Properties

Label 392.2.e.e.195.4
Level $392$
Weight $2$
Character 392.195
Analytic conductor $3.130$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [392,2,Mod(195,392)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(392, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("392.195");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 392 = 2^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 392.e (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.13013575923\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: 12.0.144054149089536.2
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 3x^{11} + x^{9} + 48x^{8} - 189x^{7} + 431x^{6} - 654x^{5} + 624x^{4} - 340x^{3} + 96x^{2} - 12x + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{8} \)
Twist minimal: no (minimal twist has level 56)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 195.4
Root \(2.00233 - 0.854000i\) of defining polynomial
Character \(\chi\) \(=\) 392.195
Dual form 392.2.e.e.195.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.30084 + 0.554812i) q^{2} +0.480901i q^{3} +(1.38437 - 1.44344i) q^{4} +3.19427 q^{5} +(-0.266810 - 0.625575i) q^{6} +(-1.00000 + 2.64575i) q^{8} +2.76873 q^{9} +(-4.15523 + 1.77222i) q^{10} -1.60168 q^{11} +(0.694153 + 0.665743i) q^{12} +1.38831 q^{13} +1.53613i q^{15} +(-0.167055 - 3.99651i) q^{16} -4.02534i q^{17} +(-3.60168 + 1.53613i) q^{18} -5.27649i q^{19} +(4.42204 - 4.61075i) q^{20} +(2.08353 - 0.888631i) q^{22} +4.42301i q^{23} +(-1.27234 - 0.480901i) q^{24} +5.20336 q^{25} +(-1.80596 + 0.770249i) q^{26} +2.77419i q^{27} +5.10613i q^{29} +(-0.852262 - 1.99826i) q^{30} -0.115962 q^{31} +(2.43462 + 5.10613i) q^{32} -0.770249i q^{33} +(2.23331 + 5.23632i) q^{34} +(3.83294 - 3.99651i) q^{36} +5.34727i q^{37} +(2.92746 + 6.86387i) q^{38} +0.667638i q^{39} +(-3.19427 + 8.45124i) q^{40} -4.21689i q^{41} +(-2.21731 + 2.31193i) q^{44} +8.84408 q^{45} +(-2.45394 - 5.75363i) q^{46} +10.1164 q^{47} +(1.92193 - 0.0803370i) q^{48} +(-6.76873 + 2.88689i) q^{50} +1.93579 q^{51} +(1.92193 - 2.00394i) q^{52} +7.08425i q^{53} +(-1.53915 - 3.60878i) q^{54} -5.11619 q^{55} +2.53747 q^{57} +(-2.83294 - 6.64226i) q^{58} +5.06748i q^{59} +(2.21731 + 2.12656i) q^{60} -8.42643 q^{61} +(0.150848 - 0.0643370i) q^{62} +(-6.00000 - 5.29150i) q^{64} +4.43462 q^{65} +(0.427343 + 1.00197i) q^{66} -10.0363 q^{67} +(-5.81035 - 5.57255i) q^{68} -2.12703 q^{69} -5.29150i q^{71} +(-2.76873 + 7.32538i) q^{72} -10.7445i q^{73} +(-2.96673 - 6.95594i) q^{74} +2.50230i q^{75} +(-7.61631 - 7.30460i) q^{76} +(-0.370413 - 0.868490i) q^{78} -11.9338i q^{79} +(-0.533619 - 12.7659i) q^{80} +6.97209 q^{81} +(2.33958 + 5.48550i) q^{82} +14.9789i q^{83} -12.8580i q^{85} -2.45554 q^{87} +(1.60168 - 4.23764i) q^{88} +1.73205i q^{89} +(-11.5047 + 4.90680i) q^{90} +(6.38437 + 6.12307i) q^{92} -0.0557662i q^{93} +(-13.1598 + 5.61272i) q^{94} -16.8545i q^{95} +(-2.45554 + 1.17081i) q^{96} -2.87198i q^{97} -4.43462 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 12 q^{8} + 12 q^{11} - 12 q^{18} + 24 q^{22} + 24 q^{30} + 48 q^{36} - 12 q^{44} + 36 q^{46} - 48 q^{50} - 12 q^{51} - 36 q^{57} - 36 q^{58} + 12 q^{60} - 72 q^{64} + 24 q^{65} - 60 q^{67} - 24 q^{74}+ \cdots - 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/392\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(295\) \(297\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.30084 + 0.554812i −0.919832 + 0.392311i
\(3\) 0.480901i 0.277648i 0.990317 + 0.138824i \(0.0443323\pi\)
−0.990317 + 0.138824i \(0.955668\pi\)
\(4\) 1.38437 1.44344i 0.692184 0.721721i
\(5\) 3.19427 1.42852 0.714260 0.699880i \(-0.246763\pi\)
0.714260 + 0.699880i \(0.246763\pi\)
\(6\) −0.266810 0.625575i −0.108925 0.255390i
\(7\) 0 0
\(8\) −1.00000 + 2.64575i −0.353553 + 0.935414i
\(9\) 2.76873 0.922911
\(10\) −4.15523 + 1.77222i −1.31400 + 0.560425i
\(11\) −1.60168 −0.482924 −0.241462 0.970410i \(-0.577627\pi\)
−0.241462 + 0.970410i \(0.577627\pi\)
\(12\) 0.694153 + 0.665743i 0.200385 + 0.192184i
\(13\) 1.38831 0.385047 0.192523 0.981292i \(-0.438333\pi\)
0.192523 + 0.981292i \(0.438333\pi\)
\(14\) 0 0
\(15\) 1.53613i 0.396626i
\(16\) −0.167055 3.99651i −0.0417638 0.999128i
\(17\) 4.02534i 0.976288i −0.872763 0.488144i \(-0.837674\pi\)
0.872763 0.488144i \(-0.162326\pi\)
\(18\) −3.60168 + 1.53613i −0.848924 + 0.362069i
\(19\) 5.27649i 1.21051i −0.796032 0.605255i \(-0.793071\pi\)
0.796032 0.605255i \(-0.206929\pi\)
\(20\) 4.42204 4.61075i 0.988799 1.03099i
\(21\) 0 0
\(22\) 2.08353 0.888631i 0.444210 0.189457i
\(23\) 4.42301i 0.922262i 0.887332 + 0.461131i \(0.152556\pi\)
−0.887332 + 0.461131i \(0.847444\pi\)
\(24\) −1.27234 0.480901i −0.259716 0.0981635i
\(25\) 5.20336 1.04067
\(26\) −1.80596 + 0.770249i −0.354179 + 0.151058i
\(27\) 2.77419i 0.533893i
\(28\) 0 0
\(29\) 5.10613i 0.948185i 0.880475 + 0.474093i \(0.157224\pi\)
−0.880475 + 0.474093i \(0.842776\pi\)
\(30\) −0.852262 1.99826i −0.155601 0.364830i
\(31\) −0.115962 −0.0208274 −0.0104137 0.999946i \(-0.503315\pi\)
−0.0104137 + 0.999946i \(0.503315\pi\)
\(32\) 2.43462 + 5.10613i 0.430385 + 0.902646i
\(33\) 0.770249i 0.134083i
\(34\) 2.23331 + 5.23632i 0.383009 + 0.898022i
\(35\) 0 0
\(36\) 3.83294 3.99651i 0.638824 0.666085i
\(37\) 5.34727i 0.879086i 0.898222 + 0.439543i \(0.144860\pi\)
−0.898222 + 0.439543i \(0.855140\pi\)
\(38\) 2.92746 + 6.86387i 0.474897 + 1.11347i
\(39\) 0.667638i 0.106908i
\(40\) −3.19427 + 8.45124i −0.505058 + 1.33626i
\(41\) 4.21689i 0.658568i −0.944231 0.329284i \(-0.893193\pi\)
0.944231 0.329284i \(-0.106807\pi\)
\(42\) 0 0
\(43\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(44\) −2.21731 + 2.31193i −0.334272 + 0.348537i
\(45\) 8.84408 1.31840
\(46\) −2.45394 5.75363i −0.361814 0.848327i
\(47\) 10.1164 1.47563 0.737816 0.675002i \(-0.235857\pi\)
0.737816 + 0.675002i \(0.235857\pi\)
\(48\) 1.92193 0.0803370i 0.277406 0.0115956i
\(49\) 0 0
\(50\) −6.76873 + 2.88689i −0.957244 + 0.408267i
\(51\) 1.93579 0.271065
\(52\) 1.92193 2.00394i 0.266523 0.277897i
\(53\) 7.08425i 0.973096i 0.873654 + 0.486548i \(0.161744\pi\)
−0.873654 + 0.486548i \(0.838256\pi\)
\(54\) −1.53915 3.60878i −0.209452 0.491092i
\(55\) −5.11619 −0.689868
\(56\) 0 0
\(57\) 2.53747 0.336096
\(58\) −2.83294 6.64226i −0.371984 0.872172i
\(59\) 5.06748i 0.659729i 0.944028 + 0.329865i \(0.107003\pi\)
−0.944028 + 0.329865i \(0.892997\pi\)
\(60\) 2.21731 + 2.12656i 0.286254 + 0.274538i
\(61\) −8.42643 −1.07889 −0.539447 0.842020i \(-0.681367\pi\)
−0.539447 + 0.842020i \(0.681367\pi\)
\(62\) 0.150848 0.0643370i 0.0191577 0.00817081i
\(63\) 0 0
\(64\) −6.00000 5.29150i −0.750000 0.661438i
\(65\) 4.43462 0.550047
\(66\) 0.427343 + 1.00197i 0.0526023 + 0.123334i
\(67\) −10.0363 −1.22613 −0.613065 0.790033i \(-0.710064\pi\)
−0.613065 + 0.790033i \(0.710064\pi\)
\(68\) −5.81035 5.57255i −0.704608 0.675771i
\(69\) −2.12703 −0.256064
\(70\) 0 0
\(71\) 5.29150i 0.627986i −0.949425 0.313993i \(-0.898333\pi\)
0.949425 0.313993i \(-0.101667\pi\)
\(72\) −2.76873 + 7.32538i −0.326298 + 0.863305i
\(73\) 10.7445i 1.25755i −0.777586 0.628776i \(-0.783556\pi\)
0.777586 0.628776i \(-0.216444\pi\)
\(74\) −2.96673 6.95594i −0.344875 0.808611i
\(75\) 2.50230i 0.288941i
\(76\) −7.61631 7.30460i −0.873651 0.837895i
\(77\) 0 0
\(78\) −0.370413 0.868490i −0.0419411 0.0983371i
\(79\) 11.9338i 1.34265i −0.741162 0.671327i \(-0.765725\pi\)
0.741162 0.671327i \(-0.234275\pi\)
\(80\) −0.533619 12.7659i −0.0596604 1.42727i
\(81\) 6.97209 0.774677
\(82\) 2.33958 + 5.48550i 0.258364 + 0.605772i
\(83\) 14.9789i 1.64415i 0.569382 + 0.822073i \(0.307182\pi\)
−0.569382 + 0.822073i \(0.692818\pi\)
\(84\) 0 0
\(85\) 12.8580i 1.39465i
\(86\) 0 0
\(87\) −2.45554 −0.263262
\(88\) 1.60168 4.23764i 0.170740 0.451734i
\(89\) 1.73205i 0.183597i 0.995778 + 0.0917985i \(0.0292616\pi\)
−0.995778 + 0.0917985i \(0.970738\pi\)
\(90\) −11.5047 + 4.90680i −1.21271 + 0.517223i
\(91\) 0 0
\(92\) 6.38437 + 6.12307i 0.665616 + 0.638375i
\(93\) 0.0557662i 0.00578268i
\(94\) −13.1598 + 5.61272i −1.35733 + 0.578907i
\(95\) 16.8545i 1.72924i
\(96\) −2.45554 + 1.17081i −0.250618 + 0.119496i
\(97\) 2.87198i 0.291606i −0.989314 0.145803i \(-0.953423\pi\)
0.989314 0.145803i \(-0.0465765\pi\)
\(98\) 0 0
\(99\) −4.43462 −0.445696
\(100\) 7.20336 7.51075i 0.720336 0.751075i
\(101\) −6.80620 −0.677242 −0.338621 0.940923i \(-0.609960\pi\)
−0.338621 + 0.940923i \(0.609960\pi\)
\(102\) −2.51815 + 1.07400i −0.249334 + 0.106342i
\(103\) −14.0494 −1.38433 −0.692165 0.721739i \(-0.743343\pi\)
−0.692165 + 0.721739i \(0.743343\pi\)
\(104\) −1.38831 + 3.67311i −0.136135 + 0.360178i
\(105\) 0 0
\(106\) −3.93043 9.21547i −0.381757 0.895086i
\(107\) −5.13915 −0.496820 −0.248410 0.968655i \(-0.579908\pi\)
−0.248410 + 0.968655i \(0.579908\pi\)
\(108\) 4.00438 + 3.84050i 0.385322 + 0.369552i
\(109\) 2.83112i 0.271172i −0.990766 0.135586i \(-0.956708\pi\)
0.990766 0.135586i \(-0.0432917\pi\)
\(110\) 6.65535 2.83853i 0.634563 0.270643i
\(111\) −2.57151 −0.244077
\(112\) 0 0
\(113\) −1.43695 −0.135177 −0.0675887 0.997713i \(-0.521531\pi\)
−0.0675887 + 0.997713i \(0.521531\pi\)
\(114\) −3.30084 + 1.40782i −0.309152 + 0.131854i
\(115\) 14.1283i 1.31747i
\(116\) 7.37041 + 7.06876i 0.684326 + 0.656318i
\(117\) 3.84385 0.355364
\(118\) −2.81150 6.59198i −0.258819 0.606841i
\(119\) 0 0
\(120\) −4.06421 1.53613i −0.371010 0.140229i
\(121\) −8.43462 −0.766784
\(122\) 10.9614 4.67508i 0.992401 0.423262i
\(123\) 2.02791 0.182850
\(124\) −0.160534 + 0.167384i −0.0144164 + 0.0150316i
\(125\) 0.649581 0.0581003
\(126\) 0 0
\(127\) 4.92077i 0.436647i 0.975876 + 0.218324i \(0.0700589\pi\)
−0.975876 + 0.218324i \(0.929941\pi\)
\(128\) 10.7408 + 3.55452i 0.949364 + 0.314178i
\(129\) 0 0
\(130\) −5.76873 + 2.46038i −0.505951 + 0.215790i
\(131\) 3.94500i 0.344676i −0.985038 0.172338i \(-0.944868\pi\)
0.985038 0.172338i \(-0.0551322\pi\)
\(132\) −1.11181 1.06631i −0.0967707 0.0928101i
\(133\) 0 0
\(134\) 13.0556 5.56826i 1.12783 0.481025i
\(135\) 8.86151i 0.762677i
\(136\) 10.6500 + 4.02534i 0.913234 + 0.345170i
\(137\) −0.102845 −0.00878661 −0.00439331 0.999990i \(-0.501398\pi\)
−0.00439331 + 0.999990i \(0.501398\pi\)
\(138\) 2.76693 1.18010i 0.235536 0.100457i
\(139\) 14.9789i 1.27049i −0.772310 0.635246i \(-0.780899\pi\)
0.772310 0.635246i \(-0.219101\pi\)
\(140\) 0 0
\(141\) 4.86500i 0.409707i
\(142\) 2.93579 + 6.88340i 0.246366 + 0.577642i
\(143\) −2.22362 −0.185949
\(144\) −0.462531 11.0653i −0.0385443 0.922106i
\(145\) 16.3104i 1.35450i
\(146\) 5.96120 + 13.9769i 0.493352 + 1.15674i
\(147\) 0 0
\(148\) 7.71848 + 7.40258i 0.634455 + 0.608489i
\(149\) 11.3064i 0.926257i −0.886291 0.463129i \(-0.846727\pi\)
0.886291 0.463129i \(-0.153273\pi\)
\(150\) −1.38831 3.25509i −0.113355 0.265777i
\(151\) 14.8206i 1.20609i 0.797708 + 0.603044i \(0.206046\pi\)
−0.797708 + 0.603044i \(0.793954\pi\)
\(152\) 13.9603 + 5.27649i 1.13233 + 0.427980i
\(153\) 11.1451i 0.901028i
\(154\) 0 0
\(155\) −0.370413 −0.0297523
\(156\) 0.963697 + 0.924256i 0.0771575 + 0.0739997i
\(157\) −0.738725 −0.0589567 −0.0294783 0.999565i \(-0.509385\pi\)
−0.0294783 + 0.999565i \(0.509385\pi\)
\(158\) 6.62100 + 15.5239i 0.526738 + 1.23502i
\(159\) −3.40682 −0.270179
\(160\) 7.77685 + 16.3104i 0.614814 + 1.28945i
\(161\) 0 0
\(162\) −9.06957 + 3.86820i −0.712573 + 0.303915i
\(163\) −8.70452 −0.681791 −0.340895 0.940101i \(-0.610730\pi\)
−0.340895 + 0.940101i \(0.610730\pi\)
\(164\) −6.08684 5.83773i −0.475303 0.455850i
\(165\) 2.46038i 0.191541i
\(166\) −8.31046 19.4851i −0.645017 1.51234i
\(167\) 1.38831 0.107430 0.0537152 0.998556i \(-0.482894\pi\)
0.0537152 + 0.998556i \(0.482894\pi\)
\(168\) 0 0
\(169\) −11.0726 −0.851739
\(170\) 7.13378 + 16.7262i 0.547136 + 1.28284i
\(171\) 14.6092i 1.11719i
\(172\) 0 0
\(173\) 0.970649 0.0737971 0.0368985 0.999319i \(-0.488252\pi\)
0.0368985 + 0.999319i \(0.488252\pi\)
\(174\) 3.19427 1.36237i 0.242157 0.103281i
\(175\) 0 0
\(176\) 0.267569 + 6.40113i 0.0201688 + 0.482503i
\(177\) −2.43695 −0.183173
\(178\) −0.960963 2.25312i −0.0720272 0.168879i
\(179\) −14.2699 −1.06658 −0.533291 0.845932i \(-0.679045\pi\)
−0.533291 + 0.845932i \(0.679045\pi\)
\(180\) 12.2435 12.7659i 0.912574 0.951516i
\(181\) 15.3218 1.13886 0.569429 0.822041i \(-0.307164\pi\)
0.569429 + 0.822041i \(0.307164\pi\)
\(182\) 0 0
\(183\) 4.05228i 0.299553i
\(184\) −11.7022 4.42301i −0.862697 0.326069i
\(185\) 17.0806i 1.25579i
\(186\) 0.0309397 + 0.0725428i 0.00226861 + 0.00531910i
\(187\) 6.44730i 0.471473i
\(188\) 14.0049 14.6025i 1.02141 1.06500i
\(189\) 0 0
\(190\) 9.35110 + 21.9250i 0.678400 + 1.59061i
\(191\) 2.50067i 0.180942i −0.995899 0.0904709i \(-0.971163\pi\)
0.995899 0.0904709i \(-0.0288372\pi\)
\(192\) 2.54469 2.88541i 0.183647 0.208236i
\(193\) −3.10051 −0.223180 −0.111590 0.993754i \(-0.535594\pi\)
−0.111590 + 0.993754i \(0.535594\pi\)
\(194\) 1.59341 + 3.73599i 0.114400 + 0.268229i
\(195\) 2.13261i 0.152720i
\(196\) 0 0
\(197\) 15.6891i 1.11780i 0.829233 + 0.558902i \(0.188777\pi\)
−0.829233 + 0.558902i \(0.811223\pi\)
\(198\) 5.76873 2.46038i 0.409966 0.174852i
\(199\) −11.8258 −0.838309 −0.419154 0.907915i \(-0.637673\pi\)
−0.419154 + 0.907915i \(0.637673\pi\)
\(200\) −5.20336 + 13.7668i −0.367933 + 0.973459i
\(201\) 4.82647i 0.340433i
\(202\) 8.85377 3.77616i 0.622949 0.265690i
\(203\) 0 0
\(204\) 2.67984 2.79420i 0.187627 0.195633i
\(205\) 13.4699i 0.940778i
\(206\) 18.2760 7.79479i 1.27335 0.543089i
\(207\) 12.2461i 0.851166i
\(208\) −0.231924 5.54838i −0.0160810 0.384711i
\(209\) 8.45124i 0.584585i
\(210\) 0 0
\(211\) 10.0726 0.693427 0.346713 0.937971i \(-0.387298\pi\)
0.346713 + 0.937971i \(0.387298\pi\)
\(212\) 10.2257 + 9.80720i 0.702304 + 0.673561i
\(213\) 2.54469 0.174359
\(214\) 6.68521 2.85126i 0.456991 0.194908i
\(215\) 0 0
\(216\) −7.33982 2.77419i −0.499411 0.188760i
\(217\) 0 0
\(218\) 1.57074 + 3.68283i 0.106384 + 0.249433i
\(219\) 5.16706 0.349157
\(220\) −7.08269 + 7.38494i −0.477515 + 0.497892i
\(221\) 5.58840i 0.375917i
\(222\) 3.34512 1.42670i 0.224510 0.0957540i
\(223\) 24.3086 1.62783 0.813913 0.580987i \(-0.197333\pi\)
0.813913 + 0.580987i \(0.197333\pi\)
\(224\) 0 0
\(225\) 14.4067 0.960448
\(226\) 1.86925 0.797240i 0.124341 0.0530316i
\(227\) 14.3239i 0.950710i 0.879794 + 0.475355i \(0.157680\pi\)
−0.879794 + 0.475355i \(0.842320\pi\)
\(228\) 3.51279 3.66269i 0.232640 0.242568i
\(229\) −10.6500 −0.703775 −0.351887 0.936042i \(-0.614460\pi\)
−0.351887 + 0.936042i \(0.614460\pi\)
\(230\) −7.83855 18.3786i −0.516859 1.21185i
\(231\) 0 0
\(232\) −13.5096 5.10613i −0.886946 0.335234i
\(233\) −0.637982 −0.0417956 −0.0208978 0.999782i \(-0.506652\pi\)
−0.0208978 + 0.999782i \(0.506652\pi\)
\(234\) −5.00023 + 2.13261i −0.326875 + 0.139413i
\(235\) 32.3146 2.10797
\(236\) 7.31462 + 7.01525i 0.476141 + 0.456654i
\(237\) 5.73896 0.372785
\(238\) 0 0
\(239\) 4.73540i 0.306307i −0.988202 0.153154i \(-0.951057\pi\)
0.988202 0.153154i \(-0.0489430\pi\)
\(240\) 6.13915 0.256618i 0.396280 0.0165646i
\(241\) 11.7063i 0.754071i 0.926199 + 0.377036i \(0.123057\pi\)
−0.926199 + 0.377036i \(0.876943\pi\)
\(242\) 10.9721 4.67963i 0.705313 0.300818i
\(243\) 11.6755i 0.748981i
\(244\) −11.6653 + 12.1631i −0.746792 + 0.778661i
\(245\) 0 0
\(246\) −2.63798 + 1.12511i −0.168192 + 0.0717342i
\(247\) 7.32538i 0.466103i
\(248\) 0.115962 0.306806i 0.00736359 0.0194822i
\(249\) −7.20336 −0.456494
\(250\) −0.845001 + 0.360395i −0.0534425 + 0.0227934i
\(251\) 11.5631i 0.729858i −0.931035 0.364929i \(-0.881093\pi\)
0.931035 0.364929i \(-0.118907\pi\)
\(252\) 0 0
\(253\) 7.08425i 0.445383i
\(254\) −2.73010 6.40113i −0.171302 0.401642i
\(255\) 6.18343 0.387222
\(256\) −15.9442 + 1.33528i −0.996512 + 0.0834547i
\(257\) 23.5908i 1.47155i −0.677224 0.735777i \(-0.736817\pi\)
0.677224 0.735777i \(-0.263183\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 6.13915 6.40113i 0.380734 0.396981i
\(261\) 14.1375i 0.875091i
\(262\) 2.18873 + 5.13182i 0.135220 + 0.317045i
\(263\) 10.6791i 0.658499i −0.944243 0.329249i \(-0.893204\pi\)
0.944243 0.329249i \(-0.106796\pi\)
\(264\) 2.03789 + 0.770249i 0.125423 + 0.0474055i
\(265\) 22.6290i 1.39009i
\(266\) 0 0
\(267\) −0.832945 −0.0509754
\(268\) −13.8939 + 14.4868i −0.848707 + 0.884924i
\(269\) −23.3380 −1.42294 −0.711471 0.702716i \(-0.751971\pi\)
−0.711471 + 0.702716i \(0.751971\pi\)
\(270\) −4.91647 11.5274i −0.299207 0.701535i
\(271\) 13.6392 0.828523 0.414262 0.910158i \(-0.364040\pi\)
0.414262 + 0.910158i \(0.364040\pi\)
\(272\) −16.0873 + 0.672454i −0.975436 + 0.0407735i
\(273\) 0 0
\(274\) 0.133784 0.0570595i 0.00808221 0.00344709i
\(275\) −8.33411 −0.502566
\(276\) −2.94459 + 3.07025i −0.177244 + 0.184807i
\(277\) 0.457470i 0.0274867i −0.999906 0.0137433i \(-0.995625\pi\)
0.999906 0.0137433i \(-0.00437478\pi\)
\(278\) 8.31046 + 19.4851i 0.498429 + 1.16864i
\(279\) −0.321068 −0.0192218
\(280\) 0 0
\(281\) 1.43695 0.0857215 0.0428608 0.999081i \(-0.486353\pi\)
0.0428608 + 0.999081i \(0.486353\pi\)
\(282\) −2.69916 6.32858i −0.160733 0.376862i
\(283\) 31.2264i 1.85622i −0.372312 0.928108i \(-0.621435\pi\)
0.372312 0.928108i \(-0.378565\pi\)
\(284\) −7.63798 7.32538i −0.453231 0.434681i
\(285\) 8.10536 0.480120
\(286\) 2.89257 1.23369i 0.171041 0.0729497i
\(287\) 0 0
\(288\) 6.74083 + 14.1375i 0.397207 + 0.833062i
\(289\) 0.796642 0.0468613
\(290\) −9.04919 21.2172i −0.531387 1.24592i
\(291\) 1.38114 0.0809639
\(292\) −15.5091 14.8744i −0.907603 0.870457i
\(293\) −31.3006 −1.82860 −0.914299 0.405040i \(-0.867258\pi\)
−0.914299 + 0.405040i \(0.867258\pi\)
\(294\) 0 0
\(295\) 16.1869i 0.942437i
\(296\) −14.1475 5.34727i −0.822309 0.310804i
\(297\) 4.44336i 0.257830i
\(298\) 6.27293 + 14.7078i 0.363381 + 0.852001i
\(299\) 6.14050i 0.355114i
\(300\) 3.61193 + 3.46410i 0.208535 + 0.200000i
\(301\) 0 0
\(302\) −8.22268 19.2793i −0.473162 1.10940i
\(303\) 3.27311i 0.188035i
\(304\) −21.0875 + 0.881465i −1.20945 + 0.0505555i
\(305\) −26.9163 −1.54122
\(306\) 6.18343 + 14.4980i 0.353483 + 0.828794i
\(307\) 14.7215i 0.840202i −0.907477 0.420101i \(-0.861995\pi\)
0.907477 0.420101i \(-0.138005\pi\)
\(308\) 0 0
\(309\) 6.75638i 0.384357i
\(310\) 0.481848 0.205510i 0.0273672 0.0116722i
\(311\) 15.5805 0.883490 0.441745 0.897141i \(-0.354360\pi\)
0.441745 + 0.897141i \(0.354360\pi\)
\(312\) −1.76640 0.667638i −0.100003 0.0377975i
\(313\) 13.0862i 0.739673i 0.929097 + 0.369837i \(0.120586\pi\)
−0.929097 + 0.369837i \(0.879414\pi\)
\(314\) 0.960963 0.409854i 0.0542303 0.0231294i
\(315\) 0 0
\(316\) −17.2257 16.5207i −0.969022 0.929363i
\(317\) 23.5526i 1.32284i 0.750014 + 0.661422i \(0.230047\pi\)
−0.750014 + 0.661422i \(0.769953\pi\)
\(318\) 4.43173 1.89015i 0.248519 0.105994i
\(319\) 8.17839i 0.457902i
\(320\) −19.1656 16.9025i −1.07139 0.944878i
\(321\) 2.47142i 0.137941i
\(322\) 0 0
\(323\) −21.2397 −1.18181
\(324\) 9.65194 10.0638i 0.536219 0.559101i
\(325\) 7.22385 0.400707
\(326\) 11.3232 4.82937i 0.627133 0.267474i
\(327\) 1.36149 0.0752905
\(328\) 11.1568 + 4.21689i 0.616034 + 0.232839i
\(329\) 0 0
\(330\) 1.36505 + 3.20056i 0.0751435 + 0.176185i
\(331\) 33.0554 1.81689 0.908445 0.418004i \(-0.137270\pi\)
0.908445 + 0.418004i \(0.137270\pi\)
\(332\) 21.6212 + 20.7363i 1.18662 + 1.13805i
\(333\) 14.8052i 0.811318i
\(334\) −1.80596 + 0.770249i −0.0988179 + 0.0421461i
\(335\) −32.0587 −1.75155
\(336\) 0 0
\(337\) −15.5096 −0.844860 −0.422430 0.906396i \(-0.638823\pi\)
−0.422430 + 0.906396i \(0.638823\pi\)
\(338\) 14.4037 6.14322i 0.783457 0.334147i
\(339\) 0.691033i 0.0375318i
\(340\) −18.5598 17.8002i −1.00655 0.965352i
\(341\) 0.185734 0.0100580
\(342\) 8.10536 + 19.0042i 0.438288 + 1.02763i
\(343\) 0 0
\(344\) 0 0
\(345\) −6.79431 −0.365793
\(346\) −1.26266 + 0.538528i −0.0678809 + 0.0289514i
\(347\) 22.4988 1.20780 0.603900 0.797060i \(-0.293612\pi\)
0.603900 + 0.797060i \(0.293612\pi\)
\(348\) −3.39938 + 3.54444i −0.182226 + 0.190002i
\(349\) −28.4735 −1.52415 −0.762077 0.647486i \(-0.775820\pi\)
−0.762077 + 0.647486i \(0.775820\pi\)
\(350\) 0 0
\(351\) 3.85142i 0.205574i
\(352\) −3.89949 8.17839i −0.207843 0.435910i
\(353\) 9.57372i 0.509558i 0.966999 + 0.254779i \(0.0820027\pi\)
−0.966999 + 0.254779i \(0.917997\pi\)
\(354\) 3.17009 1.35205i 0.168488 0.0718608i
\(355\) 16.9025i 0.897091i
\(356\) 2.50012 + 2.39779i 0.132506 + 0.127083i
\(357\) 0 0
\(358\) 18.5629 7.91711i 0.981077 0.418432i
\(359\) 3.75538i 0.198201i −0.995077 0.0991006i \(-0.968403\pi\)
0.995077 0.0991006i \(-0.0315966\pi\)
\(360\) −8.84408 + 23.3992i −0.466124 + 1.23325i
\(361\) −8.84134 −0.465334
\(362\) −19.9312 + 8.50070i −1.04756 + 0.446787i
\(363\) 4.05622i 0.212896i
\(364\) 0 0
\(365\) 34.3209i 1.79644i
\(366\) 2.24825 + 5.27136i 0.117518 + 0.275538i
\(367\) 16.8260 0.878312 0.439156 0.898411i \(-0.355278\pi\)
0.439156 + 0.898411i \(0.355278\pi\)
\(368\) 17.6766 0.738887i 0.921457 0.0385172i
\(369\) 11.6755i 0.607800i
\(370\) −9.47653 22.2191i −0.492661 1.15512i
\(371\) 0 0
\(372\) −0.0804953 0.0772008i −0.00417349 0.00400268i
\(373\) 12.8580i 0.665763i −0.942969 0.332882i \(-0.891979\pi\)
0.942969 0.332882i \(-0.108021\pi\)
\(374\) −3.57704 8.38691i −0.184964 0.433677i
\(375\) 0.312384i 0.0161314i
\(376\) −10.1164 + 26.7656i −0.521715 + 1.38033i
\(377\) 7.08888i 0.365096i
\(378\) 0 0
\(379\) 25.5822 1.31407 0.657034 0.753861i \(-0.271811\pi\)
0.657034 + 0.753861i \(0.271811\pi\)
\(380\) −24.3286 23.3329i −1.24803 1.19695i
\(381\) −2.36640 −0.121234
\(382\) 1.38740 + 3.25296i 0.0709855 + 0.166436i
\(383\) −26.9693 −1.37807 −0.689033 0.724730i \(-0.741964\pi\)
−0.689033 + 0.724730i \(0.741964\pi\)
\(384\) −1.70937 + 5.16527i −0.0872311 + 0.263589i
\(385\) 0 0
\(386\) 4.03327 1.72020i 0.205288 0.0875560i
\(387\) 0 0
\(388\) −4.14555 3.97588i −0.210458 0.201845i
\(389\) 31.9902i 1.62197i −0.585070 0.810983i \(-0.698933\pi\)
0.585070 0.810983i \(-0.301067\pi\)
\(390\) −1.18320 2.77419i −0.0599137 0.140477i
\(391\) 17.8041 0.900394
\(392\) 0 0
\(393\) 1.89716 0.0956988
\(394\) −8.70452 20.4091i −0.438528 1.02819i
\(395\) 38.1197i 1.91801i
\(396\) −6.13915 + 6.40113i −0.308504 + 0.321669i
\(397\) 17.0386 0.855142 0.427571 0.903982i \(-0.359369\pi\)
0.427571 + 0.903982i \(0.359369\pi\)
\(398\) 15.3835 6.56110i 0.771104 0.328878i
\(399\) 0 0
\(400\) −0.869248 20.7953i −0.0434624 1.03976i
\(401\) −5.89716 −0.294490 −0.147245 0.989100i \(-0.547041\pi\)
−0.147245 + 0.989100i \(0.547041\pi\)
\(402\) 2.67778 + 6.27846i 0.133556 + 0.313141i
\(403\) −0.160991 −0.00801951
\(404\) −9.42228 + 9.82436i −0.468776 + 0.488780i
\(405\) 22.2707 1.10664
\(406\) 0 0
\(407\) 8.56461i 0.424532i
\(408\) −1.93579 + 5.12162i −0.0958359 + 0.253558i
\(409\) 0.239890i 0.0118618i 0.999982 + 0.00593090i \(0.00188787\pi\)
−0.999982 + 0.00593090i \(0.998112\pi\)
\(410\) 7.47326 + 17.5222i 0.369078 + 0.865358i
\(411\) 0.0494581i 0.00243959i
\(412\) −19.4496 + 20.2795i −0.958211 + 0.999101i
\(413\) 0 0
\(414\) −6.79431 15.9303i −0.333922 0.782930i
\(415\) 47.8466i 2.34870i
\(416\) 3.38000 + 7.08888i 0.165718 + 0.347561i
\(417\) 7.20336 0.352750
\(418\) −4.68885 10.9937i −0.229339 0.537720i
\(419\) 29.4140i 1.43697i 0.695544 + 0.718484i \(0.255163\pi\)
−0.695544 + 0.718484i \(0.744837\pi\)
\(420\) 0 0
\(421\) 32.1265i 1.56575i 0.622180 + 0.782874i \(0.286247\pi\)
−0.622180 + 0.782874i \(0.713753\pi\)
\(422\) −13.1028 + 5.58840i −0.637836 + 0.272039i
\(423\) 28.0097 1.36188
\(424\) −18.7432 7.08425i −0.910248 0.344041i
\(425\) 20.9453i 1.01600i
\(426\) −3.31023 + 1.41182i −0.160381 + 0.0684031i
\(427\) 0 0
\(428\) −7.11447 + 7.41807i −0.343891 + 0.358566i
\(429\) 1.06934i 0.0516283i
\(430\) 0 0
\(431\) 37.8352i 1.82246i 0.411902 + 0.911228i \(0.364865\pi\)
−0.411902 + 0.911228i \(0.635135\pi\)
\(432\) 11.0871 0.463443i 0.533427 0.0222974i
\(433\) 25.4835i 1.22466i 0.790602 + 0.612330i \(0.209768\pi\)
−0.790602 + 0.612330i \(0.790232\pi\)
\(434\) 0 0
\(435\) −7.84367 −0.376075
\(436\) −4.08656 3.91931i −0.195711 0.187701i
\(437\) 23.3380 1.11641
\(438\) −6.72151 + 2.86674i −0.321166 + 0.136978i
\(439\) 23.9607 1.14358 0.571792 0.820399i \(-0.306248\pi\)
0.571792 + 0.820399i \(0.306248\pi\)
\(440\) 5.11619 13.5362i 0.243905 0.645312i
\(441\) 0 0
\(442\) 3.10051 + 7.26962i 0.147476 + 0.345780i
\(443\) 10.2699 0.487938 0.243969 0.969783i \(-0.421551\pi\)
0.243969 + 0.969783i \(0.421551\pi\)
\(444\) −3.55991 + 3.71182i −0.168946 + 0.176155i
\(445\) 5.53264i 0.262272i
\(446\) −31.6216 + 13.4867i −1.49733 + 0.638615i
\(447\) 5.43726 0.257174
\(448\) 0 0
\(449\) 11.5096 0.543170 0.271585 0.962414i \(-0.412452\pi\)
0.271585 + 0.962414i \(0.412452\pi\)
\(450\) −18.7408 + 7.99302i −0.883451 + 0.376795i
\(451\) 6.75411i 0.318039i
\(452\) −1.98927 + 2.07416i −0.0935675 + 0.0975604i
\(453\) −7.12726 −0.334868
\(454\) −7.94707 18.6331i −0.372974 0.874494i
\(455\) 0 0
\(456\) −2.53747 + 6.71351i −0.118828 + 0.314389i
\(457\) 30.6101 1.43188 0.715939 0.698162i \(-0.245999\pi\)
0.715939 + 0.698162i \(0.245999\pi\)
\(458\) 13.8540 5.90877i 0.647355 0.276099i
\(459\) 11.1671 0.521233
\(460\) 20.3934 + 19.5587i 0.950847 + 0.911931i
\(461\) 17.3671 0.808866 0.404433 0.914568i \(-0.367469\pi\)
0.404433 + 0.914568i \(0.367469\pi\)
\(462\) 0 0
\(463\) 21.7288i 1.00983i −0.863171 0.504913i \(-0.831525\pi\)
0.863171 0.504913i \(-0.168475\pi\)
\(464\) 20.4067 0.853006i 0.947358 0.0395998i
\(465\) 0.178132i 0.00826068i
\(466\) 0.829913 0.353960i 0.0384450 0.0163969i
\(467\) 0.676491i 0.0313043i −0.999877 0.0156521i \(-0.995018\pi\)
0.999877 0.0156521i \(-0.00498243\pi\)
\(468\) 5.32130 5.54838i 0.245977 0.256474i
\(469\) 0 0
\(470\) −42.0361 + 17.9285i −1.93898 + 0.826981i
\(471\) 0.355254i 0.0163692i
\(472\) −13.4073 5.06748i −0.617120 0.233250i
\(473\) 0 0
\(474\) −7.46546 + 3.18404i −0.342900 + 0.146248i
\(475\) 27.4555i 1.25974i
\(476\) 0 0
\(477\) 19.6144i 0.898082i
\(478\) 2.62726 + 6.15999i 0.120168 + 0.281751i
\(479\) −28.7678 −1.31443 −0.657217 0.753701i \(-0.728267\pi\)
−0.657217 + 0.753701i \(0.728267\pi\)
\(480\) −7.84367 + 3.73989i −0.358013 + 0.170702i
\(481\) 7.42365i 0.338489i
\(482\) −6.49482 15.2281i −0.295831 0.693619i
\(483\) 0 0
\(484\) −11.6766 + 12.1749i −0.530755 + 0.553404i
\(485\) 9.17389i 0.416565i
\(486\) −6.47768 15.1879i −0.293834 0.688937i
\(487\) 1.83303i 0.0830624i 0.999137 + 0.0415312i \(0.0132236\pi\)
−0.999137 + 0.0415312i \(0.986776\pi\)
\(488\) 8.42643 22.2942i 0.381446 1.00921i
\(489\) 4.18601i 0.189298i
\(490\) 0 0
\(491\) 13.4370 0.606401 0.303201 0.952927i \(-0.401945\pi\)
0.303201 + 0.952927i \(0.401945\pi\)
\(492\) 2.80737 2.92717i 0.126566 0.131967i
\(493\) 20.5539 0.925702
\(494\) 4.06421 + 9.52915i 0.182857 + 0.428737i
\(495\) −14.1654 −0.636687
\(496\) 0.0193720 + 0.463443i 0.000869830 + 0.0208092i
\(497\) 0 0
\(498\) 9.37041 3.99651i 0.419898 0.179088i
\(499\) −11.3681 −0.508905 −0.254453 0.967085i \(-0.581895\pi\)
−0.254453 + 0.967085i \(0.581895\pi\)
\(500\) 0.899259 0.937633i 0.0402161 0.0419322i
\(501\) 0.667638i 0.0298279i
\(502\) 6.41536 + 15.0418i 0.286331 + 0.671347i
\(503\) −13.2022 −0.588656 −0.294328 0.955704i \(-0.595096\pi\)
−0.294328 + 0.955704i \(0.595096\pi\)
\(504\) 0 0
\(505\) −21.7408 −0.967454
\(506\) 3.93043 + 9.21547i 0.174729 + 0.409678i
\(507\) 5.32483i 0.236484i
\(508\) 7.10284 + 6.81215i 0.315138 + 0.302240i
\(509\) 26.4357 1.17174 0.585870 0.810405i \(-0.300753\pi\)
0.585870 + 0.810405i \(0.300753\pi\)
\(510\) −8.04365 + 3.43064i −0.356179 + 0.151911i
\(511\) 0 0
\(512\) 20.0000 10.5830i 0.883883 0.467707i
\(513\) 14.6380 0.646283
\(514\) 13.0885 + 30.6878i 0.577307 + 1.35358i
\(515\) −44.8776 −1.97755
\(516\) 0 0
\(517\) −16.2033 −0.712619
\(518\) 0 0
\(519\) 0.466786i 0.0204896i
\(520\) −4.43462 + 11.7329i −0.194471 + 0.514522i
\(521\) 12.0277i 0.526942i 0.964667 + 0.263471i \(0.0848674\pi\)
−0.964667 + 0.263471i \(0.915133\pi\)
\(522\) −7.84367 18.3907i −0.343308 0.804937i
\(523\) 2.80911i 0.122834i 0.998112 + 0.0614168i \(0.0195619\pi\)
−0.998112 + 0.0614168i \(0.980438\pi\)
\(524\) −5.69439 5.46133i −0.248760 0.238579i
\(525\) 0 0
\(526\) 5.92487 + 13.8917i 0.258337 + 0.605708i
\(527\) 0.466786i 0.0203335i
\(528\) −3.07831 + 0.128674i −0.133966 + 0.00559982i
\(529\) 3.43695 0.149433
\(530\) −12.5548 29.4367i −0.545347 1.27865i
\(531\) 14.0305i 0.608872i
\(532\) 0 0
\(533\) 5.85434i 0.253580i
\(534\) 1.08353 0.462128i 0.0468888 0.0199982i
\(535\) −16.4158 −0.709718
\(536\) 10.0363 26.5536i 0.433502 1.14694i
\(537\) 6.86241i 0.296135i
\(538\) 30.3590 12.9482i 1.30887 0.558236i
\(539\) 0 0
\(540\) 12.7911 + 12.2676i 0.550441 + 0.527913i
\(541\) 1.94715i 0.0837144i 0.999124 + 0.0418572i \(0.0133275\pi\)
−0.999124 + 0.0418572i \(0.986673\pi\)
\(542\) −17.7424 + 7.56720i −0.762102 + 0.325039i
\(543\) 7.36825i 0.316202i
\(544\) 20.5539 9.80019i 0.881242 0.420180i
\(545\) 9.04336i 0.387375i
\(546\) 0 0
\(547\) 28.4561 1.21669 0.608347 0.793671i \(-0.291833\pi\)
0.608347 + 0.793671i \(0.291833\pi\)
\(548\) −0.142375 + 0.148450i −0.00608195 + 0.00634149i
\(549\) −23.3305 −0.995723
\(550\) 10.8413 4.62386i 0.462276 0.197162i
\(551\) 26.9425 1.14779
\(552\) 2.12703 5.62760i 0.0905325 0.239526i
\(553\) 0 0
\(554\) 0.253810 + 0.595095i 0.0107833 + 0.0252832i
\(555\) −8.21408 −0.348668
\(556\) −21.6212 20.7363i −0.916942 0.879414i
\(557\) 9.19869i 0.389761i −0.980827 0.194881i \(-0.937568\pi\)
0.980827 0.194881i \(-0.0624319\pi\)
\(558\) 0.417657 0.178132i 0.0176808 0.00754094i
\(559\) 0 0
\(560\) 0 0
\(561\) −3.10051 −0.130904
\(562\) −1.86925 + 0.797240i −0.0788495 + 0.0336295i
\(563\) 27.1970i 1.14622i 0.819480 + 0.573108i \(0.194263\pi\)
−0.819480 + 0.573108i \(0.805737\pi\)
\(564\) 7.02235 + 6.73495i 0.295694 + 0.283592i
\(565\) −4.59002 −0.193104
\(566\) 17.3248 + 40.6205i 0.728214 + 1.70741i
\(567\) 0 0
\(568\) 14.0000 + 5.29150i 0.587427 + 0.222027i
\(569\) −23.5398 −0.986840 −0.493420 0.869791i \(-0.664253\pi\)
−0.493420 + 0.869791i \(0.664253\pi\)
\(570\) −10.5438 + 4.49695i −0.441630 + 0.188357i
\(571\) 30.3425 1.26979 0.634897 0.772597i \(-0.281042\pi\)
0.634897 + 0.772597i \(0.281042\pi\)
\(572\) −3.07831 + 3.20967i −0.128711 + 0.134203i
\(573\) 1.20257 0.0502382
\(574\) 0 0
\(575\) 23.0145i 0.959772i
\(576\) −16.6124 14.6508i −0.692184 0.610449i
\(577\) 28.6088i 1.19100i −0.803355 0.595500i \(-0.796954\pi\)
0.803355 0.595500i \(-0.203046\pi\)
\(578\) −1.03630 + 0.441986i −0.0431045 + 0.0183842i
\(579\) 1.49104i 0.0619655i
\(580\) 23.5431 + 22.5795i 0.977574 + 0.937564i
\(581\) 0 0
\(582\) −1.79664 + 0.766273i −0.0744732 + 0.0317630i
\(583\) 11.3467i 0.469932i
\(584\) 28.4274 + 10.7445i 1.17633 + 0.444612i
\(585\) 12.2783 0.507645
\(586\) 40.7170 17.3659i 1.68200 0.717380i
\(587\) 15.2362i 0.628867i −0.949280 0.314433i \(-0.898186\pi\)
0.949280 0.314433i \(-0.101814\pi\)
\(588\) 0 0
\(589\) 0.611872i 0.0252117i
\(590\) −8.98068 21.0565i −0.369729 0.866884i
\(591\) −7.54492 −0.310357
\(592\) 21.3704 0.893289i 0.878319 0.0367139i
\(593\) 21.1234i 0.867435i 0.901049 + 0.433717i \(0.142798\pi\)
−0.901049 + 0.433717i \(0.857202\pi\)
\(594\) 2.46523 + 5.78010i 0.101150 + 0.237160i
\(595\) 0 0
\(596\) −16.3202 15.6522i −0.668500 0.641140i
\(597\) 5.68704i 0.232755i
\(598\) −3.40682 7.98780i −0.139315 0.326645i
\(599\) 33.6936i 1.37668i −0.725387 0.688341i \(-0.758339\pi\)
0.725387 0.688341i \(-0.241661\pi\)
\(600\) −6.62046 2.50230i −0.270279 0.102156i
\(601\) 24.3960i 0.995132i −0.867426 0.497566i \(-0.834227\pi\)
0.867426 0.497566i \(-0.165773\pi\)
\(602\) 0 0
\(603\) −27.7879 −1.13161
\(604\) 21.3928 + 20.5172i 0.870459 + 0.834834i
\(605\) −26.9425 −1.09537
\(606\) 1.81596 + 4.25779i 0.0737683 + 0.172961i
\(607\) −8.17513 −0.331818 −0.165909 0.986141i \(-0.553056\pi\)
−0.165909 + 0.986141i \(0.553056\pi\)
\(608\) 26.9425 12.8463i 1.09266 0.520985i
\(609\) 0 0
\(610\) 35.0138 14.9335i 1.41767 0.604639i
\(611\) 14.0447 0.568188
\(612\) −16.0873 15.4289i −0.650291 0.623676i
\(613\) 16.9996i 0.686608i 0.939224 + 0.343304i \(0.111546\pi\)
−0.939224 + 0.343304i \(0.888454\pi\)
\(614\) 8.16768 + 19.1504i 0.329621 + 0.772845i
\(615\) 6.47768 0.261205
\(616\) 0 0
\(617\) 39.6548 1.59644 0.798221 0.602365i \(-0.205775\pi\)
0.798221 + 0.602365i \(0.205775\pi\)
\(618\) 3.74852 + 8.78897i 0.150788 + 0.353544i
\(619\) 14.4013i 0.578837i 0.957203 + 0.289419i \(0.0934620\pi\)
−0.957203 + 0.289419i \(0.906538\pi\)
\(620\) −0.512788 + 0.534671i −0.0205941 + 0.0214729i
\(621\) −12.2703 −0.492389
\(622\) −20.2677 + 8.64425i −0.812662 + 0.346603i
\(623\) 0 0
\(624\) 2.66822 0.111532i 0.106814 0.00446487i
\(625\) −23.9419 −0.957674
\(626\) −7.26036 17.0230i −0.290182 0.680376i
\(627\) −4.06421 −0.162309
\(628\) −1.02267 + 1.06631i −0.0408088 + 0.0425503i
\(629\) 21.5246 0.858241
\(630\) 0 0
\(631\) 36.6698i 1.45980i 0.683553 + 0.729900i \(0.260434\pi\)
−0.683553 + 0.729900i \(0.739566\pi\)
\(632\) 31.5738 + 11.9338i 1.25594 + 0.474700i
\(633\) 4.84393i 0.192529i
\(634\) −13.0672 30.6381i −0.518967 1.21679i
\(635\) 15.7183i 0.623760i
\(636\) −4.71629 + 4.91755i −0.187013 + 0.194994i
\(637\) 0 0
\(638\) 4.53747 + 10.6388i 0.179640 + 0.421193i
\(639\) 14.6508i 0.579575i
\(640\) 34.3091 + 11.3541i 1.35619 + 0.448810i
\(641\) 18.2760 0.721857 0.360929 0.932593i \(-0.382460\pi\)
0.360929 + 0.932593i \(0.382460\pi\)
\(642\) 1.37117 + 3.21492i 0.0541159 + 0.126883i
\(643\) 13.6340i 0.537671i 0.963186 + 0.268836i \(0.0866389\pi\)
−0.963186 + 0.268836i \(0.913361\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 27.6294 11.7840i 1.08706 0.463636i
\(647\) −17.4831 −0.687330 −0.343665 0.939092i \(-0.611668\pi\)
−0.343665 + 0.939092i \(0.611668\pi\)
\(648\) −6.97209 + 18.4464i −0.273890 + 0.724644i
\(649\) 8.11647i 0.318599i
\(650\) −9.39708 + 4.00788i −0.368584 + 0.157202i
\(651\) 0 0
\(652\) −12.0503 + 12.5645i −0.471924 + 0.492063i
\(653\) 9.70520i 0.379794i 0.981804 + 0.189897i \(0.0608154\pi\)
−0.981804 + 0.189897i \(0.939185\pi\)
\(654\) −1.77108 + 0.755370i −0.0692546 + 0.0295373i
\(655\) 12.6014i 0.492378i
\(656\) −16.8529 + 0.704454i −0.657993 + 0.0275043i
\(657\) 29.7488i 1.16061i
\(658\) 0 0
\(659\) −28.9465 −1.12760 −0.563798 0.825913i \(-0.690660\pi\)
−0.563798 + 0.825913i \(0.690660\pi\)
\(660\) −3.55142 3.40607i −0.138239 0.132581i
\(661\) −12.8737 −0.500728 −0.250364 0.968152i \(-0.580550\pi\)
−0.250364 + 0.968152i \(0.580550\pi\)
\(662\) −42.9998 + 18.3395i −1.67123 + 0.712787i
\(663\) 2.68747 0.104373
\(664\) −39.6304 14.9789i −1.53796 0.581293i
\(665\) 0 0
\(666\) −8.21408 19.2591i −0.318289 0.746277i
\(667\) −22.5845 −0.874475
\(668\) 1.92193 2.00394i 0.0743615 0.0775348i
\(669\) 11.6900i 0.451963i
\(670\) 41.7032 17.7865i 1.61113 0.687154i
\(671\) 13.4964 0.521024
\(672\) 0 0
\(673\) −23.6548 −0.911825 −0.455912 0.890025i \(-0.650687\pi\)
−0.455912 + 0.890025i \(0.650687\pi\)
\(674\) 20.1755 8.60489i 0.777129 0.331448i
\(675\) 14.4351i 0.555607i
\(676\) −15.3286 + 15.9827i −0.589560 + 0.614718i
\(677\) −3.60448 −0.138531 −0.0692657 0.997598i \(-0.522066\pi\)
−0.0692657 + 0.997598i \(0.522066\pi\)
\(678\) 0.383393 + 0.898923i 0.0147241 + 0.0345229i
\(679\) 0 0
\(680\) 34.0191 + 12.8580i 1.30457 + 0.493083i
\(681\) −6.88837 −0.263963
\(682\) −0.241610 + 0.103047i −0.00925171 + 0.00394588i
\(683\) −7.61847 −0.291513 −0.145756 0.989321i \(-0.546562\pi\)
−0.145756 + 0.989321i \(0.546562\pi\)
\(684\) −21.0875 20.2245i −0.806302 0.773303i
\(685\) −0.328514 −0.0125519
\(686\) 0 0
\(687\) 5.12162i 0.195402i
\(688\) 0 0
\(689\) 9.83510i 0.374688i
\(690\) 8.83831 3.76957i 0.336469 0.143505i
\(691\) 51.9277i 1.97542i −0.156285 0.987712i \(-0.549952\pi\)
0.156285 0.987712i \(-0.450048\pi\)
\(692\) 1.34373 1.40108i 0.0510811 0.0532609i
\(693\) 0 0
\(694\) −29.2674 + 12.4826i −1.11097 + 0.473834i
\(695\) 47.8466i 1.81492i
\(696\) 2.45554 6.49676i 0.0930772 0.246259i
\(697\) −16.9744 −0.642952
\(698\) 37.0395 15.7975i 1.40197 0.597943i
\(699\) 0.306806i 0.0116045i
\(700\) 0 0
\(701\) 0.741474i 0.0280051i −0.999902 0.0140025i \(-0.995543\pi\)
0.999902 0.0140025i \(-0.00445729\pi\)
\(702\) −2.13682 5.01009i −0.0806489 0.189093i
\(703\) 28.2148 1.06414
\(704\) 9.61007 + 8.47529i 0.362193 + 0.319424i
\(705\) 15.5401i 0.585275i
\(706\) −5.31161 12.4539i −0.199905 0.468708i
\(707\) 0 0
\(708\) −3.37364 + 3.51761i −0.126789 + 0.132200i
\(709\) 41.1640i 1.54595i 0.634438 + 0.772974i \(0.281232\pi\)
−0.634438 + 0.772974i \(0.718768\pi\)
\(710\) 9.37770 + 21.9874i 0.351939 + 0.825173i
\(711\) 33.0414i 1.23915i
\(712\) −4.58258 1.73205i −0.171739 0.0649113i
\(713\) 0.512901i 0.0192083i
\(714\) 0 0
\(715\) −7.10284 −0.265631
\(716\) −19.7548 + 20.5978i −0.738271 + 0.769775i
\(717\) 2.27726 0.0850457
\(718\) 2.08353 + 4.88514i 0.0777566 + 0.182312i
\(719\) −14.0494 −0.523955 −0.261978 0.965074i \(-0.584375\pi\)
−0.261978 + 0.965074i \(0.584375\pi\)
\(720\) −1.47745 35.3455i −0.0550613 1.31725i
\(721\) 0 0
\(722\) 11.5012 4.90528i 0.428029 0.182556i
\(723\) −5.62959 −0.209367
\(724\) 21.2110 22.1161i 0.788299 0.821938i
\(725\) 26.5690i 0.986750i
\(726\) 2.25044 + 5.27649i 0.0835216 + 0.195829i
\(727\) 13.2022 0.489642 0.244821 0.969568i \(-0.421271\pi\)
0.244821 + 0.969568i \(0.421271\pi\)
\(728\) 0 0
\(729\) 15.3015 0.566724
\(730\) 19.0417 + 44.6460i 0.704764 + 1.65242i
\(731\) 0 0
\(732\) −5.84923 5.60984i −0.216194 0.207346i
\(733\) −49.9594 −1.84529 −0.922646 0.385648i \(-0.873978\pi\)
−0.922646 + 0.385648i \(0.873978\pi\)
\(734\) −21.8880 + 9.33529i −0.807900 + 0.344572i
\(735\) 0 0
\(736\) −22.5845 + 10.7684i −0.832476 + 0.396928i
\(737\) 16.0749 0.592128
\(738\) 6.47768 + 15.1879i 0.238447 + 0.559074i
\(739\) −36.5435 −1.34428 −0.672138 0.740426i \(-0.734624\pi\)
−0.672138 + 0.740426i \(0.734624\pi\)
\(740\) 24.6549 + 23.6458i 0.906332 + 0.869239i
\(741\) 3.52278 0.129413
\(742\) 0 0
\(743\) 15.1330i 0.555177i −0.960700 0.277589i \(-0.910465\pi\)
0.960700 0.277589i \(-0.0895352\pi\)
\(744\) 0.147543 + 0.0557662i 0.00540920 + 0.00204449i
\(745\) 36.1157i 1.32318i
\(746\) 7.13378 + 16.7262i 0.261186 + 0.612390i
\(747\) 41.4725i 1.51740i
\(748\) 9.30631 + 8.92543i 0.340273 + 0.326346i
\(749\) 0 0
\(750\) −0.173314 0.406362i −0.00632855 0.0148382i
\(751\) 13.8561i 0.505617i 0.967516 + 0.252808i \(0.0813542\pi\)
−0.967516 + 0.252808i \(0.918646\pi\)
\(752\) −1.69000 40.4304i −0.0616280 1.47435i
\(753\) 5.56071 0.202644
\(754\) −3.93299 9.22149i −0.143231 0.335827i
\(755\) 47.3412i 1.72292i
\(756\) 0 0
\(757\) 46.6967i 1.69722i −0.529019 0.848610i \(-0.677440\pi\)
0.529019 0.848610i \(-0.322560\pi\)
\(758\) −33.2783 + 14.1933i −1.20872 + 0.515524i
\(759\) 3.40682 0.123660
\(760\) 44.5929 + 16.8545i 1.61755 + 0.611378i
\(761\) 47.1001i 1.70738i 0.520783 + 0.853689i \(0.325640\pi\)
−0.520783 + 0.853689i \(0.674360\pi\)
\(762\) 3.07831 1.31291i 0.111515 0.0475616i
\(763\) 0 0
\(764\) −3.60957 3.46184i −0.130590 0.125245i
\(765\) 35.6004i 1.28714i
\(766\) 35.0827 14.9629i 1.26759 0.540631i
\(767\) 7.03521i 0.254027i
\(768\) −0.642135 7.66757i −0.0231711 0.276680i
\(769\) 17.3071i 0.624110i 0.950064 + 0.312055i \(0.101017\pi\)
−0.950064 + 0.312055i \(0.898983\pi\)
\(770\) 0 0
\(771\) 11.3448 0.408574
\(772\) −4.29225 + 4.47541i −0.154481 + 0.161074i
\(773\) 27.0778 0.973921 0.486960 0.873424i \(-0.338106\pi\)
0.486960 + 0.873424i \(0.338106\pi\)
\(774\) 0 0
\(775\) −0.603391 −0.0216744
\(776\) 7.59856 + 2.87198i 0.272772 + 0.103098i
\(777\) 0 0
\(778\) 17.7485 + 41.6141i 0.636315 + 1.49194i
\(779\) −22.2504 −0.797203
\(780\) 3.07831 + 2.95232i 0.110221 + 0.105710i
\(781\) 8.47529i 0.303270i
\(782\) −23.1603 + 9.87795i −0.828211 + 0.353235i
\(783\) −14.1654 −0.506230
\(784\) 0 0
\(785\) −2.35969 −0.0842208
\(786\) −2.46789 + 1.05256i −0.0880269 + 0.0375437i
\(787\) 54.2344i 1.93325i 0.256197 + 0.966624i \(0.417530\pi\)
−0.256197 + 0.966624i \(0.582470\pi\)
\(788\) 22.6464 + 21.7195i 0.806744 + 0.773726i
\(789\) 5.13557 0.182831
\(790\) 21.1492 + 49.5876i 0.752456 + 1.76425i
\(791\) 0 0
\(792\) 4.43462 11.7329i 0.157578 0.416911i
\(793\) −11.6985 −0.415424
\(794\) −22.1645 + 9.45321i −0.786588 + 0.335482i
\(795\) −10.8823 −0.385956
\(796\) −16.3713 + 17.0699i −0.580264 + 0.605026i
\(797\) 20.1437 0.713527 0.356763 0.934195i \(-0.383880\pi\)
0.356763 + 0.934195i \(0.383880\pi\)
\(798\) 0 0
\(799\) 40.7221i 1.44064i
\(800\) 12.6682 + 26.5690i 0.447889 + 0.939358i
\(801\) 4.79559i 0.169444i
\(802\) 7.67125 3.27181i 0.270881 0.115532i
\(803\) 17.2093i 0.607303i
\(804\) −6.96673 6.68160i −0.245698 0.235642i
\(805\) 0 0
\(806\) 0.209423 0.0893195i 0.00737661 0.00314615i
\(807\) 11.2233i 0.395077i
\(808\) 6.80620 18.0075i 0.239441 0.633502i
\(809\) 34.5543 1.21486 0.607432 0.794372i \(-0.292200\pi\)
0.607432 + 0.794372i \(0.292200\pi\)
\(810\) −28.9707 + 12.3561i −1.01793 + 0.434148i
\(811\) 13.6340i 0.478754i −0.970927 0.239377i \(-0.923057\pi\)
0.970927 0.239377i \(-0.0769431\pi\)
\(812\) 0 0
\(813\) 6.55911i 0.230038i
\(814\) 4.75175 + 11.1412i 0.166549 + 0.390498i
\(815\) −27.8046 −0.973953
\(816\) −0.323384 7.73640i −0.0113207 0.270828i
\(817\) 0 0
\(818\) −0.133094 0.312058i −0.00465352 0.0109109i
\(819\) 0 0
\(820\) −19.4430 18.6473i −0.678980 0.651191i
\(821\) 32.0211i 1.11754i −0.829321 0.558772i \(-0.811273\pi\)
0.829321 0.558772i \(-0.188727\pi\)
\(822\) 0.0274399 + 0.0643370i 0.000957078 + 0.00224401i
\(823\) 30.9921i 1.08032i 0.841564 + 0.540158i \(0.181635\pi\)
−0.841564 + 0.540158i \(0.818365\pi\)
\(824\) 14.0494 37.1713i 0.489435 1.29492i
\(825\) 4.00788i 0.139537i
\(826\) 0 0
\(827\) −11.0191 −0.383172 −0.191586 0.981476i \(-0.561363\pi\)
−0.191586 + 0.981476i \(0.561363\pi\)
\(828\) 17.6766 + 16.9532i 0.614305 + 0.589163i
\(829\) 37.9672 1.31866 0.659328 0.751856i \(-0.270841\pi\)
0.659328 + 0.751856i \(0.270841\pi\)
\(830\) −26.5459 62.2407i −0.921420 2.16041i
\(831\) 0.219998 0.00763163
\(832\) −8.32984 7.34623i −0.288785 0.254685i
\(833\) 0 0
\(834\) −9.37041 + 3.99651i −0.324471 + 0.138388i
\(835\) 4.43462 0.153466
\(836\) 12.1989 + 11.6996i 0.421907 + 0.404640i
\(837\) 0.321700i 0.0111196i
\(838\) −16.3192 38.2629i −0.563739 1.32177i
\(839\) −8.32984 −0.287578 −0.143789 0.989608i \(-0.545929\pi\)
−0.143789 + 0.989608i \(0.545929\pi\)
\(840\) 0 0
\(841\) 2.92739 0.100945
\(842\) −17.8242 41.7914i −0.614261 1.44023i
\(843\) 0.691033i 0.0238004i
\(844\) 13.9442 14.5392i 0.479979 0.500461i
\(845\) −35.3689 −1.21673
\(846\) −36.4361 + 15.5401i −1.25270 + 0.534280i
\(847\) 0 0
\(848\) 28.3123 1.18346i 0.972247 0.0406402i
\(849\) 15.0168 0.515375
\(850\) 11.6207 + 27.2465i 0.398587 + 0.934546i
\(851\) −23.6510 −0.810747
\(852\) 3.52278 3.67311i 0.120689 0.125839i
\(853\) −6.94153 −0.237673 −0.118837 0.992914i \(-0.537917\pi\)
−0.118837 + 0.992914i \(0.537917\pi\)
\(854\) 0 0
\(855\) 46.6657i 1.59593i
\(856\) 5.13915 13.5969i 0.175652 0.464733i
\(857\) 2.21407i 0.0756313i −0.999285 0.0378156i \(-0.987960\pi\)
0.999285 0.0378156i \(-0.0120400\pi\)
\(858\) 0.593283 + 1.39104i 0.0202544 + 0.0474894i
\(859\) 6.07762i 0.207366i 0.994610 + 0.103683i \(0.0330627\pi\)
−0.994610 + 0.103683i \(0.966937\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −20.9914 49.2175i −0.714970 1.67635i
\(863\) 8.83054i 0.300595i −0.988641 0.150298i \(-0.951977\pi\)
0.988641 0.150298i \(-0.0480232\pi\)
\(864\) −14.1654 + 6.75411i −0.481916 + 0.229779i
\(865\) 3.10051 0.105421
\(866\) −14.1386 33.1500i −0.480448 1.12648i
\(867\) 0.383106i 0.0130110i
\(868\) 0 0
\(869\) 19.1141i 0.648400i
\(870\) 10.2034 4.35176i 0.345926 0.147539i
\(871\) −13.9335 −0.472117
\(872\) 7.49044 + 2.83112i 0.253658 + 0.0958738i
\(873\) 7.95176i 0.269126i
\(874\) −30.3590 + 12.9482i −1.02691 + 0.437979i
\(875\) 0 0
\(876\) 7.15310 7.45835i 0.241681 0.251994i
\(877\) 11.9002i 0.401842i −0.979607 0.200921i \(-0.935607\pi\)
0.979607 0.200921i \(-0.0643934\pi\)
\(878\) −31.1691 + 13.2937i −1.05191 + 0.448641i
\(879\) 15.0525i 0.507707i
\(880\) 0.854687 + 20.4469i 0.0288115 + 0.689266i
\(881\) 53.9142i 1.81642i −0.418519 0.908208i \(-0.637451\pi\)
0.418519 0.908208i \(-0.362549\pi\)
\(882\) 0 0
\(883\) 11.1987 0.376866 0.188433 0.982086i \(-0.439659\pi\)
0.188433 + 0.982086i \(0.439659\pi\)
\(884\) −8.06654 7.73640i −0.271307 0.260203i
\(885\) −7.78429 −0.261666
\(886\) −13.3595 + 5.69786i −0.448821 + 0.191423i
\(887\) −36.3664 −1.22106 −0.610531 0.791992i \(-0.709044\pi\)
−0.610531 + 0.791992i \(0.709044\pi\)
\(888\) 2.57151 6.80357i 0.0862941 0.228313i
\(889\) 0 0
\(890\) −3.06957 7.19707i −0.102892 0.241246i
\(891\) −11.1671 −0.374110
\(892\) 33.6521 35.0881i 1.12675 1.17484i
\(893\) 53.3792i 1.78627i
\(894\) −7.07301 + 3.01666i −0.236557 + 0.100892i
\(895\) −45.5819 −1.52364
\(896\) 0 0
\(897\) −2.95297 −0.0985968
\(898\) −14.9721 + 6.38564i −0.499625 + 0.213092i
\(899\) 0.592117i 0.0197482i
\(900\) 19.9442 20.7953i 0.664806 0.693176i
\(901\) 28.5165 0.950022
\(902\) −3.74726 8.78601i −0.124770 0.292542i
\(903\) 0 0
\(904\) 1.43695 3.80183i 0.0477924 0.126447i
\(905\) 48.9419 1.62688
\(906\) 9.27143 3.95429i 0.308023 0.131373i
\(907\) −17.8474 −0.592613 −0.296307 0.955093i \(-0.595755\pi\)
−0.296307 + 0.955093i \(0.595755\pi\)
\(908\) 20.6757 + 19.8295i 0.686148 + 0.658066i
\(909\) −18.8446 −0.625034
\(910\) 0 0
\(911\) 11.1458i 0.369278i 0.982806 + 0.184639i \(0.0591116\pi\)
−0.982806 + 0.184639i \(0.940888\pi\)
\(912\) −0.423897 10.1410i −0.0140366 0.335803i
\(913\) 23.9914i 0.793998i
\(914\) −39.8188 + 16.9828i −1.31709 + 0.561742i
\(915\) 12.9441i 0.427918i
\(916\) −14.7436 + 15.3727i −0.487141 + 0.507929i
\(917\) 0 0
\(918\) −14.5265 + 6.19562i −0.479448 + 0.204486i
\(919\) 32.6552i 1.07720i 0.842563 + 0.538598i \(0.181046\pi\)
−0.842563 + 0.538598i \(0.818954\pi\)
\(920\) −37.3800 14.1283i −1.23238 0.465796i
\(921\) 7.07960 0.233281
\(922\) −22.5918 + 9.63548i −0.744022 + 0.317328i
\(923\) 7.34623i 0.241804i
\(924\) 0 0
\(925\) 27.8238i 0.914839i
\(926\) 12.0554 + 28.2657i 0.396166 + 0.928870i
\(927\) −38.8991 −1.27761
\(928\) −26.0726 + 12.4315i −0.855875 + 0.408085i
\(929\) 26.9076i 0.882811i −0.897308 0.441406i \(-0.854480\pi\)
0.897308 0.441406i \(-0.145520\pi\)
\(930\) 0.0988299 + 0.231721i 0.00324076 + 0.00759844i
\(931\) 0 0
\(932\) −0.883202 + 0.920891i −0.0289302 + 0.0301648i
\(933\) 7.49268i 0.245299i
\(934\) 0.375326 + 0.880007i 0.0122810 + 0.0287947i
\(935\) 20.5944i 0.673510i
\(936\) −3.84385 + 10.1699i −0.125640 + 0.332413i
\(937\) 32.6476i 1.06655i 0.845942 + 0.533275i \(0.179039\pi\)
−0.845942 + 0.533275i \(0.820961\pi\)
\(938\) 0 0
\(939\) −6.29315 −0.205369
\(940\) 44.7353 46.6443i 1.45910 1.52137i
\(941\) 12.6417 0.412109 0.206055 0.978541i \(-0.433938\pi\)
0.206055 + 0.978541i \(0.433938\pi\)
\(942\) 0.197099 + 0.462128i 0.00642183 + 0.0150569i
\(943\) 18.6514 0.607372
\(944\) 20.2522 0.846548i 0.659154 0.0275528i
\(945\) 0 0
\(946\) 0 0
\(947\) −42.2541 −1.37307 −0.686537 0.727095i \(-0.740870\pi\)
−0.686537 + 0.727095i \(0.740870\pi\)
\(948\) 7.94483 8.28386i 0.258036 0.269047i
\(949\) 14.9167i 0.484217i
\(950\) 15.2326 + 35.7152i 0.494212 + 1.15875i
\(951\) −11.3264 −0.367285
\(952\) 0 0
\(953\) −44.4561 −1.44007 −0.720037 0.693936i \(-0.755875\pi\)
−0.720037 + 0.693936i \(0.755875\pi\)
\(954\) −10.8823 25.5152i −0.352328 0.826085i
\(955\) 7.98780i 0.258479i
\(956\) −6.83528 6.55553i −0.221069 0.212021i
\(957\) 3.93299 0.127136
\(958\) 37.4223 15.9607i 1.20906 0.515668i
\(959\) 0 0
\(960\) 8.12842 9.21676i 0.262344 0.297470i
\(961\) −30.9866 −0.999566
\(962\) −4.11873 9.65697i −0.132793 0.311353i
\(963\) −14.2289 −0.458521
\(964\) 16.8974 + 16.2059i 0.544229 + 0.521956i
\(965\) −9.90388 −0.318817
\(966\) 0 0
\(967\) 25.7160i 0.826972i 0.910510 + 0.413486i \(0.135689\pi\)
−0.910510 + 0.413486i \(0.864311\pi\)
\(968\) 8.43462 22.3159i 0.271099 0.717261i
\(969\) 10.2142i 0.328127i
\(970\) 5.08979 + 11.9338i 0.163423 + 0.383170i
\(971\) 46.5051i 1.49242i −0.665711 0.746210i \(-0.731871\pi\)
0.665711 0.746210i \(-0.268129\pi\)
\(972\) 16.8529 + 16.1631i 0.540556 + 0.518432i
\(973\) 0 0
\(974\) −1.01699 2.38448i −0.0325863 0.0764035i
\(975\) 3.47396i 0.111256i
\(976\) 1.40768 + 33.6763i 0.0450587 + 1.07795i
\(977\) 34.2695 1.09638 0.548189 0.836354i \(-0.315317\pi\)
0.548189 + 0.836354i \(0.315317\pi\)
\(978\) 2.32245 + 5.44533i 0.0742638 + 0.174123i
\(979\) 2.77419i 0.0886635i
\(980\) 0 0
\(981\) 7.83862i 0.250268i
\(982\) −17.4793 + 7.45498i −0.557788 + 0.237898i
\(983\) 1.55467 0.0495862 0.0247931 0.999693i \(-0.492107\pi\)
0.0247931 + 0.999693i \(0.492107\pi\)
\(984\) −2.02791 + 5.36534i −0.0646473 + 0.171041i
\(985\) 50.1153i 1.59681i
\(986\) −26.7374 + 11.4036i −0.851491 + 0.363163i
\(987\) 0 0
\(988\) −10.5738 10.1410i −0.336396 0.322629i
\(989\) 0 0
\(990\) 18.4269 7.85913i 0.585645 0.249779i
\(991\) 26.1519i 0.830741i −0.909652 0.415371i \(-0.863652\pi\)
0.909652 0.415371i \(-0.136348\pi\)
\(992\) −0.282324 0.592117i −0.00896378 0.0187997i
\(993\) 15.8964i 0.504457i
\(994\) 0 0
\(995\) −37.7748 −1.19754
\(996\) −9.97209 + 10.3976i −0.315978 + 0.329462i
\(997\) −36.2933 −1.14942 −0.574711 0.818356i \(-0.694886\pi\)
−0.574711 + 0.818356i \(0.694886\pi\)
\(998\) 14.7881 6.30715i 0.468108 0.199649i
\(999\) −14.8343 −0.469338
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 392.2.e.e.195.4 12
4.3 odd 2 1568.2.e.e.783.6 12
7.2 even 3 56.2.m.a.3.6 yes 12
7.3 odd 6 56.2.m.a.19.3 yes 12
7.4 even 3 392.2.m.g.19.3 12
7.5 odd 6 392.2.m.g.227.6 12
7.6 odd 2 inner 392.2.e.e.195.3 12
8.3 odd 2 inner 392.2.e.e.195.2 12
8.5 even 2 1568.2.e.e.783.5 12
21.2 odd 6 504.2.bk.a.451.1 12
21.17 even 6 504.2.bk.a.19.4 12
28.3 even 6 224.2.q.a.47.4 12
28.11 odd 6 1568.2.q.g.1391.3 12
28.19 even 6 1568.2.q.g.815.4 12
28.23 odd 6 224.2.q.a.143.3 12
28.27 even 2 1568.2.e.e.783.7 12
56.3 even 6 56.2.m.a.19.5 yes 12
56.5 odd 6 1568.2.q.g.815.3 12
56.11 odd 6 392.2.m.g.19.5 12
56.13 odd 2 1568.2.e.e.783.8 12
56.19 even 6 392.2.m.g.227.4 12
56.27 even 2 inner 392.2.e.e.195.1 12
56.37 even 6 224.2.q.a.143.4 12
56.45 odd 6 224.2.q.a.47.3 12
56.51 odd 6 56.2.m.a.3.4 12
56.53 even 6 1568.2.q.g.1391.4 12
84.23 even 6 2016.2.bs.a.1711.6 12
84.59 odd 6 2016.2.bs.a.271.1 12
168.59 odd 6 504.2.bk.a.19.2 12
168.101 even 6 2016.2.bs.a.271.6 12
168.107 even 6 504.2.bk.a.451.3 12
168.149 odd 6 2016.2.bs.a.1711.1 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
56.2.m.a.3.4 12 56.51 odd 6
56.2.m.a.3.6 yes 12 7.2 even 3
56.2.m.a.19.3 yes 12 7.3 odd 6
56.2.m.a.19.5 yes 12 56.3 even 6
224.2.q.a.47.3 12 56.45 odd 6
224.2.q.a.47.4 12 28.3 even 6
224.2.q.a.143.3 12 28.23 odd 6
224.2.q.a.143.4 12 56.37 even 6
392.2.e.e.195.1 12 56.27 even 2 inner
392.2.e.e.195.2 12 8.3 odd 2 inner
392.2.e.e.195.3 12 7.6 odd 2 inner
392.2.e.e.195.4 12 1.1 even 1 trivial
392.2.m.g.19.3 12 7.4 even 3
392.2.m.g.19.5 12 56.11 odd 6
392.2.m.g.227.4 12 56.19 even 6
392.2.m.g.227.6 12 7.5 odd 6
504.2.bk.a.19.2 12 168.59 odd 6
504.2.bk.a.19.4 12 21.17 even 6
504.2.bk.a.451.1 12 21.2 odd 6
504.2.bk.a.451.3 12 168.107 even 6
1568.2.e.e.783.5 12 8.5 even 2
1568.2.e.e.783.6 12 4.3 odd 2
1568.2.e.e.783.7 12 28.27 even 2
1568.2.e.e.783.8 12 56.13 odd 2
1568.2.q.g.815.3 12 56.5 odd 6
1568.2.q.g.815.4 12 28.19 even 6
1568.2.q.g.1391.3 12 28.11 odd 6
1568.2.q.g.1391.4 12 56.53 even 6
2016.2.bs.a.271.1 12 84.59 odd 6
2016.2.bs.a.271.6 12 168.101 even 6
2016.2.bs.a.1711.1 12 168.149 odd 6
2016.2.bs.a.1711.6 12 84.23 even 6