11 T 2 − 7 T + 1 1
T^2 - 7*T + 11
61 61 6 1
T 2 + 4 T − 121 T^{2} + 4T - 121 T 2 + 4 T − 1 2 1
T^2 + 4*T - 121
67 67 6 7
T 2 − 14 T + 4 T^{2} - 14T + 4 T 2 − 1 4 T + 4
T^2 - 14*T + 4
71 71 7 1
T 2 + 15 T + 55 T^{2} + 15T + 55 T 2 + 1 5 T + 5 5
T^2 + 15*T + 55
73 73 7 3
( T − 11 ) 2 (T - 11)^{2} ( T − 1 1 ) 2
(T - 11)^2
79 79 7 9
T 2 − 5 T − 55 T^{2} - 5T - 55 T 2 − 5 T − 5 5
T^2 - 5*T - 55
83 83 8 3
T 2 + 18 T + 61 T^{2} + 18T + 61 T 2 + 1 8 T + 6 1
T^2 + 18*T + 61
89 89 8 9
( T − 4 ) 2 (T - 4)^{2} ( T − 4 ) 2
(T - 4)^2
97 97 9 7
T 2 − 3 T − 279 T^{2} - 3T - 279 T 2 − 3 T − 2 7 9
T^2 - 3*T - 279
show more
show less