Properties

Label 504.2.bk.a.451.1
Level $504$
Weight $2$
Character 504.451
Analytic conductor $4.024$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [504,2,Mod(19,504)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(504, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 3, 0, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("504.19");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 504 = 2^{3} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 504.bk (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.02446026187\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{6})\)
Coefficient field: 12.0.144054149089536.2
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 3x^{11} + x^{9} + 48x^{8} - 189x^{7} + 431x^{6} - 654x^{5} + 624x^{4} - 340x^{3} + 96x^{2} - 12x + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 56)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 451.1
Root \(2.00233 - 0.854000i\) of defining polynomial
Character \(\chi\) \(=\) 504.451
Dual form 504.2.bk.a.19.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.13090 - 0.849154i) q^{2} +(0.557875 + 1.92062i) q^{4} +(1.59713 + 2.76632i) q^{5} +(-0.694153 + 2.55307i) q^{7} +(1.00000 - 2.64575i) q^{8} +(0.542829 - 4.48465i) q^{10} +(-0.800840 + 1.38709i) q^{11} +1.38831 q^{13} +(2.95297 - 2.29782i) q^{14} +(-3.37755 + 2.14293i) q^{16} +(-3.48605 - 2.01267i) q^{17} +(-4.56957 + 2.63824i) q^{19} +(-4.42204 + 4.61075i) q^{20} +(2.08353 - 0.888631i) q^{22} +(-3.83044 + 2.21151i) q^{23} +(-2.60168 + 4.50624i) q^{25} +(-1.57004 - 1.17889i) q^{26} +(-5.29072 + 0.0910883i) q^{28} -5.10613i q^{29} +(0.0579809 - 0.100426i) q^{31} +(5.63935 + 0.444621i) q^{32} +(2.23331 + 5.23632i) q^{34} +(-8.17125 + 2.15734i) q^{35} +(4.63087 - 2.67363i) q^{37} +(7.40801 + 0.896678i) q^{38} +(8.91613 - 1.45930i) q^{40} +4.21689i q^{41} +(-3.11085 - 0.764282i) q^{44} +(6.20976 + 0.751640i) q^{46} +(5.05821 + 8.76108i) q^{47} +(-6.03630 - 3.54444i) q^{49} +(6.76873 - 2.88689i) q^{50} +(0.774501 + 2.66641i) q^{52} +(6.13514 + 3.54212i) q^{53} -5.11619 q^{55} +(6.06063 + 4.38962i) q^{56} +(-4.33589 + 5.77453i) q^{58} +(4.38856 + 2.53374i) q^{59} +(4.21321 + 7.29750i) q^{61} +(-0.150848 + 0.0643370i) q^{62} +(-6.00000 - 5.29150i) q^{64} +(2.21731 + 3.84050i) q^{65} +(5.01815 - 8.69169i) q^{67} +(1.92079 - 7.81818i) q^{68} +(11.0728 + 4.49891i) q^{70} +5.29150i q^{71} +(9.30504 + 5.37227i) q^{73} +(-7.50738 - 0.908707i) q^{74} +(-7.61631 - 7.30460i) q^{76} +(-2.98544 - 3.00745i) q^{77} +(-10.3349 + 5.96688i) q^{79} +(-11.3224 - 5.92084i) q^{80} +(3.58079 - 4.76889i) q^{82} -14.9789i q^{83} -12.8580i q^{85} +(2.86907 + 3.50592i) q^{88} +(-1.50000 + 0.866025i) q^{89} +(-0.963697 + 3.54444i) q^{91} +(-6.38437 - 6.12307i) q^{92} +(1.71917 - 14.2031i) q^{94} +(-14.5965 - 8.42726i) q^{95} -2.87198i q^{97} +(3.81669 + 9.13416i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 12 q^{8} + 6 q^{10} + 6 q^{11} - 6 q^{14} + 6 q^{17} - 6 q^{19} + 24 q^{22} - 6 q^{26} + 6 q^{28} - 18 q^{35} + 24 q^{38} + 42 q^{40} - 6 q^{44} - 18 q^{46} - 12 q^{49} + 48 q^{50} - 24 q^{52} + 18 q^{58}+ \cdots + 6 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/504\mathbb{Z}\right)^\times\).

\(n\) \(73\) \(127\) \(253\) \(281\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.13090 0.849154i −0.799668 0.600443i
\(3\) 0 0
\(4\) 0.557875 + 1.92062i 0.278937 + 0.960309i
\(5\) 1.59713 + 2.76632i 0.714260 + 1.23714i 0.963244 + 0.268628i \(0.0865701\pi\)
−0.248984 + 0.968508i \(0.580097\pi\)
\(6\) 0 0
\(7\) −0.694153 + 2.55307i −0.262365 + 0.964969i
\(8\) 1.00000 2.64575i 0.353553 0.935414i
\(9\) 0 0
\(10\) 0.542829 4.48465i 0.171658 1.41817i
\(11\) −0.800840 + 1.38709i −0.241462 + 0.418225i −0.961131 0.276093i \(-0.910960\pi\)
0.719669 + 0.694318i \(0.244294\pi\)
\(12\) 0 0
\(13\) 1.38831 0.385047 0.192523 0.981292i \(-0.438333\pi\)
0.192523 + 0.981292i \(0.438333\pi\)
\(14\) 2.95297 2.29782i 0.789213 0.614119i
\(15\) 0 0
\(16\) −3.37755 + 2.14293i −0.844388 + 0.535732i
\(17\) −3.48605 2.01267i −0.845490 0.488144i 0.0136363 0.999907i \(-0.495659\pi\)
−0.859127 + 0.511763i \(0.828993\pi\)
\(18\) 0 0
\(19\) −4.56957 + 2.63824i −1.04833 + 0.605255i −0.922182 0.386756i \(-0.873595\pi\)
−0.126150 + 0.992011i \(0.540262\pi\)
\(20\) −4.42204 + 4.61075i −0.988799 + 1.03099i
\(21\) 0 0
\(22\) 2.08353 0.888631i 0.444210 0.189457i
\(23\) −3.83044 + 2.21151i −0.798702 + 0.461131i −0.843017 0.537887i \(-0.819223\pi\)
0.0443149 + 0.999018i \(0.485890\pi\)
\(24\) 0 0
\(25\) −2.60168 + 4.50624i −0.520336 + 0.901248i
\(26\) −1.57004 1.17889i −0.307910 0.231199i
\(27\) 0 0
\(28\) −5.29072 + 0.0910883i −0.999852 + 0.0172141i
\(29\) 5.10613i 0.948185i −0.880475 0.474093i \(-0.842776\pi\)
0.880475 0.474093i \(-0.157224\pi\)
\(30\) 0 0
\(31\) 0.0579809 0.100426i 0.0104137 0.0180370i −0.860772 0.508991i \(-0.830018\pi\)
0.871185 + 0.490954i \(0.163352\pi\)
\(32\) 5.63935 + 0.444621i 0.996906 + 0.0785986i
\(33\) 0 0
\(34\) 2.23331 + 5.23632i 0.383009 + 0.898022i
\(35\) −8.17125 + 2.15734i −1.38119 + 0.364658i
\(36\) 0 0
\(37\) 4.63087 2.67363i 0.761310 0.439543i −0.0684556 0.997654i \(-0.521807\pi\)
0.829766 + 0.558111i \(0.188474\pi\)
\(38\) 7.40801 + 0.896678i 1.20174 + 0.145460i
\(39\) 0 0
\(40\) 8.91613 1.45930i 1.40976 0.230736i
\(41\) 4.21689i 0.658568i 0.944231 + 0.329284i \(0.106807\pi\)
−0.944231 + 0.329284i \(0.893193\pi\)
\(42\) 0 0
\(43\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(44\) −3.11085 0.764282i −0.468978 0.115220i
\(45\) 0 0
\(46\) 6.20976 + 0.751640i 0.915579 + 0.110823i
\(47\) 5.05821 + 8.76108i 0.737816 + 1.27794i 0.953477 + 0.301467i \(0.0974763\pi\)
−0.215660 + 0.976468i \(0.569190\pi\)
\(48\) 0 0
\(49\) −6.03630 3.54444i −0.862329 0.506348i
\(50\) 6.76873 2.88689i 0.957244 0.408267i
\(51\) 0 0
\(52\) 0.774501 + 2.66641i 0.107404 + 0.369764i
\(53\) 6.13514 + 3.54212i 0.842726 + 0.486548i 0.858190 0.513332i \(-0.171589\pi\)
−0.0154638 + 0.999880i \(0.504922\pi\)
\(54\) 0 0
\(55\) −5.11619 −0.689868
\(56\) 6.06063 + 4.38962i 0.809885 + 0.586588i
\(57\) 0 0
\(58\) −4.33589 + 5.77453i −0.569331 + 0.758233i
\(59\) 4.38856 + 2.53374i 0.571342 + 0.329865i 0.757685 0.652620i \(-0.226330\pi\)
−0.186343 + 0.982485i \(0.559664\pi\)
\(60\) 0 0
\(61\) 4.21321 + 7.29750i 0.539447 + 0.934349i 0.998934 + 0.0461646i \(0.0146999\pi\)
−0.459487 + 0.888184i \(0.651967\pi\)
\(62\) −0.150848 + 0.0643370i −0.0191577 + 0.00817081i
\(63\) 0 0
\(64\) −6.00000 5.29150i −0.750000 0.661438i
\(65\) 2.21731 + 3.84050i 0.275024 + 0.476355i
\(66\) 0 0
\(67\) 5.01815 8.69169i 0.613065 1.06186i −0.377656 0.925946i \(-0.623270\pi\)
0.990721 0.135913i \(-0.0433969\pi\)
\(68\) 1.92079 7.81818i 0.232930 0.948094i
\(69\) 0 0
\(70\) 11.0728 + 4.49891i 1.32345 + 0.537723i
\(71\) 5.29150i 0.627986i 0.949425 + 0.313993i \(0.101667\pi\)
−0.949425 + 0.313993i \(0.898333\pi\)
\(72\) 0 0
\(73\) 9.30504 + 5.37227i 1.08907 + 0.628776i 0.933329 0.359021i \(-0.116890\pi\)
0.155743 + 0.987798i \(0.450223\pi\)
\(74\) −7.50738 0.908707i −0.872716 0.105635i
\(75\) 0 0
\(76\) −7.61631 7.30460i −0.873651 0.837895i
\(77\) −2.98544 3.00745i −0.340223 0.342731i
\(78\) 0 0
\(79\) −10.3349 + 5.96688i −1.16277 + 0.671327i −0.951967 0.306201i \(-0.900942\pi\)
−0.210805 + 0.977528i \(0.567609\pi\)
\(80\) −11.3224 5.92084i −1.26589 0.661970i
\(81\) 0 0
\(82\) 3.58079 4.76889i 0.395432 0.526636i
\(83\) 14.9789i 1.64415i −0.569382 0.822073i \(-0.692818\pi\)
0.569382 0.822073i \(-0.307182\pi\)
\(84\) 0 0
\(85\) 12.8580i 1.39465i
\(86\) 0 0
\(87\) 0 0
\(88\) 2.86907 + 3.50592i 0.305844 + 0.373732i
\(89\) −1.50000 + 0.866025i −0.159000 + 0.0917985i −0.577389 0.816469i \(-0.695928\pi\)
0.418389 + 0.908268i \(0.362595\pi\)
\(90\) 0 0
\(91\) −0.963697 + 3.54444i −0.101023 + 0.371558i
\(92\) −6.38437 6.12307i −0.665616 0.638375i
\(93\) 0 0
\(94\) 1.71917 14.2031i 0.177319 1.46494i
\(95\) −14.5965 8.42726i −1.49756 0.864619i
\(96\) 0 0
\(97\) 2.87198i 0.291606i −0.989314 0.145803i \(-0.953423\pi\)
0.989314 0.145803i \(-0.0465765\pi\)
\(98\) 3.81669 + 9.13416i 0.385544 + 0.922690i
\(99\) 0 0
\(100\) −10.1062 2.48292i −1.01062 0.248292i
\(101\) −3.40310 + 5.89434i −0.338621 + 0.586509i −0.984174 0.177207i \(-0.943294\pi\)
0.645553 + 0.763716i \(0.276627\pi\)
\(102\) 0 0
\(103\) 7.02471 + 12.1672i 0.692165 + 1.19887i 0.971127 + 0.238563i \(0.0766765\pi\)
−0.278962 + 0.960302i \(0.589990\pi\)
\(104\) 1.38831 3.67311i 0.136135 0.360178i
\(105\) 0 0
\(106\) −3.93043 9.21547i −0.381757 0.895086i
\(107\) −2.56957 4.45063i −0.248410 0.430259i 0.714675 0.699457i \(-0.246575\pi\)
−0.963085 + 0.269198i \(0.913241\pi\)
\(108\) 0 0
\(109\) 2.45182 + 1.41556i 0.234842 + 0.135586i 0.612804 0.790235i \(-0.290042\pi\)
−0.377962 + 0.925821i \(0.623375\pi\)
\(110\) 5.78591 + 4.34444i 0.551665 + 0.414226i
\(111\) 0 0
\(112\) −3.12650 10.1106i −0.295427 0.955365i
\(113\) 1.43695 0.135177 0.0675887 0.997713i \(-0.478469\pi\)
0.0675887 + 0.997713i \(0.478469\pi\)
\(114\) 0 0
\(115\) −12.2355 7.06415i −1.14096 0.658735i
\(116\) 9.80694 2.84858i 0.910551 0.264484i
\(117\) 0 0
\(118\) −2.81150 6.59198i −0.258819 0.606841i
\(119\) 7.55833 7.50301i 0.692871 0.687800i
\(120\) 0 0
\(121\) 4.21731 + 7.30460i 0.383392 + 0.664054i
\(122\) 1.43197 11.8304i 0.129645 1.07108i
\(123\) 0 0
\(124\) 0.225226 + 0.0553342i 0.0202259 + 0.00496916i
\(125\) −0.649581 −0.0581003
\(126\) 0 0
\(127\) 4.92077i 0.436647i 0.975876 + 0.218324i \(0.0700589\pi\)
−0.975876 + 0.218324i \(0.929941\pi\)
\(128\) 2.29211 + 11.0791i 0.202595 + 0.979263i
\(129\) 0 0
\(130\) 0.753613 6.22606i 0.0660962 0.546062i
\(131\) 3.41647 1.97250i 0.298499 0.172338i −0.343270 0.939237i \(-0.611534\pi\)
0.641768 + 0.766899i \(0.278201\pi\)
\(132\) 0 0
\(133\) −3.56363 13.4978i −0.309006 1.17041i
\(134\) −13.0556 + 5.56826i −1.12783 + 0.481025i
\(135\) 0 0
\(136\) −8.81107 + 7.21054i −0.755543 + 0.618299i
\(137\) −0.0514223 + 0.0890661i −0.00439331 + 0.00760943i −0.868214 0.496190i \(-0.834732\pi\)
0.863820 + 0.503800i \(0.168065\pi\)
\(138\) 0 0
\(139\) 14.9789i 1.27049i −0.772310 0.635246i \(-0.780899\pi\)
0.772310 0.635246i \(-0.219101\pi\)
\(140\) −8.70197 14.4903i −0.735451 1.22466i
\(141\) 0 0
\(142\) 4.49330 5.98417i 0.377069 0.502180i
\(143\) −1.11181 + 1.92571i −0.0929743 + 0.161036i
\(144\) 0 0
\(145\) 14.1252 8.15518i 1.17303 0.677251i
\(146\) −5.96120 13.9769i −0.493352 1.15674i
\(147\) 0 0
\(148\) 7.71848 + 7.40258i 0.634455 + 0.608489i
\(149\) 9.79164 5.65320i 0.802162 0.463129i −0.0420645 0.999115i \(-0.513393\pi\)
0.844227 + 0.535986i \(0.180060\pi\)
\(150\) 0 0
\(151\) −12.8351 7.41032i −1.04450 0.603044i −0.123397 0.992357i \(-0.539379\pi\)
−0.921105 + 0.389314i \(0.872712\pi\)
\(152\) 2.41057 + 14.7282i 0.195523 + 1.19461i
\(153\) 0 0
\(154\) 0.822447 + 5.93623i 0.0662747 + 0.478355i
\(155\) 0.370413 0.0297523
\(156\) 0 0
\(157\) 0.369362 0.639755i 0.0294783 0.0510580i −0.850910 0.525312i \(-0.823949\pi\)
0.880388 + 0.474254i \(0.157282\pi\)
\(158\) 16.7546 + 2.02801i 1.33292 + 0.161339i
\(159\) 0 0
\(160\) 7.77685 + 16.3104i 0.614814 + 1.28945i
\(161\) −2.98721 11.3145i −0.235425 0.891707i
\(162\) 0 0
\(163\) 4.35226 + 7.53834i 0.340895 + 0.590448i 0.984599 0.174826i \(-0.0559364\pi\)
−0.643704 + 0.765275i \(0.722603\pi\)
\(164\) −8.09904 + 2.35250i −0.632429 + 0.183699i
\(165\) 0 0
\(166\) −12.7194 + 16.9396i −0.987215 + 1.31477i
\(167\) −1.38831 −0.107430 −0.0537152 0.998556i \(-0.517106\pi\)
−0.0537152 + 0.998556i \(0.517106\pi\)
\(168\) 0 0
\(169\) −11.0726 −0.851739
\(170\) −10.9184 + 14.5411i −0.837406 + 1.11526i
\(171\) 0 0
\(172\) 0 0
\(173\) 0.485324 + 0.840606i 0.0368985 + 0.0639101i 0.883885 0.467704i \(-0.154919\pi\)
−0.846986 + 0.531615i \(0.821586\pi\)
\(174\) 0 0
\(175\) −9.69877 9.77028i −0.733158 0.738564i
\(176\) −0.267569 6.40113i −0.0201688 0.482503i
\(177\) 0 0
\(178\) 2.43174 + 0.294342i 0.182267 + 0.0220619i
\(179\) −7.13495 + 12.3581i −0.533291 + 0.923687i 0.465953 + 0.884810i \(0.345712\pi\)
−0.999244 + 0.0388779i \(0.987622\pi\)
\(180\) 0 0
\(181\) 15.3218 1.13886 0.569429 0.822041i \(-0.307164\pi\)
0.569429 + 0.822041i \(0.307164\pi\)
\(182\) 4.09962 3.19008i 0.303884 0.236465i
\(183\) 0 0
\(184\) 2.02065 + 12.3459i 0.148965 + 0.910152i
\(185\) 14.7922 + 8.54031i 1.08755 + 0.627896i
\(186\) 0 0
\(187\) 5.58353 3.22365i 0.408308 0.235737i
\(188\) −14.0049 + 14.6025i −1.02141 + 1.06500i
\(189\) 0 0
\(190\) 9.35110 + 21.9250i 0.678400 + 1.59061i
\(191\) 2.16564 1.25033i 0.156700 0.0904709i −0.419599 0.907709i \(-0.637829\pi\)
0.576300 + 0.817238i \(0.304496\pi\)
\(192\) 0 0
\(193\) 1.55026 2.68512i 0.111590 0.193279i −0.804822 0.593517i \(-0.797739\pi\)
0.916411 + 0.400237i \(0.131072\pi\)
\(194\) −2.43876 + 3.24793i −0.175093 + 0.233188i
\(195\) 0 0
\(196\) 3.44001 13.5708i 0.245715 0.969342i
\(197\) 15.6891i 1.11780i −0.829233 0.558902i \(-0.811223\pi\)
0.829233 0.558902i \(-0.188777\pi\)
\(198\) 0 0
\(199\) 5.91290 10.2414i 0.419154 0.725997i −0.576700 0.816956i \(-0.695660\pi\)
0.995855 + 0.0909591i \(0.0289933\pi\)
\(200\) 9.32071 + 11.3896i 0.659074 + 0.805369i
\(201\) 0 0
\(202\) 8.85377 3.77616i 0.622949 0.265690i
\(203\) 13.0363 + 3.54444i 0.914969 + 0.248771i
\(204\) 0 0
\(205\) −11.6653 + 6.73495i −0.814738 + 0.470389i
\(206\) 2.38754 19.7249i 0.166348 1.37430i
\(207\) 0 0
\(208\) −4.68908 + 2.97504i −0.325129 + 0.206282i
\(209\) 8.45124i 0.584585i
\(210\) 0 0
\(211\) 10.0726 0.693427 0.346713 0.937971i \(-0.387298\pi\)
0.346713 + 0.937971i \(0.387298\pi\)
\(212\) −3.38043 + 13.7593i −0.232169 + 0.944994i
\(213\) 0 0
\(214\) −0.873339 + 7.21519i −0.0597002 + 0.493220i
\(215\) 0 0
\(216\) 0 0
\(217\) 0.216146 + 0.217740i 0.0146730 + 0.0147812i
\(218\) −1.57074 3.68283i −0.106384 0.249433i
\(219\) 0 0
\(220\) −2.85420 9.82626i −0.192430 0.662486i
\(221\) −4.83970 2.79420i −0.325553 0.187958i
\(222\) 0 0
\(223\) 24.3086 1.62783 0.813913 0.580987i \(-0.197333\pi\)
0.813913 + 0.580987i \(0.197333\pi\)
\(224\) −5.04972 + 14.0890i −0.337399 + 0.941362i
\(225\) 0 0
\(226\) −1.62505 1.22020i −0.108097 0.0811662i
\(227\) 12.4048 + 7.16194i 0.823339 + 0.475355i 0.851566 0.524247i \(-0.175653\pi\)
−0.0282277 + 0.999602i \(0.508986\pi\)
\(228\) 0 0
\(229\) 5.32502 + 9.22321i 0.351887 + 0.609487i 0.986580 0.163278i \(-0.0522066\pi\)
−0.634693 + 0.772765i \(0.718873\pi\)
\(230\) 7.83855 + 18.3786i 0.516859 + 1.21185i
\(231\) 0 0
\(232\) −13.5096 5.10613i −0.886946 0.335234i
\(233\) −0.318991 0.552509i −0.0208978 0.0361961i 0.855387 0.517989i \(-0.173319\pi\)
−0.876285 + 0.481793i \(0.839986\pi\)
\(234\) 0 0
\(235\) −16.1573 + 27.9853i −1.05399 + 1.82556i
\(236\) −2.41808 + 9.84227i −0.157403 + 0.640677i
\(237\) 0 0
\(238\) −14.9189 + 2.06697i −0.967051 + 0.133982i
\(239\) 4.73540i 0.306307i 0.988202 + 0.153154i \(0.0489430\pi\)
−0.988202 + 0.153154i \(0.951057\pi\)
\(240\) 0 0
\(241\) −10.1380 5.85317i −0.653045 0.377036i 0.136577 0.990629i \(-0.456390\pi\)
−0.789622 + 0.613594i \(0.789723\pi\)
\(242\) 1.43337 11.8419i 0.0921403 0.761228i
\(243\) 0 0
\(244\) −11.6653 + 12.1631i −0.746792 + 0.778661i
\(245\) 0.164257 22.3593i 0.0104940 1.42848i
\(246\) 0 0
\(247\) −6.34397 + 3.66269i −0.403657 + 0.233051i
\(248\) −0.207721 0.253829i −0.0131903 0.0161182i
\(249\) 0 0
\(250\) 0.734612 + 0.551594i 0.0464609 + 0.0348859i
\(251\) 11.5631i 0.729858i 0.931035 + 0.364929i \(0.118907\pi\)
−0.931035 + 0.364929i \(0.881093\pi\)
\(252\) 0 0
\(253\) 7.08425i 0.445383i
\(254\) 4.17849 5.56490i 0.262182 0.349173i
\(255\) 0 0
\(256\) 6.81571 14.4757i 0.425982 0.904732i
\(257\) 20.4302 11.7954i 1.27440 0.735777i 0.298589 0.954382i \(-0.403484\pi\)
0.975813 + 0.218605i \(0.0701506\pi\)
\(258\) 0 0
\(259\) 3.61144 + 13.6788i 0.224404 + 0.849961i
\(260\) −6.13915 + 6.40113i −0.380734 + 0.396981i
\(261\) 0 0
\(262\) −5.53865 0.670408i −0.342179 0.0414179i
\(263\) −9.24833 5.33953i −0.570277 0.329249i 0.186983 0.982363i \(-0.440129\pi\)
−0.757260 + 0.653114i \(0.773462\pi\)
\(264\) 0 0
\(265\) 22.6290i 1.39009i
\(266\) −7.43157 + 18.2907i −0.455659 + 1.12148i
\(267\) 0 0
\(268\) 19.4929 + 4.78908i 1.19072 + 0.292540i
\(269\) −11.6690 + 20.2113i −0.711471 + 1.23230i 0.252834 + 0.967510i \(0.418637\pi\)
−0.964305 + 0.264794i \(0.914696\pi\)
\(270\) 0 0
\(271\) −6.81961 11.8119i −0.414262 0.717522i 0.581089 0.813840i \(-0.302627\pi\)
−0.995351 + 0.0963179i \(0.969293\pi\)
\(272\) 16.0873 0.672454i 0.975436 0.0407735i
\(273\) 0 0
\(274\) 0.133784 0.0570595i 0.00808221 0.00344709i
\(275\) −4.16706 7.21755i −0.251283 0.435235i
\(276\) 0 0
\(277\) 0.396180 + 0.228735i 0.0238042 + 0.0137433i 0.511855 0.859072i \(-0.328959\pi\)
−0.488051 + 0.872815i \(0.662292\pi\)
\(278\) −12.7194 + 16.9396i −0.762858 + 1.01597i
\(279\) 0 0
\(280\) −2.46346 + 23.7764i −0.147220 + 1.42091i
\(281\) −1.43695 −0.0857215 −0.0428608 0.999081i \(-0.513647\pi\)
−0.0428608 + 0.999081i \(0.513647\pi\)
\(282\) 0 0
\(283\) 27.0428 + 15.6132i 1.60753 + 0.928108i 0.989921 + 0.141622i \(0.0452318\pi\)
0.617609 + 0.786486i \(0.288102\pi\)
\(284\) −10.1630 + 2.95200i −0.603061 + 0.175169i
\(285\) 0 0
\(286\) 2.89257 1.23369i 0.171041 0.0729497i
\(287\) −10.7660 2.92717i −0.635497 0.172785i
\(288\) 0 0
\(289\) −0.398321 0.689912i −0.0234306 0.0405831i
\(290\) −22.8992 2.77176i −1.34469 0.162763i
\(291\) 0 0
\(292\) −5.12703 + 20.8685i −0.300037 + 1.22124i
\(293\) 31.3006 1.82860 0.914299 0.405040i \(-0.132742\pi\)
0.914299 + 0.405040i \(0.132742\pi\)
\(294\) 0 0
\(295\) 16.1869i 0.942437i
\(296\) −2.44290 14.9258i −0.141991 0.867543i
\(297\) 0 0
\(298\) −15.8738 1.92139i −0.919545 0.111303i
\(299\) −5.31783 + 3.07025i −0.307538 + 0.177557i
\(300\) 0 0
\(301\) 0 0
\(302\) 8.22268 + 19.2793i 0.473162 + 1.10940i
\(303\) 0 0
\(304\) 9.78040 18.7031i 0.560944 1.07270i
\(305\) −13.4581 + 23.3102i −0.770611 + 1.33474i
\(306\) 0 0
\(307\) 14.7215i 0.840202i −0.907477 0.420101i \(-0.861995\pi\)
0.907477 0.420101i \(-0.138005\pi\)
\(308\) 4.11067 7.41168i 0.234227 0.422319i
\(309\) 0 0
\(310\) −0.418901 0.314538i −0.0237920 0.0178646i
\(311\) 7.79025 13.4931i 0.441745 0.765124i −0.556074 0.831133i \(-0.687693\pi\)
0.997819 + 0.0660082i \(0.0210263\pi\)
\(312\) 0 0
\(313\) 11.3329 6.54308i 0.640576 0.369837i −0.144260 0.989540i \(-0.546080\pi\)
0.784836 + 0.619703i \(0.212747\pi\)
\(314\) −0.960963 + 0.409854i −0.0542303 + 0.0231294i
\(315\) 0 0
\(316\) −17.2257 16.5207i −0.969022 0.929363i
\(317\) −20.3971 + 11.7763i −1.14562 + 0.661422i −0.947815 0.318821i \(-0.896713\pi\)
−0.197801 + 0.980242i \(0.563380\pi\)
\(318\) 0 0
\(319\) 7.08269 + 4.08919i 0.396555 + 0.228951i
\(320\) 5.05517 25.0492i 0.282593 1.40029i
\(321\) 0 0
\(322\) −6.22951 + 15.3322i −0.347157 + 0.854429i
\(323\) 21.2397 1.18181
\(324\) 0 0
\(325\) −3.61193 + 6.25604i −0.200354 + 0.347023i
\(326\) 1.47923 12.2209i 0.0819272 0.676851i
\(327\) 0 0
\(328\) 11.1568 + 4.21689i 0.616034 + 0.232839i
\(329\) −25.8788 + 6.83243i −1.42674 + 0.376684i
\(330\) 0 0
\(331\) −16.5277 28.6268i −0.908445 1.57347i −0.816225 0.577735i \(-0.803937\pi\)
−0.0922207 0.995739i \(-0.529397\pi\)
\(332\) 28.7687 8.35634i 1.57889 0.458614i
\(333\) 0 0
\(334\) 1.57004 + 1.17889i 0.0859086 + 0.0645058i
\(335\) 32.0587 1.75155
\(336\) 0 0
\(337\) −15.5096 −0.844860 −0.422430 0.906396i \(-0.638823\pi\)
−0.422430 + 0.906396i \(0.638823\pi\)
\(338\) 12.5220 + 9.40235i 0.681108 + 0.511420i
\(339\) 0 0
\(340\) 24.6954 7.17316i 1.33929 0.389019i
\(341\) 0.0928668 + 0.160850i 0.00502902 + 0.00871052i
\(342\) 0 0
\(343\) 13.2393 12.9507i 0.714855 0.699272i
\(344\) 0 0
\(345\) 0 0
\(346\) 0.164951 1.36276i 0.00886780 0.0732623i
\(347\) 11.2494 19.4846i 0.603900 1.04599i −0.388324 0.921523i \(-0.626946\pi\)
0.992224 0.124463i \(-0.0397209\pi\)
\(348\) 0 0
\(349\) −28.4735 −1.52415 −0.762077 0.647486i \(-0.775820\pi\)
−0.762077 + 0.647486i \(0.775820\pi\)
\(350\) 2.67188 + 19.2850i 0.142818 + 1.03083i
\(351\) 0 0
\(352\) −5.13295 + 7.46625i −0.273587 + 0.397952i
\(353\) 8.29108 + 4.78686i 0.441290 + 0.254779i 0.704145 0.710057i \(-0.251331\pi\)
−0.262855 + 0.964835i \(0.584664\pi\)
\(354\) 0 0
\(355\) −14.6380 + 8.45124i −0.776903 + 0.448545i
\(356\) −2.50012 2.39779i −0.132506 0.127083i
\(357\) 0 0
\(358\) 18.5629 7.91711i 0.981077 0.418432i
\(359\) 3.25225 1.87769i 0.171647 0.0991006i −0.411715 0.911313i \(-0.635070\pi\)
0.583362 + 0.812212i \(0.301737\pi\)
\(360\) 0 0
\(361\) 4.42067 7.65683i 0.232667 0.402991i
\(362\) −17.3274 13.0105i −0.910708 0.683819i
\(363\) 0 0
\(364\) −7.34514 + 0.126458i −0.384990 + 0.00662822i
\(365\) 34.3209i 1.79644i
\(366\) 0 0
\(367\) −8.41302 + 14.5718i −0.439156 + 0.760640i −0.997625 0.0688852i \(-0.978056\pi\)
0.558469 + 0.829526i \(0.311389\pi\)
\(368\) 8.19841 15.6778i 0.427372 0.817264i
\(369\) 0 0
\(370\) −9.47653 22.2191i −0.492661 1.15512i
\(371\) −13.3020 + 13.2046i −0.690606 + 0.685551i
\(372\) 0 0
\(373\) −11.1354 + 6.42901i −0.576568 + 0.332882i −0.759768 0.650194i \(-0.774688\pi\)
0.183200 + 0.983076i \(0.441354\pi\)
\(374\) −9.05179 1.09564i −0.468057 0.0566544i
\(375\) 0 0
\(376\) 28.2379 4.62169i 1.45626 0.238346i
\(377\) 7.08888i 0.365096i
\(378\) 0 0
\(379\) 25.5822 1.31407 0.657034 0.753861i \(-0.271811\pi\)
0.657034 + 0.753861i \(0.271811\pi\)
\(380\) 8.04257 32.7356i 0.412575 1.67930i
\(381\) 0 0
\(382\) −3.51085 0.424959i −0.179631 0.0217428i
\(383\) −13.4846 23.3561i −0.689033 1.19344i −0.972151 0.234355i \(-0.924702\pi\)
0.283118 0.959085i \(-0.408631\pi\)
\(384\) 0 0
\(385\) 3.55142 13.0620i 0.180997 0.665701i
\(386\) −4.03327 + 1.72020i −0.205288 + 0.0875560i
\(387\) 0 0
\(388\) 5.51599 1.60221i 0.280032 0.0813398i
\(389\) −27.7043 15.9951i −1.40466 0.810983i −0.409796 0.912177i \(-0.634400\pi\)
−0.994867 + 0.101195i \(0.967734\pi\)
\(390\) 0 0
\(391\) 17.8041 0.900394
\(392\) −15.4140 + 12.4261i −0.778525 + 0.627614i
\(393\) 0 0
\(394\) −13.3225 + 17.7429i −0.671178 + 0.893873i
\(395\) −33.0126 19.0598i −1.66104 0.959004i
\(396\) 0 0
\(397\) −8.51929 14.7558i −0.427571 0.740575i 0.569086 0.822278i \(-0.307297\pi\)
−0.996657 + 0.0817035i \(0.973964\pi\)
\(398\) −15.3835 + 6.56110i −0.771104 + 0.328878i
\(399\) 0 0
\(400\) −0.869248 20.7953i −0.0434624 1.03976i
\(401\) −2.94858 5.10709i −0.147245 0.255036i 0.782963 0.622068i \(-0.213707\pi\)
−0.930208 + 0.367032i \(0.880374\pi\)
\(402\) 0 0
\(403\) 0.0804953 0.139422i 0.00400976 0.00694510i
\(404\) −13.2193 3.24775i −0.657684 0.161582i
\(405\) 0 0
\(406\) −11.7330 15.0782i −0.582299 0.748320i
\(407\) 8.56461i 0.424532i
\(408\) 0 0
\(409\) −0.207751 0.119945i −0.0102726 0.00593090i 0.494855 0.868976i \(-0.335221\pi\)
−0.505128 + 0.863045i \(0.668555\pi\)
\(410\) 18.9113 + 2.28905i 0.933961 + 0.113048i
\(411\) 0 0
\(412\) −19.4496 + 20.2795i −0.958211 + 0.999101i
\(413\) −9.51514 + 9.44550i −0.468210 + 0.464783i
\(414\) 0 0
\(415\) 41.4364 23.9233i 2.03403 1.17435i
\(416\) 7.82915 + 0.617270i 0.383856 + 0.0302641i
\(417\) 0 0
\(418\) −7.17641 + 9.55752i −0.351010 + 0.467474i
\(419\) 29.4140i 1.43697i −0.695544 0.718484i \(-0.744837\pi\)
0.695544 0.718484i \(-0.255163\pi\)
\(420\) 0 0
\(421\) 32.1265i 1.56575i 0.622180 + 0.782874i \(0.286247\pi\)
−0.622180 + 0.782874i \(0.713753\pi\)
\(422\) −11.3911 8.55319i −0.554511 0.416363i
\(423\) 0 0
\(424\) 15.5067 12.6899i 0.753073 0.616277i
\(425\) 18.1391 10.4726i 0.879878 0.507998i
\(426\) 0 0
\(427\) −21.5556 + 5.69103i −1.04315 + 0.275408i
\(428\) 7.11447 7.41807i 0.343891 0.358566i
\(429\) 0 0
\(430\) 0 0
\(431\) 32.7662 + 18.9176i 1.57829 + 0.911228i 0.995098 + 0.0988962i \(0.0315312\pi\)
0.583196 + 0.812332i \(0.301802\pi\)
\(432\) 0 0
\(433\) 25.4835i 1.22466i 0.790602 + 0.612330i \(0.209768\pi\)
−0.790602 + 0.612330i \(0.790232\pi\)
\(434\) −0.0595453 0.429784i −0.00285827 0.0206303i
\(435\) 0 0
\(436\) −1.35094 + 5.49872i −0.0646984 + 0.263341i
\(437\) 11.6690 20.2113i 0.558204 0.966837i
\(438\) 0 0
\(439\) −11.9804 20.7506i −0.571792 0.990373i −0.996382 0.0849871i \(-0.972915\pi\)
0.424590 0.905386i \(-0.360418\pi\)
\(440\) −5.11619 + 13.5362i −0.243905 + 0.645312i
\(441\) 0 0
\(442\) 3.10051 + 7.26962i 0.147476 + 0.345780i
\(443\) 5.13495 + 8.89399i 0.243969 + 0.422566i 0.961841 0.273608i \(-0.0882172\pi\)
−0.717872 + 0.696175i \(0.754884\pi\)
\(444\) 0 0
\(445\) −4.79140 2.76632i −0.227134 0.131136i
\(446\) −27.4907 20.6418i −1.30172 0.977416i
\(447\) 0 0
\(448\) 17.6745 11.6453i 0.835041 0.550188i
\(449\) −11.5096 −0.543170 −0.271585 0.962414i \(-0.587548\pi\)
−0.271585 + 0.962414i \(0.587548\pi\)
\(450\) 0 0
\(451\) −5.84923 3.37705i −0.275429 0.159019i
\(452\) 0.801641 + 2.75984i 0.0377060 + 0.129812i
\(453\) 0 0
\(454\) −7.94707 18.6331i −0.372974 0.874494i
\(455\) −11.3442 + 2.99505i −0.531824 + 0.140410i
\(456\) 0 0
\(457\) −15.3050 26.5091i −0.715939 1.24004i −0.962596 0.270941i \(-0.912665\pi\)
0.246657 0.969103i \(-0.420668\pi\)
\(458\) 1.80985 14.9523i 0.0845689 0.698675i
\(459\) 0 0
\(460\) 6.74168 27.4406i 0.314332 1.27942i
\(461\) −17.3671 −0.808866 −0.404433 0.914568i \(-0.632531\pi\)
−0.404433 + 0.914568i \(0.632531\pi\)
\(462\) 0 0
\(463\) 21.7288i 1.00983i −0.863171 0.504913i \(-0.831525\pi\)
0.863171 0.504913i \(-0.168475\pi\)
\(464\) 10.9421 + 17.2462i 0.507973 + 0.800636i
\(465\) 0 0
\(466\) −0.108418 + 0.895705i −0.00502235 + 0.0414928i
\(467\) 0.585859 0.338246i 0.0271103 0.0156521i −0.486384 0.873745i \(-0.661684\pi\)
0.513494 + 0.858093i \(0.328351\pi\)
\(468\) 0 0
\(469\) 18.7071 + 18.8450i 0.863814 + 0.870183i
\(470\) 42.0361 17.9285i 1.93898 0.826981i
\(471\) 0 0
\(472\) 11.0922 9.07731i 0.510560 0.417817i
\(473\) 0 0
\(474\) 0 0
\(475\) 27.4555i 1.25974i
\(476\) 18.6270 + 10.3309i 0.853768 + 0.473517i
\(477\) 0 0
\(478\) 4.02108 5.35527i 0.183920 0.244944i
\(479\) −14.3839 + 24.9136i −0.657217 + 1.13833i 0.324116 + 0.946017i \(0.394933\pi\)
−0.981333 + 0.192316i \(0.938400\pi\)
\(480\) 0 0
\(481\) 6.42907 3.71182i 0.293140 0.169245i
\(482\) 6.49482 + 15.2281i 0.295831 + 0.693619i
\(483\) 0 0
\(484\) −11.6766 + 12.1749i −0.530755 + 0.553404i
\(485\) 7.94483 4.58695i 0.360756 0.208283i
\(486\) 0 0
\(487\) −1.58745 0.916514i −0.0719342 0.0415312i 0.463602 0.886044i \(-0.346557\pi\)
−0.535536 + 0.844513i \(0.679890\pi\)
\(488\) 23.5206 3.84962i 1.06473 0.174264i
\(489\) 0 0
\(490\) −19.1722 + 25.1467i −0.866113 + 1.13601i
\(491\) −13.4370 −0.606401 −0.303201 0.952927i \(-0.598055\pi\)
−0.303201 + 0.952927i \(0.598055\pi\)
\(492\) 0 0
\(493\) −10.2770 + 17.8002i −0.462851 + 0.801682i
\(494\) 10.2846 + 1.24486i 0.462726 + 0.0560091i
\(495\) 0 0
\(496\) 0.0193720 + 0.463443i 0.000869830 + 0.0208092i
\(497\) −13.5096 3.67311i −0.605987 0.164762i
\(498\) 0 0
\(499\) 5.68404 + 9.84505i 0.254453 + 0.440725i 0.964747 0.263180i \(-0.0847714\pi\)
−0.710294 + 0.703905i \(0.751438\pi\)
\(500\) −0.362385 1.24760i −0.0162063 0.0557943i
\(501\) 0 0
\(502\) 9.81887 13.0767i 0.438238 0.583644i
\(503\) 13.2022 0.588656 0.294328 0.955704i \(-0.404904\pi\)
0.294328 + 0.955704i \(0.404904\pi\)
\(504\) 0 0
\(505\) −21.7408 −0.967454
\(506\) −6.01562 + 8.01158i −0.267427 + 0.356158i
\(507\) 0 0
\(508\) −9.45091 + 2.74517i −0.419317 + 0.121797i
\(509\) 13.2178 + 22.8940i 0.585870 + 1.01476i 0.994766 + 0.102176i \(0.0325804\pi\)
−0.408896 + 0.912581i \(0.634086\pi\)
\(510\) 0 0
\(511\) −20.1749 + 20.0272i −0.892484 + 0.885952i
\(512\) −20.0000 + 10.5830i −0.883883 + 0.467707i
\(513\) 0 0
\(514\) −33.1207 4.00898i −1.46089 0.176829i
\(515\) −22.4388 + 38.8652i −0.988773 + 1.71260i
\(516\) 0 0
\(517\) −16.2033 −0.712619
\(518\) 7.53126 18.5361i 0.330905 0.814428i
\(519\) 0 0
\(520\) 12.3783 2.02596i 0.542825 0.0888442i
\(521\) 10.4163 + 6.01384i 0.456345 + 0.263471i 0.710506 0.703691i \(-0.248466\pi\)
−0.254161 + 0.967162i \(0.581799\pi\)
\(522\) 0 0
\(523\) 2.43276 1.40455i 0.106377 0.0614168i −0.445868 0.895099i \(-0.647105\pi\)
0.552245 + 0.833682i \(0.313771\pi\)
\(524\) 5.69439 + 5.46133i 0.248760 + 0.238579i
\(525\) 0 0
\(526\) 5.92487 + 13.8917i 0.258337 + 0.605708i
\(527\) −0.404248 + 0.233393i −0.0176093 + 0.0101668i
\(528\) 0 0
\(529\) −1.71848 + 2.97649i −0.0747164 + 0.129413i
\(530\) 19.2155 25.5912i 0.834668 1.11161i
\(531\) 0 0
\(532\) 23.9360 14.3744i 1.03776 0.623211i
\(533\) 5.85434i 0.253580i
\(534\) 0 0
\(535\) 8.20791 14.2165i 0.354859 0.614634i
\(536\) −17.9779 21.9685i −0.776527 0.948894i
\(537\) 0 0
\(538\) 30.3590 12.9482i 1.30887 0.558236i
\(539\) 9.75058 5.53440i 0.419987 0.238383i
\(540\) 0 0
\(541\) 1.68628 0.973573i 0.0724988 0.0418572i −0.463312 0.886195i \(-0.653339\pi\)
0.535811 + 0.844338i \(0.320006\pi\)
\(542\) −2.31783 + 19.1490i −0.0995592 + 0.822520i
\(543\) 0 0
\(544\) −18.7642 12.9001i −0.804507 0.553088i
\(545\) 9.04336i 0.387375i
\(546\) 0 0
\(547\) 28.4561 1.21669 0.608347 0.793671i \(-0.291833\pi\)
0.608347 + 0.793671i \(0.291833\pi\)
\(548\) −0.199749 0.0490750i −0.00853286 0.00209638i
\(549\) 0 0
\(550\) −1.41629 + 11.7008i −0.0603906 + 0.498924i
\(551\) 13.4712 + 23.3329i 0.573894 + 0.994013i
\(552\) 0 0
\(553\) −8.05982 30.5277i −0.342738 1.29817i
\(554\) −0.253810 0.595095i −0.0107833 0.0252832i
\(555\) 0 0
\(556\) 28.7687 8.35634i 1.22007 0.354388i
\(557\) −7.96630 4.59935i −0.337543 0.194881i 0.321642 0.946861i \(-0.395765\pi\)
−0.659185 + 0.751981i \(0.729099\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 22.9758 24.7970i 0.970905 1.04786i
\(561\) 0 0
\(562\) 1.62505 + 1.22020i 0.0685488 + 0.0514709i
\(563\) 23.5533 + 13.5985i 0.992653 + 0.573108i 0.906066 0.423136i \(-0.139071\pi\)
0.0865866 + 0.996244i \(0.472404\pi\)
\(564\) 0 0
\(565\) 2.29501 + 3.97508i 0.0965518 + 0.167233i
\(566\) −17.3248 40.6205i −0.728214 1.70741i
\(567\) 0 0
\(568\) 14.0000 + 5.29150i 0.587427 + 0.222027i
\(569\) −11.7699 20.3861i −0.493420 0.854628i 0.506551 0.862210i \(-0.330920\pi\)
−0.999971 + 0.00758149i \(0.997587\pi\)
\(570\) 0 0
\(571\) −15.1713 + 26.2774i −0.634897 + 1.09967i 0.351640 + 0.936135i \(0.385624\pi\)
−0.986537 + 0.163539i \(0.947709\pi\)
\(572\) −4.31881 1.06106i −0.180579 0.0443651i
\(573\) 0 0
\(574\) 9.68967 + 12.4523i 0.404439 + 0.519751i
\(575\) 23.0145i 0.959772i
\(576\) 0 0
\(577\) 24.7760 + 14.3044i 1.03144 + 0.595500i 0.917396 0.397976i \(-0.130287\pi\)
0.114041 + 0.993476i \(0.463620\pi\)
\(578\) −0.135380 + 1.11846i −0.00563107 + 0.0465217i
\(579\) 0 0
\(580\) 23.5431 + 22.5795i 0.977574 + 0.937564i
\(581\) 38.2421 + 10.3976i 1.58655 + 0.431367i
\(582\) 0 0
\(583\) −9.82652 + 5.67335i −0.406973 + 0.234966i
\(584\) 23.5187 19.2465i 0.973211 0.796428i
\(585\) 0 0
\(586\) −35.3978 26.5790i −1.46227 1.09797i
\(587\) 15.2362i 0.628867i 0.949280 + 0.314433i \(0.101814\pi\)
−0.949280 + 0.314433i \(0.898186\pi\)
\(588\) 0 0
\(589\) 0.611872i 0.0252117i
\(590\) 13.7452 18.3058i 0.565880 0.753637i
\(591\) 0 0
\(592\) −9.91160 + 18.9540i −0.407364 + 0.779003i
\(593\) −18.2934 + 10.5617i −0.751221 + 0.433717i −0.826135 0.563473i \(-0.809465\pi\)
0.0749142 + 0.997190i \(0.476132\pi\)
\(594\) 0 0
\(595\) 32.8274 + 8.92543i 1.34579 + 0.365907i
\(596\) 16.3202 + 15.6522i 0.668500 + 0.641140i
\(597\) 0 0
\(598\) 8.62105 + 1.04351i 0.352541 + 0.0426721i
\(599\) −29.1795 16.8468i −1.19224 0.688341i −0.233427 0.972374i \(-0.574994\pi\)
−0.958814 + 0.284033i \(0.908327\pi\)
\(600\) 0 0
\(601\) 24.3960i 0.995132i −0.867426 0.497566i \(-0.834227\pi\)
0.867426 0.497566i \(-0.165773\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 7.07205 28.7853i 0.287758 1.17126i
\(605\) −13.4712 + 23.3329i −0.547683 + 0.948616i
\(606\) 0 0
\(607\) 4.08757 + 7.07987i 0.165909 + 0.287363i 0.936978 0.349389i \(-0.113611\pi\)
−0.771069 + 0.636752i \(0.780277\pi\)
\(608\) −26.9425 + 12.8463i −1.09266 + 0.520985i
\(609\) 0 0
\(610\) 35.0138 14.9335i 1.41767 0.604639i
\(611\) 7.02235 + 12.1631i 0.284094 + 0.492065i
\(612\) 0 0
\(613\) −14.7221 8.49981i −0.594620 0.343304i 0.172302 0.985044i \(-0.444879\pi\)
−0.766922 + 0.641740i \(0.778213\pi\)
\(614\) −12.5009 + 16.6486i −0.504493 + 0.671883i
\(615\) 0 0
\(616\) −10.9424 + 4.89128i −0.440882 + 0.197075i
\(617\) −39.6548 −1.59644 −0.798221 0.602365i \(-0.794225\pi\)
−0.798221 + 0.602365i \(0.794225\pi\)
\(618\) 0 0
\(619\) −12.4719 7.20065i −0.501288 0.289419i 0.227957 0.973671i \(-0.426795\pi\)
−0.729245 + 0.684252i \(0.760129\pi\)
\(620\) 0.206644 + 0.711423i 0.00829903 + 0.0285714i
\(621\) 0 0
\(622\) −20.2677 + 8.64425i −0.812662 + 0.346603i
\(623\) −1.16979 4.43075i −0.0468667 0.177514i
\(624\) 0 0
\(625\) 11.9709 + 20.7343i 0.478837 + 0.829370i
\(626\) −18.3725 2.22384i −0.734314 0.0888826i
\(627\) 0 0
\(628\) 1.43478 + 0.352502i 0.0572541 + 0.0140663i
\(629\) −21.5246 −0.858241
\(630\) 0 0
\(631\) 36.6698i 1.45980i 0.683553 + 0.729900i \(0.260434\pi\)
−0.683553 + 0.729900i \(0.739566\pi\)
\(632\) 5.45194 + 33.3106i 0.216867 + 1.32502i
\(633\) 0 0
\(634\) 33.0670 + 4.00248i 1.31326 + 0.158959i
\(635\) −13.6124 + 7.85913i −0.540192 + 0.311880i
\(636\) 0 0
\(637\) −8.38024 4.92077i −0.332037 0.194968i
\(638\) −4.53747 10.6388i −0.179640 0.421193i
\(639\) 0 0
\(640\) −26.9875 + 24.0355i −1.06677 + 0.950086i
\(641\) 9.13798 15.8274i 0.360929 0.625147i −0.627185 0.778870i \(-0.715793\pi\)
0.988114 + 0.153723i \(0.0491265\pi\)
\(642\) 0 0
\(643\) 13.6340i 0.537671i 0.963186 + 0.268836i \(0.0866389\pi\)
−0.963186 + 0.268836i \(0.913361\pi\)
\(644\) 20.0643 12.0494i 0.790646 0.474812i
\(645\) 0 0
\(646\) −24.0200 18.0357i −0.945053 0.709607i
\(647\) −8.74153 + 15.1408i −0.343665 + 0.595245i −0.985110 0.171923i \(-0.945002\pi\)
0.641445 + 0.767169i \(0.278335\pi\)
\(648\) 0 0
\(649\) −7.02907 + 4.05824i −0.275915 + 0.159300i
\(650\) 9.39708 4.00788i 0.368584 0.157202i
\(651\) 0 0
\(652\) −12.0503 + 12.5645i −0.471924 + 0.492063i
\(653\) −8.40495 + 4.85260i −0.328911 + 0.189897i −0.655358 0.755319i \(-0.727482\pi\)
0.326446 + 0.945216i \(0.394149\pi\)
\(654\) 0 0
\(655\) 10.9131 + 6.30070i 0.426411 + 0.246189i
\(656\) −9.03650 14.2428i −0.352816 0.556087i
\(657\) 0 0
\(658\) 35.0682 + 14.2483i 1.36710 + 0.555456i
\(659\) 28.9465 1.12760 0.563798 0.825913i \(-0.309340\pi\)
0.563798 + 0.825913i \(0.309340\pi\)
\(660\) 0 0
\(661\) 6.43683 11.1489i 0.250364 0.433643i −0.713262 0.700897i \(-0.752783\pi\)
0.963626 + 0.267254i \(0.0861164\pi\)
\(662\) −5.61739 + 46.4087i −0.218326 + 1.80373i
\(663\) 0 0
\(664\) −39.6304 14.9789i −1.53796 0.581293i
\(665\) 31.6475 31.4159i 1.22724 1.21826i
\(666\) 0 0
\(667\) 11.2922 + 19.5587i 0.437238 + 0.757318i
\(668\) −0.774501 2.66641i −0.0299663 0.103166i
\(669\) 0 0
\(670\) −36.2552 27.2227i −1.40066 1.05171i
\(671\) −13.4964 −0.521024
\(672\) 0 0
\(673\) −23.6548 −0.911825 −0.455912 0.890025i \(-0.650687\pi\)
−0.455912 + 0.890025i \(0.650687\pi\)
\(674\) 17.5398 + 13.1700i 0.675607 + 0.507290i
\(675\) 0 0
\(676\) −6.17713 21.2663i −0.237582 0.817933i
\(677\) −1.80224 3.12157i −0.0692657 0.119972i 0.829313 0.558785i \(-0.188732\pi\)
−0.898578 + 0.438813i \(0.855399\pi\)
\(678\) 0 0
\(679\) 7.33237 + 1.99360i 0.281391 + 0.0765072i
\(680\) −34.0191 12.8580i −1.30457 0.493083i
\(681\) 0 0
\(682\) 0.0315633 0.260764i 0.00120862 0.00998516i
\(683\) −3.80924 + 6.59779i −0.145756 + 0.252457i −0.929655 0.368432i \(-0.879895\pi\)
0.783899 + 0.620889i \(0.213228\pi\)
\(684\) 0 0
\(685\) −0.328514 −0.0125519
\(686\) −25.9695 + 3.40375i −0.991520 + 0.129956i
\(687\) 0 0
\(688\) 0 0
\(689\) 8.51745 + 4.91755i 0.324489 + 0.187344i
\(690\) 0 0
\(691\) −44.9707 + 25.9639i −1.71077 + 0.987712i −0.777241 + 0.629203i \(0.783381\pi\)
−0.933526 + 0.358509i \(0.883285\pi\)
\(692\) −1.34373 + 1.40108i −0.0510811 + 0.0532609i
\(693\) 0 0
\(694\) −29.2674 + 12.4826i −1.11097 + 0.473834i
\(695\) 41.4364 23.9233i 1.57177 0.907462i
\(696\) 0 0
\(697\) 8.48721 14.7003i 0.321476 0.556813i
\(698\) 32.2008 + 24.1784i 1.21882 + 0.915167i
\(699\) 0 0
\(700\) 13.3543 24.0782i 0.504745 0.910072i
\(701\) 0.741474i 0.0280051i 0.999902 + 0.0140025i \(0.00445729\pi\)
−0.999902 + 0.0140025i \(0.995543\pi\)
\(702\) 0 0
\(703\) −14.1074 + 24.4347i −0.532071 + 0.921574i
\(704\) 12.1449 4.08492i 0.457726 0.153956i
\(705\) 0 0
\(706\) −5.31161 12.4539i −0.199905 0.468708i
\(707\) −12.6864 12.7799i −0.477120 0.480638i
\(708\) 0 0
\(709\) 35.6491 20.5820i 1.33883 0.772974i 0.352196 0.935926i \(-0.385435\pi\)
0.986634 + 0.162952i \(0.0521016\pi\)
\(710\) 23.7305 + 2.87238i 0.890590 + 0.107799i
\(711\) 0 0
\(712\) 0.791288 + 4.83465i 0.0296548 + 0.181186i
\(713\) 0.512901i 0.0192083i
\(714\) 0 0
\(715\) −7.10284 −0.265631
\(716\) −27.7156 6.80925i −1.03578 0.254474i
\(717\) 0 0
\(718\) −5.27242 0.638183i −0.196765 0.0238168i
\(719\) −7.02471 12.1672i −0.261978 0.453758i 0.704790 0.709416i \(-0.251041\pi\)
−0.966767 + 0.255658i \(0.917708\pi\)
\(720\) 0 0
\(721\) −35.9398 + 9.48869i −1.33847 + 0.353377i
\(722\) −11.5012 + 4.90528i −0.428029 + 0.182556i
\(723\) 0 0
\(724\) 8.54763 + 29.4273i 0.317670 + 1.09366i
\(725\) 23.0095 + 13.2845i 0.854550 + 0.493375i
\(726\) 0 0
\(727\) 13.2022 0.489642 0.244821 0.969568i \(-0.421271\pi\)
0.244821 + 0.969568i \(0.421271\pi\)
\(728\) 8.41401 + 6.09414i 0.311844 + 0.225864i
\(729\) 0 0
\(730\) 29.1438 38.8136i 1.07866 1.43656i
\(731\) 0 0
\(732\) 0 0
\(733\) 24.9797 + 43.2661i 0.922646 + 1.59807i 0.795304 + 0.606211i \(0.207311\pi\)
0.127342 + 0.991859i \(0.459356\pi\)
\(734\) 21.8880 9.33529i 0.807900 0.344572i
\(735\) 0 0
\(736\) −22.5845 + 10.7684i −0.832476 + 0.396928i
\(737\) 8.03747 + 13.9213i 0.296064 + 0.512798i
\(738\) 0 0
\(739\) 18.2718 31.6476i 0.672138 1.16418i −0.305159 0.952301i \(-0.598710\pi\)
0.977297 0.211875i \(-0.0679571\pi\)
\(740\) −8.15045 + 33.1747i −0.299617 + 1.21953i
\(741\) 0 0
\(742\) 26.2560 3.63770i 0.963889 0.133544i
\(743\) 15.1330i 0.555177i 0.960700 + 0.277589i \(0.0895352\pi\)
−0.960700 + 0.277589i \(0.910465\pi\)
\(744\) 0 0
\(745\) 31.2771 + 18.0579i 1.14591 + 0.661589i
\(746\) 18.0522 + 2.18507i 0.660939 + 0.0800012i
\(747\) 0 0
\(748\) 9.30631 + 8.92543i 0.340273 + 0.326346i
\(749\) 13.1464 3.47087i 0.480360 0.126823i
\(750\) 0 0
\(751\) 11.9997 6.92806i 0.437877 0.252808i −0.264820 0.964298i \(-0.585312\pi\)
0.702697 + 0.711490i \(0.251979\pi\)
\(752\) −35.8588 18.7516i −1.30763 0.683801i
\(753\) 0 0
\(754\) −6.01955 + 8.01682i −0.219219 + 0.291955i
\(755\) 47.3412i 1.72292i
\(756\) 0 0
\(757\) 46.6967i 1.69722i −0.529019 0.848610i \(-0.677440\pi\)
0.529019 0.848610i \(-0.322560\pi\)
\(758\) −28.9309 21.7232i −1.05082 0.789022i
\(759\) 0 0
\(760\) −36.8929 + 30.1913i −1.33825 + 1.09515i
\(761\) −40.7899 + 23.5501i −1.47863 + 0.853689i −0.999708 0.0241662i \(-0.992307\pi\)
−0.478925 + 0.877856i \(0.658974\pi\)
\(762\) 0 0
\(763\) −5.31596 + 5.27705i −0.192451 + 0.191042i
\(764\) 3.60957 + 3.46184i 0.130590 + 0.125245i
\(765\) 0 0
\(766\) −4.58312 + 37.8640i −0.165595 + 1.36808i
\(767\) 6.09267 + 3.51761i 0.219994 + 0.127013i
\(768\) 0 0
\(769\) 17.3071i 0.624110i 0.950064 + 0.312055i \(0.101017\pi\)
−0.950064 + 0.312055i \(0.898983\pi\)
\(770\) −15.1079 + 11.7561i −0.544453 + 0.423661i
\(771\) 0 0
\(772\) 6.02195 + 1.47949i 0.216735 + 0.0532480i
\(773\) 13.5389 23.4501i 0.486960 0.843440i −0.512927 0.858432i \(-0.671439\pi\)
0.999888 + 0.0149920i \(0.00477229\pi\)
\(774\) 0 0
\(775\) 0.301696 + 0.522552i 0.0108372 + 0.0187706i
\(776\) −7.59856 2.87198i −0.272772 0.103098i
\(777\) 0 0
\(778\) 17.7485 + 41.6141i 0.636315 + 1.49194i
\(779\) −11.1252 19.2694i −0.398601 0.690398i
\(780\) 0 0
\(781\) −7.33982 4.23764i −0.262639 0.151635i
\(782\) −20.1347 15.1184i −0.720016 0.540635i
\(783\) 0 0
\(784\) 27.9834 0.963845i 0.999407 0.0344230i
\(785\) 2.35969 0.0842208
\(786\) 0 0
\(787\) −46.9684 27.1172i −1.67424 0.966624i −0.965220 0.261439i \(-0.915803\pi\)
−0.709023 0.705186i \(-0.750864\pi\)
\(788\) 30.1329 8.75257i 1.07344 0.311798i
\(789\) 0 0
\(790\) 21.1492 + 49.5876i 0.752456 + 1.76425i
\(791\) −0.997467 + 3.66864i −0.0354658 + 0.130442i
\(792\) 0 0
\(793\) 5.84923 + 10.1312i 0.207712 + 0.359768i
\(794\) −2.89551 + 23.9216i −0.102758 + 0.848946i
\(795\) 0 0
\(796\) 22.9686 + 5.64298i 0.814099 + 0.200010i
\(797\) −20.1437 −0.713527 −0.356763 0.934195i \(-0.616120\pi\)
−0.356763 + 0.934195i \(0.616120\pi\)
\(798\) 0 0
\(799\) 40.7221i 1.44064i
\(800\) −16.6754 + 24.2555i −0.589563 + 0.857562i
\(801\) 0 0
\(802\) −1.00215 + 8.27941i −0.0353873 + 0.292356i
\(803\) −14.9037 + 8.60465i −0.525940 + 0.303651i
\(804\) 0 0
\(805\) 26.5285 26.3344i 0.935008 0.928164i
\(806\) −0.209423 + 0.0893195i −0.00737661 + 0.00314615i
\(807\) 0 0
\(808\) 12.1919 + 14.8981i 0.428908 + 0.524113i
\(809\) 17.2771 29.9249i 0.607432 1.05210i −0.384231 0.923237i \(-0.625533\pi\)
0.991662 0.128865i \(-0.0411334\pi\)
\(810\) 0 0
\(811\) 13.6340i 0.478754i −0.970927 0.239377i \(-0.923057\pi\)
0.970927 0.239377i \(-0.0769431\pi\)
\(812\) 0.465109 + 27.0151i 0.0163221 + 0.948045i
\(813\) 0 0
\(814\) 7.27267 9.68573i 0.254907 0.339485i
\(815\) −13.9023 + 24.0795i −0.486976 + 0.843468i
\(816\) 0 0
\(817\) 0 0
\(818\) 0.133094 + 0.312058i 0.00465352 + 0.0109109i
\(819\) 0 0
\(820\) −19.4430 18.6473i −0.678980 0.651191i
\(821\) 27.7311 16.0106i 0.967822 0.558772i 0.0692505 0.997599i \(-0.477939\pi\)
0.898572 + 0.438827i \(0.144606\pi\)
\(822\) 0 0
\(823\) −26.8399 15.4960i −0.935580 0.540158i −0.0470083 0.998894i \(-0.514969\pi\)
−0.888572 + 0.458737i \(0.848302\pi\)
\(824\) 39.2160 6.41848i 1.36615 0.223598i
\(825\) 0 0
\(826\) 18.7814 2.60210i 0.653487 0.0905387i
\(827\) 11.0191 0.383172 0.191586 0.981476i \(-0.438637\pi\)
0.191586 + 0.981476i \(0.438637\pi\)
\(828\) 0 0
\(829\) −18.9836 + 32.8806i −0.659328 + 1.14199i 0.321462 + 0.946922i \(0.395826\pi\)
−0.980790 + 0.195067i \(0.937508\pi\)
\(830\) −67.1750 8.13097i −2.33168 0.282230i
\(831\) 0 0
\(832\) −8.32984 7.34623i −0.288785 0.254685i
\(833\) 13.9090 + 24.5052i 0.481920 + 0.849054i
\(834\) 0 0
\(835\) −2.21731 3.84050i −0.0767332 0.132906i
\(836\) 16.2316 4.71473i 0.561382 0.163063i
\(837\) 0 0
\(838\) −24.9770 + 33.2643i −0.862816 + 1.14910i
\(839\) 8.32984 0.287578 0.143789 0.989608i \(-0.454071\pi\)
0.143789 + 0.989608i \(0.454071\pi\)
\(840\) 0 0
\(841\) 2.92739 0.100945
\(842\) 27.2803 36.3319i 0.940142 1.25208i
\(843\) 0 0
\(844\) 5.61925 + 19.3456i 0.193423 + 0.665904i
\(845\) −17.6844 30.6304i −0.608363 1.05372i
\(846\) 0 0
\(847\) −21.5766 + 5.69657i −0.741380 + 0.195736i
\(848\) −28.3123 + 1.18346i −0.972247 + 0.0406402i
\(849\) 0 0
\(850\) −29.4065 3.55941i −1.00863 0.122087i
\(851\) −11.8255 + 20.4824i −0.405374 + 0.702128i
\(852\) 0 0
\(853\) −6.94153 −0.237673 −0.118837 0.992914i \(-0.537917\pi\)
−0.118837 + 0.992914i \(0.537917\pi\)
\(854\) 29.2098 + 11.8680i 0.999540 + 0.406116i
\(855\) 0 0
\(856\) −14.3448 + 2.34782i −0.490297 + 0.0802469i
\(857\) −1.91744 1.10704i −0.0654986 0.0378156i 0.466893 0.884314i \(-0.345373\pi\)
−0.532392 + 0.846498i \(0.678707\pi\)
\(858\) 0 0
\(859\) 5.26337 3.03881i 0.179584 0.103683i −0.407513 0.913199i \(-0.633604\pi\)
0.587097 + 0.809516i \(0.300271\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −20.9914 49.2175i −0.714970 1.67635i
\(863\) 7.64747 4.41527i 0.260323 0.150298i −0.364159 0.931337i \(-0.618643\pi\)
0.624482 + 0.781039i \(0.285310\pi\)
\(864\) 0 0
\(865\) −1.55026 + 2.68512i −0.0527103 + 0.0912969i
\(866\) 21.6394 28.8193i 0.735338 0.979321i
\(867\) 0 0
\(868\) −0.297613 + 0.536607i −0.0101016 + 0.0182136i
\(869\) 19.1141i 0.648400i
\(870\) 0 0
\(871\) 6.96673 12.0667i 0.236059 0.408866i
\(872\) 6.19704 5.07135i 0.209858 0.171738i
\(873\) 0 0
\(874\) −30.3590 + 12.9482i −1.02691 + 0.437979i
\(875\) 0.450909 1.65842i 0.0152435 0.0560650i
\(876\) 0 0
\(877\) −10.3059 + 5.95011i −0.348005 + 0.200921i −0.663806 0.747905i \(-0.731060\pi\)
0.315801 + 0.948825i \(0.397727\pi\)
\(878\) −4.07185 + 33.6401i −0.137418 + 1.13530i
\(879\) 0 0
\(880\) 17.2802 10.9636i 0.582516 0.369584i
\(881\) 53.9142i 1.81642i 0.418519 + 0.908208i \(0.362549\pi\)
−0.418519 + 0.908208i \(0.637451\pi\)
\(882\) 0 0
\(883\) 11.1987 0.376866 0.188433 0.982086i \(-0.439659\pi\)
0.188433 + 0.982086i \(0.439659\pi\)
\(884\) 2.66665 10.8540i 0.0896891 0.365061i
\(885\) 0 0
\(886\) 1.74525 14.4186i 0.0586328 0.484402i
\(887\) −18.1832 31.4942i −0.610531 1.05747i −0.991151 0.132740i \(-0.957623\pi\)
0.380620 0.924732i \(-0.375711\pi\)
\(888\) 0 0
\(889\) −12.5630 3.41576i −0.421351 0.114561i
\(890\) 3.06957 + 7.19707i 0.102892 + 0.241246i
\(891\) 0 0
\(892\) 13.5612 + 46.6876i 0.454062 + 1.56322i
\(893\) −46.2278 26.6896i −1.54695 0.893134i
\(894\) 0 0
\(895\) −45.5819 −1.52364
\(896\) −29.8767 1.83868i −0.998112 0.0614262i
\(897\) 0 0
\(898\) 13.0162 + 9.77339i 0.434355 + 0.326142i
\(899\) −0.512788 0.296058i −0.0171024 0.00987410i
\(900\) 0 0
\(901\) −14.2583 24.6960i −0.475011 0.822744i
\(902\) 3.74726 + 8.78601i 0.124770 + 0.292542i
\(903\) 0 0
\(904\) 1.43695 3.80183i 0.0477924 0.126447i
\(905\) 24.4709 + 42.3849i 0.813441 + 1.40892i
\(906\) 0 0
\(907\) 8.92370 15.4563i 0.296307 0.513218i −0.678981 0.734156i \(-0.737578\pi\)
0.975288 + 0.220937i \(0.0709116\pi\)
\(908\) −6.83501 + 27.8205i −0.226828 + 0.923254i
\(909\) 0 0
\(910\) 15.3724 + 6.24586i 0.509591 + 0.207048i
\(911\) 11.1458i 0.369278i −0.982806 0.184639i \(-0.940888\pi\)
0.982806 0.184639i \(-0.0591116\pi\)
\(912\) 0 0
\(913\) 20.7771 + 11.9957i 0.687623 + 0.396999i
\(914\) −5.20183 + 42.9755i −0.172061 + 1.42150i
\(915\) 0 0
\(916\) −14.7436 + 15.3727i −0.487141 + 0.507929i
\(917\) 2.66437 + 10.0917i 0.0879854 + 0.333257i
\(918\) 0 0
\(919\) 28.2802 16.3276i 0.932879 0.538598i 0.0451579 0.998980i \(-0.485621\pi\)
0.887721 + 0.460382i \(0.152288\pi\)
\(920\) −30.9254 + 25.3078i −1.01958 + 0.834375i
\(921\) 0 0
\(922\) 19.6405 + 14.7473i 0.646825 + 0.485678i
\(923\) 7.34623i 0.241804i
\(924\) 0 0
\(925\) 27.8238i 0.914839i
\(926\) −18.4511 + 24.5732i −0.606342 + 0.807525i
\(927\) 0 0
\(928\) 2.27029 28.7953i 0.0745260 0.945252i
\(929\) 23.3027 13.4538i 0.764537 0.441406i −0.0663853 0.997794i \(-0.521147\pi\)
0.830922 + 0.556388i \(0.187813\pi\)
\(930\) 0 0
\(931\) 36.9344 + 0.271329i 1.21048 + 0.00889246i
\(932\) 0.883202 0.920891i 0.0289302 0.0301648i
\(933\) 0 0
\(934\) −0.949771 0.114962i −0.0310775 0.00376167i
\(935\) 17.8353 + 10.2972i 0.583276 + 0.336755i
\(936\) 0 0
\(937\) 32.6476i 1.06655i 0.845942 + 0.533275i \(0.179039\pi\)
−0.845942 + 0.533275i \(0.820961\pi\)
\(938\) −5.15355 37.1971i −0.168269 1.21453i
\(939\) 0 0
\(940\) −62.7628 15.4197i −2.04710 0.502936i
\(941\) 6.32087 10.9481i 0.206055 0.356897i −0.744414 0.667719i \(-0.767271\pi\)
0.950468 + 0.310822i \(0.100604\pi\)
\(942\) 0 0
\(943\) −9.32569 16.1526i −0.303686 0.526000i
\(944\) −20.2522 + 0.846548i −0.659154 + 0.0275528i
\(945\) 0 0
\(946\) 0 0
\(947\) −21.1271 36.5931i −0.686537 1.18912i −0.972951 0.231011i \(-0.925797\pi\)
0.286414 0.958106i \(-0.407537\pi\)
\(948\) 0 0
\(949\) 12.9182 + 7.45835i 0.419344 + 0.242108i
\(950\) −23.3139 + 31.0494i −0.756403 + 1.00738i
\(951\) 0 0
\(952\) −12.2928 27.5005i −0.398411 0.891295i
\(953\) 44.4561 1.44007 0.720037 0.693936i \(-0.244125\pi\)
0.720037 + 0.693936i \(0.244125\pi\)
\(954\) 0 0
\(955\) 6.91764 + 3.99390i 0.223850 + 0.129240i
\(956\) −9.09489 + 2.64176i −0.294150 + 0.0854406i
\(957\) 0 0
\(958\) 37.4223 15.9607i 1.20906 0.515668i
\(959\) −0.191697 0.193110i −0.00619021 0.00623585i
\(960\) 0 0
\(961\) 15.4933 + 26.8351i 0.499783 + 0.865650i
\(962\) −10.4225 1.26156i −0.336036 0.0406744i
\(963\) 0 0
\(964\) 5.58598 22.7365i 0.179912 0.732294i
\(965\) 9.90388 0.318817
\(966\) 0 0
\(967\) 25.7160i 0.826972i 0.910510 + 0.413486i \(0.135689\pi\)
−0.910510 + 0.413486i \(0.864311\pi\)
\(968\) 23.5435 3.85336i 0.756716 0.123852i
\(969\) 0 0
\(970\) −12.8798 1.55900i −0.413547 0.0500564i
\(971\) 40.2746 23.2526i 1.29247 0.746210i 0.313381 0.949627i \(-0.398538\pi\)
0.979092 + 0.203417i \(0.0652048\pi\)
\(972\) 0 0
\(973\) 38.2421 + 10.3976i 1.22599 + 0.333333i
\(974\) 1.01699 + 2.38448i 0.0325863 + 0.0764035i
\(975\) 0 0
\(976\) −29.8684 15.6191i −0.956063 0.499954i
\(977\) 17.1348 29.6783i 0.548189 0.949492i −0.450209 0.892923i \(-0.648651\pi\)
0.998399 0.0565688i \(-0.0180160\pi\)
\(978\) 0 0
\(979\) 2.77419i 0.0886635i
\(980\) 43.0353 12.1582i 1.37471 0.388380i
\(981\) 0 0
\(982\) 15.1959 + 11.4100i 0.484920 + 0.364109i
\(983\) 0.777334 1.34638i 0.0247931 0.0429429i −0.853363 0.521318i \(-0.825441\pi\)
0.878156 + 0.478375i \(0.158774\pi\)
\(984\) 0 0
\(985\) 43.4012 25.0577i 1.38288 0.798404i
\(986\) 26.7374 11.4036i 0.851491 0.363163i
\(987\) 0 0
\(988\) −10.5738 10.1410i −0.336396 0.322629i
\(989\) 0 0
\(990\) 0 0
\(991\) 22.6482 + 13.0759i 0.719443 + 0.415371i 0.814548 0.580097i \(-0.196985\pi\)
−0.0951047 + 0.995467i \(0.530319\pi\)
\(992\) 0.371626 0.540558i 0.0117992 0.0171627i
\(993\) 0 0
\(994\) 12.1589 + 15.6256i 0.385658 + 0.495615i
\(995\) 37.7748 1.19754
\(996\) 0 0
\(997\) 18.1467 31.4310i 0.574711 0.995429i −0.421362 0.906893i \(-0.638448\pi\)
0.996073 0.0885360i \(-0.0282188\pi\)
\(998\) 1.93187 15.9604i 0.0611524 0.505218i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 504.2.bk.a.451.1 12
3.2 odd 2 56.2.m.a.3.6 yes 12
4.3 odd 2 2016.2.bs.a.1711.6 12
7.5 odd 6 inner 504.2.bk.a.19.4 12
8.3 odd 2 inner 504.2.bk.a.451.3 12
8.5 even 2 2016.2.bs.a.1711.1 12
12.11 even 2 224.2.q.a.143.3 12
21.2 odd 6 392.2.m.g.19.3 12
21.5 even 6 56.2.m.a.19.3 yes 12
21.11 odd 6 392.2.e.e.195.4 12
21.17 even 6 392.2.e.e.195.3 12
21.20 even 2 392.2.m.g.227.6 12
24.5 odd 2 224.2.q.a.143.4 12
24.11 even 2 56.2.m.a.3.4 12
28.19 even 6 2016.2.bs.a.271.1 12
56.5 odd 6 2016.2.bs.a.271.6 12
56.19 even 6 inner 504.2.bk.a.19.2 12
84.11 even 6 1568.2.e.e.783.6 12
84.23 even 6 1568.2.q.g.1391.3 12
84.47 odd 6 224.2.q.a.47.4 12
84.59 odd 6 1568.2.e.e.783.7 12
84.83 odd 2 1568.2.q.g.815.4 12
168.5 even 6 224.2.q.a.47.3 12
168.11 even 6 392.2.e.e.195.2 12
168.53 odd 6 1568.2.e.e.783.5 12
168.59 odd 6 392.2.e.e.195.1 12
168.83 odd 2 392.2.m.g.227.4 12
168.101 even 6 1568.2.e.e.783.8 12
168.107 even 6 392.2.m.g.19.5 12
168.125 even 2 1568.2.q.g.815.3 12
168.131 odd 6 56.2.m.a.19.5 yes 12
168.149 odd 6 1568.2.q.g.1391.4 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
56.2.m.a.3.4 12 24.11 even 2
56.2.m.a.3.6 yes 12 3.2 odd 2
56.2.m.a.19.3 yes 12 21.5 even 6
56.2.m.a.19.5 yes 12 168.131 odd 6
224.2.q.a.47.3 12 168.5 even 6
224.2.q.a.47.4 12 84.47 odd 6
224.2.q.a.143.3 12 12.11 even 2
224.2.q.a.143.4 12 24.5 odd 2
392.2.e.e.195.1 12 168.59 odd 6
392.2.e.e.195.2 12 168.11 even 6
392.2.e.e.195.3 12 21.17 even 6
392.2.e.e.195.4 12 21.11 odd 6
392.2.m.g.19.3 12 21.2 odd 6
392.2.m.g.19.5 12 168.107 even 6
392.2.m.g.227.4 12 168.83 odd 2
392.2.m.g.227.6 12 21.20 even 2
504.2.bk.a.19.2 12 56.19 even 6 inner
504.2.bk.a.19.4 12 7.5 odd 6 inner
504.2.bk.a.451.1 12 1.1 even 1 trivial
504.2.bk.a.451.3 12 8.3 odd 2 inner
1568.2.e.e.783.5 12 168.53 odd 6
1568.2.e.e.783.6 12 84.11 even 6
1568.2.e.e.783.7 12 84.59 odd 6
1568.2.e.e.783.8 12 168.101 even 6
1568.2.q.g.815.3 12 168.125 even 2
1568.2.q.g.815.4 12 84.83 odd 2
1568.2.q.g.1391.3 12 84.23 even 6
1568.2.q.g.1391.4 12 168.149 odd 6
2016.2.bs.a.271.1 12 28.19 even 6
2016.2.bs.a.271.6 12 56.5 odd 6
2016.2.bs.a.1711.1 12 8.5 even 2
2016.2.bs.a.1711.6 12 4.3 odd 2