L(s) = 1 | + (−1.13 − 0.849i)2-s + (0.557 + 1.92i)4-s + (1.59 + 2.76i)5-s + (−0.694 + 2.55i)7-s + (1.00 − 2.64i)8-s + (0.542 − 4.48i)10-s + (−0.800 + 1.38i)11-s + 1.38·13-s + (2.95 − 2.29i)14-s + (−3.37 + 2.14i)16-s + (−3.48 − 2.01i)17-s + (−4.56 + 2.63i)19-s + (−4.42 + 4.61i)20-s + (2.08 − 0.888i)22-s + (−3.83 + 2.21i)23-s + ⋯ |
L(s) = 1 | + (−0.799 − 0.600i)2-s + (0.278 + 0.960i)4-s + (0.714 + 1.23i)5-s + (−0.262 + 0.964i)7-s + (0.353 − 0.935i)8-s + (0.171 − 1.41i)10-s + (−0.241 + 0.418i)11-s + 0.385·13-s + (0.789 − 0.614i)14-s + (−0.844 + 0.535i)16-s + (−0.845 − 0.488i)17-s + (−1.04 + 0.605i)19-s + (−0.988 + 1.03i)20-s + (0.444 − 0.189i)22-s + (−0.798 + 0.461i)23-s + ⋯ |
Λ(s)=(=(504s/2ΓC(s)L(s)(−0.0235−0.999i)Λ(2−s)
Λ(s)=(=(504s/2ΓC(s+1/2)L(s)(−0.0235−0.999i)Λ(1−s)
Degree: |
2 |
Conductor: |
504
= 23⋅32⋅7
|
Sign: |
−0.0235−0.999i
|
Analytic conductor: |
4.02446 |
Root analytic conductor: |
2.00610 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ504(451,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 504, ( :1/2), −0.0235−0.999i)
|
Particular Values
L(1) |
≈ |
0.588231+0.602226i |
L(21) |
≈ |
0.588231+0.602226i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(1.13+0.849i)T |
| 3 | 1 |
| 7 | 1+(0.694−2.55i)T |
good | 5 | 1+(−1.59−2.76i)T+(−2.5+4.33i)T2 |
| 11 | 1+(0.800−1.38i)T+(−5.5−9.52i)T2 |
| 13 | 1−1.38T+13T2 |
| 17 | 1+(3.48+2.01i)T+(8.5+14.7i)T2 |
| 19 | 1+(4.56−2.63i)T+(9.5−16.4i)T2 |
| 23 | 1+(3.83−2.21i)T+(11.5−19.9i)T2 |
| 29 | 1+5.10iT−29T2 |
| 31 | 1+(−0.0579+0.100i)T+(−15.5−26.8i)T2 |
| 37 | 1+(−4.63+2.67i)T+(18.5−32.0i)T2 |
| 41 | 1−4.21iT−41T2 |
| 43 | 1+43T2 |
| 47 | 1+(−5.05−8.76i)T+(−23.5+40.7i)T2 |
| 53 | 1+(−6.13−3.54i)T+(26.5+45.8i)T2 |
| 59 | 1+(−4.38−2.53i)T+(29.5+51.0i)T2 |
| 61 | 1+(−4.21−7.29i)T+(−30.5+52.8i)T2 |
| 67 | 1+(−5.01+8.69i)T+(−33.5−58.0i)T2 |
| 71 | 1−5.29iT−71T2 |
| 73 | 1+(−9.30−5.37i)T+(36.5+63.2i)T2 |
| 79 | 1+(10.3−5.96i)T+(39.5−68.4i)T2 |
| 83 | 1+14.9iT−83T2 |
| 89 | 1+(1.5−0.866i)T+(44.5−77.0i)T2 |
| 97 | 1+2.87iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.02224663376967936118737337913, −10.17598647144315995550496416266, −9.579392015328024083227766509705, −8.665835491337125180621450540955, −7.64905744494781785715195881177, −6.58338029689523042415590875861, −5.91361952366068390920058635114, −4.09606281138815564564131487621, −2.70184217697430889809419679483, −2.12199384444095951122335904591,
0.62771475276367029318442108251, 2.01550256147075625645287827576, 4.17430848331995248055302044593, 5.20492832330551522113677853505, 6.21154729799317109659483924952, 6.99838291221786992074319592271, 8.353710331274755311052781841805, 8.699668173570238174941223466816, 9.699542012604970536442808308669, 10.48189005664696768832057620725