L(s) = 1 | + (−1.13 − 0.849i)2-s + (0.557 + 1.92i)4-s + (1.59 + 2.76i)5-s + (−0.694 + 2.55i)7-s + (1.00 − 2.64i)8-s + (0.542 − 4.48i)10-s + (−0.800 + 1.38i)11-s + 1.38·13-s + (2.95 − 2.29i)14-s + (−3.37 + 2.14i)16-s + (−3.48 − 2.01i)17-s + (−4.56 + 2.63i)19-s + (−4.42 + 4.61i)20-s + (2.08 − 0.888i)22-s + (−3.83 + 2.21i)23-s + ⋯ |
L(s) = 1 | + (−0.799 − 0.600i)2-s + (0.278 + 0.960i)4-s + (0.714 + 1.23i)5-s + (−0.262 + 0.964i)7-s + (0.353 − 0.935i)8-s + (0.171 − 1.41i)10-s + (−0.241 + 0.418i)11-s + 0.385·13-s + (0.789 − 0.614i)14-s + (−0.844 + 0.535i)16-s + (−0.845 − 0.488i)17-s + (−1.04 + 0.605i)19-s + (−0.988 + 1.03i)20-s + (0.444 − 0.189i)22-s + (−0.798 + 0.461i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 504 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0235 - 0.999i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 504 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.0235 - 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.588231 + 0.602226i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.588231 + 0.602226i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.13 + 0.849i)T \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (0.694 - 2.55i)T \) |
good | 5 | \( 1 + (-1.59 - 2.76i)T + (-2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + (0.800 - 1.38i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 - 1.38T + 13T^{2} \) |
| 17 | \( 1 + (3.48 + 2.01i)T + (8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (4.56 - 2.63i)T + (9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (3.83 - 2.21i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + 5.10iT - 29T^{2} \) |
| 31 | \( 1 + (-0.0579 + 0.100i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (-4.63 + 2.67i)T + (18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 - 4.21iT - 41T^{2} \) |
| 43 | \( 1 + 43T^{2} \) |
| 47 | \( 1 + (-5.05 - 8.76i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (-6.13 - 3.54i)T + (26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (-4.38 - 2.53i)T + (29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-4.21 - 7.29i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-5.01 + 8.69i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 - 5.29iT - 71T^{2} \) |
| 73 | \( 1 + (-9.30 - 5.37i)T + (36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (10.3 - 5.96i)T + (39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + 14.9iT - 83T^{2} \) |
| 89 | \( 1 + (1.5 - 0.866i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + 2.87iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.02224663376967936118737337913, −10.17598647144315995550496416266, −9.579392015328024083227766509705, −8.665835491337125180621450540955, −7.64905744494781785715195881177, −6.58338029689523042415590875861, −5.91361952366068390920058635114, −4.09606281138815564564131487621, −2.70184217697430889809419679483, −2.12199384444095951122335904591,
0.62771475276367029318442108251, 2.01550256147075625645287827576, 4.17430848331995248055302044593, 5.20492832330551522113677853505, 6.21154729799317109659483924952, 6.99838291221786992074319592271, 8.353710331274755311052781841805, 8.699668173570238174941223466816, 9.699542012604970536442808308669, 10.48189005664696768832057620725