Properties

Label 224.2.q.a.143.3
Level $224$
Weight $2$
Character 224.143
Analytic conductor $1.789$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [224,2,Mod(47,224)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(224, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 3, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("224.47");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 224 = 2^{5} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 224.q (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.78864900528\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{6})\)
Coefficient field: 12.0.144054149089536.2
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 3x^{11} + x^{9} + 48x^{8} - 189x^{7} + 431x^{6} - 654x^{5} + 624x^{4} - 340x^{3} + 96x^{2} - 12x + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: no (minimal twist has level 56)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 143.3
Root \(-2.37165 + 1.78079i\) of defining polynomial
Character \(\chi\) \(=\) 224.143
Dual form 224.2.q.a.47.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.416472 + 0.240450i) q^{3} +(-1.59713 - 2.76632i) q^{5} +(0.694153 - 2.55307i) q^{7} +(-1.38437 - 2.39779i) q^{9} +(-0.800840 + 1.38709i) q^{11} +1.38831 q^{13} -1.53613i q^{15} +(3.48605 + 2.01267i) q^{17} +(4.56957 - 2.63824i) q^{19} +(0.902982 - 0.896373i) q^{21} +(-3.83044 + 2.21151i) q^{23} +(-2.60168 + 4.50624i) q^{25} -2.77419i q^{27} +5.10613i q^{29} +(-0.0579809 + 0.100426i) q^{31} +(-0.667055 + 0.385124i) q^{33} +(-8.17125 + 2.15734i) q^{35} +(4.63087 - 2.67363i) q^{37} +(0.578191 + 0.333819i) q^{39} -4.21689i q^{41} +(-4.42204 + 7.65920i) q^{45} +(5.05821 + 8.76108i) q^{47} +(-6.03630 - 3.54444i) q^{49} +(0.967895 + 1.67644i) q^{51} +(-6.13514 - 3.54212i) q^{53} +5.11619 q^{55} +2.53747 q^{57} +(4.38856 + 2.53374i) q^{59} +(4.21321 + 7.29750i) q^{61} +(-7.08269 + 1.86995i) q^{63} +(-2.21731 - 3.84050i) q^{65} +(-5.01815 + 8.69169i) q^{67} -2.12703 q^{69} +5.29150i q^{71} +(9.30504 + 5.37227i) q^{73} +(-2.16706 + 1.25115i) q^{75} +(2.98544 + 3.00745i) q^{77} +(10.3349 - 5.96688i) q^{79} +(-3.48605 + 6.03801i) q^{81} -14.9789i q^{83} -12.8580i q^{85} +(-1.22777 + 2.12656i) q^{87} +(1.50000 - 0.866025i) q^{89} +(0.963697 - 3.54444i) q^{91} +(-0.0482949 + 0.0278831i) q^{93} +(-14.5965 - 8.42726i) q^{95} -2.87198i q^{97} +4.43462 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 6 q^{3} + 6 q^{11} - 6 q^{17} + 6 q^{19} - 6 q^{33} - 18 q^{35} - 12 q^{49} - 6 q^{51} - 36 q^{57} - 42 q^{59} - 12 q^{65} - 30 q^{67} + 18 q^{73} - 24 q^{75} + 6 q^{81} + 18 q^{89} + 72 q^{91} + 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/224\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(129\) \(197\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{6}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.416472 + 0.240450i 0.240450 + 0.138824i 0.615384 0.788228i \(-0.289001\pi\)
−0.374933 + 0.927052i \(0.622334\pi\)
\(4\) 0 0
\(5\) −1.59713 2.76632i −0.714260 1.23714i −0.963244 0.268628i \(-0.913430\pi\)
0.248984 0.968508i \(-0.419903\pi\)
\(6\) 0 0
\(7\) 0.694153 2.55307i 0.262365 0.964969i
\(8\) 0 0
\(9\) −1.38437 2.39779i −0.461456 0.799265i
\(10\) 0 0
\(11\) −0.800840 + 1.38709i −0.241462 + 0.418225i −0.961131 0.276093i \(-0.910960\pi\)
0.719669 + 0.694318i \(0.244294\pi\)
\(12\) 0 0
\(13\) 1.38831 0.385047 0.192523 0.981292i \(-0.438333\pi\)
0.192523 + 0.981292i \(0.438333\pi\)
\(14\) 0 0
\(15\) 1.53613i 0.396626i
\(16\) 0 0
\(17\) 3.48605 + 2.01267i 0.845490 + 0.488144i 0.859127 0.511763i \(-0.171007\pi\)
−0.0136363 + 0.999907i \(0.504341\pi\)
\(18\) 0 0
\(19\) 4.56957 2.63824i 1.04833 0.605255i 0.126150 0.992011i \(-0.459738\pi\)
0.922182 + 0.386756i \(0.126405\pi\)
\(20\) 0 0
\(21\) 0.902982 0.896373i 0.197047 0.195605i
\(22\) 0 0
\(23\) −3.83044 + 2.21151i −0.798702 + 0.461131i −0.843017 0.537887i \(-0.819223\pi\)
0.0443149 + 0.999018i \(0.485890\pi\)
\(24\) 0 0
\(25\) −2.60168 + 4.50624i −0.520336 + 0.901248i
\(26\) 0 0
\(27\) 2.77419i 0.533893i
\(28\) 0 0
\(29\) 5.10613i 0.948185i 0.880475 + 0.474093i \(0.157224\pi\)
−0.880475 + 0.474093i \(0.842776\pi\)
\(30\) 0 0
\(31\) −0.0579809 + 0.100426i −0.0104137 + 0.0180370i −0.871185 0.490954i \(-0.836648\pi\)
0.860772 + 0.508991i \(0.169982\pi\)
\(32\) 0 0
\(33\) −0.667055 + 0.385124i −0.116119 + 0.0670416i
\(34\) 0 0
\(35\) −8.17125 + 2.15734i −1.38119 + 0.364658i
\(36\) 0 0
\(37\) 4.63087 2.67363i 0.761310 0.439543i −0.0684556 0.997654i \(-0.521807\pi\)
0.829766 + 0.558111i \(0.188474\pi\)
\(38\) 0 0
\(39\) 0.578191 + 0.333819i 0.0925847 + 0.0534538i
\(40\) 0 0
\(41\) 4.21689i 0.658568i −0.944231 0.329284i \(-0.893193\pi\)
0.944231 0.329284i \(-0.106807\pi\)
\(42\) 0 0
\(43\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(44\) 0 0
\(45\) −4.42204 + 7.65920i −0.659199 + 1.14177i
\(46\) 0 0
\(47\) 5.05821 + 8.76108i 0.737816 + 1.27794i 0.953477 + 0.301467i \(0.0974763\pi\)
−0.215660 + 0.976468i \(0.569190\pi\)
\(48\) 0 0
\(49\) −6.03630 3.54444i −0.862329 0.506348i
\(50\) 0 0
\(51\) 0.967895 + 1.67644i 0.135532 + 0.234749i
\(52\) 0 0
\(53\) −6.13514 3.54212i −0.842726 0.486548i 0.0154638 0.999880i \(-0.495078\pi\)
−0.858190 + 0.513332i \(0.828411\pi\)
\(54\) 0 0
\(55\) 5.11619 0.689868
\(56\) 0 0
\(57\) 2.53747 0.336096
\(58\) 0 0
\(59\) 4.38856 + 2.53374i 0.571342 + 0.329865i 0.757685 0.652620i \(-0.226330\pi\)
−0.186343 + 0.982485i \(0.559664\pi\)
\(60\) 0 0
\(61\) 4.21321 + 7.29750i 0.539447 + 0.934349i 0.998934 + 0.0461646i \(0.0146999\pi\)
−0.459487 + 0.888184i \(0.651967\pi\)
\(62\) 0 0
\(63\) −7.08269 + 1.86995i −0.892335 + 0.235591i
\(64\) 0 0
\(65\) −2.21731 3.84050i −0.275024 0.476355i
\(66\) 0 0
\(67\) −5.01815 + 8.69169i −0.613065 + 1.06186i 0.377656 + 0.925946i \(0.376730\pi\)
−0.990721 + 0.135913i \(0.956603\pi\)
\(68\) 0 0
\(69\) −2.12703 −0.256064
\(70\) 0 0
\(71\) 5.29150i 0.627986i 0.949425 + 0.313993i \(0.101667\pi\)
−0.949425 + 0.313993i \(0.898333\pi\)
\(72\) 0 0
\(73\) 9.30504 + 5.37227i 1.08907 + 0.628776i 0.933329 0.359021i \(-0.116890\pi\)
0.155743 + 0.987798i \(0.450223\pi\)
\(74\) 0 0
\(75\) −2.16706 + 1.25115i −0.250230 + 0.144470i
\(76\) 0 0
\(77\) 2.98544 + 3.00745i 0.340223 + 0.342731i
\(78\) 0 0
\(79\) 10.3349 5.96688i 1.16277 0.671327i 0.210805 0.977528i \(-0.432391\pi\)
0.951967 + 0.306201i \(0.0990581\pi\)
\(80\) 0 0
\(81\) −3.48605 + 6.03801i −0.387338 + 0.670890i
\(82\) 0 0
\(83\) 14.9789i 1.64415i −0.569382 0.822073i \(-0.692818\pi\)
0.569382 0.822073i \(-0.307182\pi\)
\(84\) 0 0
\(85\) 12.8580i 1.39465i
\(86\) 0 0
\(87\) −1.22777 + 2.12656i −0.131631 + 0.227992i
\(88\) 0 0
\(89\) 1.50000 0.866025i 0.159000 0.0917985i −0.418389 0.908268i \(-0.637405\pi\)
0.577389 + 0.816469i \(0.304072\pi\)
\(90\) 0 0
\(91\) 0.963697 3.54444i 0.101023 0.371558i
\(92\) 0 0
\(93\) −0.0482949 + 0.0278831i −0.00500795 + 0.00289134i
\(94\) 0 0
\(95\) −14.5965 8.42726i −1.49756 0.864619i
\(96\) 0 0
\(97\) 2.87198i 0.291606i −0.989314 0.145803i \(-0.953423\pi\)
0.989314 0.145803i \(-0.0465765\pi\)
\(98\) 0 0
\(99\) 4.43462 0.445696
\(100\) 0 0
\(101\) 3.40310 5.89434i 0.338621 0.586509i −0.645553 0.763716i \(-0.723373\pi\)
0.984174 + 0.177207i \(0.0567062\pi\)
\(102\) 0 0
\(103\) −7.02471 12.1672i −0.692165 1.19887i −0.971127 0.238563i \(-0.923324\pi\)
0.278962 0.960302i \(-0.410010\pi\)
\(104\) 0 0
\(105\) −3.92184 1.06631i −0.382732 0.104061i
\(106\) 0 0
\(107\) −2.56957 4.45063i −0.248410 0.430259i 0.714675 0.699457i \(-0.246575\pi\)
−0.963085 + 0.269198i \(0.913241\pi\)
\(108\) 0 0
\(109\) 2.45182 + 1.41556i 0.234842 + 0.135586i 0.612804 0.790235i \(-0.290042\pi\)
−0.377962 + 0.925821i \(0.623375\pi\)
\(110\) 0 0
\(111\) 2.57151 0.244077
\(112\) 0 0
\(113\) −1.43695 −0.135177 −0.0675887 0.997713i \(-0.521531\pi\)
−0.0675887 + 0.997713i \(0.521531\pi\)
\(114\) 0 0
\(115\) 12.2355 + 7.06415i 1.14096 + 0.658735i
\(116\) 0 0
\(117\) −1.92193 3.32887i −0.177682 0.307754i
\(118\) 0 0
\(119\) 7.55833 7.50301i 0.692871 0.687800i
\(120\) 0 0
\(121\) 4.21731 + 7.30460i 0.383392 + 0.664054i
\(122\) 0 0
\(123\) 1.01395 1.75622i 0.0914251 0.158353i
\(124\) 0 0
\(125\) 0.649581 0.0581003
\(126\) 0 0
\(127\) 4.92077i 0.436647i −0.975876 0.218324i \(-0.929941\pi\)
0.975876 0.218324i \(-0.0700589\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 3.41647 1.97250i 0.298499 0.172338i −0.343270 0.939237i \(-0.611534\pi\)
0.641768 + 0.766899i \(0.278201\pi\)
\(132\) 0 0
\(133\) −3.56363 13.4978i −0.309006 1.17041i
\(134\) 0 0
\(135\) −7.67429 + 4.43075i −0.660498 + 0.381339i
\(136\) 0 0
\(137\) 0.0514223 0.0890661i 0.00439331 0.00760943i −0.863820 0.503800i \(-0.831935\pi\)
0.868214 + 0.496190i \(0.165268\pi\)
\(138\) 0 0
\(139\) 14.9789i 1.27049i 0.772310 + 0.635246i \(0.219101\pi\)
−0.772310 + 0.635246i \(0.780899\pi\)
\(140\) 0 0
\(141\) 4.86500i 0.409707i
\(142\) 0 0
\(143\) −1.11181 + 1.92571i −0.0929743 + 0.161036i
\(144\) 0 0
\(145\) 14.1252 8.15518i 1.17303 0.677251i
\(146\) 0 0
\(147\) −1.66169 2.92759i −0.137054 0.241464i
\(148\) 0 0
\(149\) −9.79164 + 5.65320i −0.802162 + 0.463129i −0.844227 0.535986i \(-0.819940\pi\)
0.0420645 + 0.999115i \(0.486607\pi\)
\(150\) 0 0
\(151\) 12.8351 + 7.41032i 1.04450 + 0.603044i 0.921105 0.389314i \(-0.127288\pi\)
0.123397 + 0.992357i \(0.460621\pi\)
\(152\) 0 0
\(153\) 11.1451i 0.901028i
\(154\) 0 0
\(155\) 0.370413 0.0297523
\(156\) 0 0
\(157\) 0.369362 0.639755i 0.0294783 0.0510580i −0.850910 0.525312i \(-0.823949\pi\)
0.880388 + 0.474254i \(0.157282\pi\)
\(158\) 0 0
\(159\) −1.70341 2.95039i −0.135089 0.233981i
\(160\) 0 0
\(161\) 2.98721 + 11.3145i 0.235425 + 0.891707i
\(162\) 0 0
\(163\) −4.35226 7.53834i −0.340895 0.590448i 0.643704 0.765275i \(-0.277397\pi\)
−0.984599 + 0.174826i \(0.944064\pi\)
\(164\) 0 0
\(165\) 2.13075 + 1.23019i 0.165879 + 0.0957703i
\(166\) 0 0
\(167\) −1.38831 −0.107430 −0.0537152 0.998556i \(-0.517106\pi\)
−0.0537152 + 0.998556i \(0.517106\pi\)
\(168\) 0 0
\(169\) −11.0726 −0.851739
\(170\) 0 0
\(171\) −12.6519 7.30460i −0.967518 0.558597i
\(172\) 0 0
\(173\) −0.485324 0.840606i −0.0368985 0.0639101i 0.846986 0.531615i \(-0.178414\pi\)
−0.883885 + 0.467704i \(0.845081\pi\)
\(174\) 0 0
\(175\) 9.69877 + 9.77028i 0.733158 + 0.738564i
\(176\) 0 0
\(177\) 1.21848 + 2.11046i 0.0915864 + 0.158632i
\(178\) 0 0
\(179\) −7.13495 + 12.3581i −0.533291 + 0.923687i 0.465953 + 0.884810i \(0.345712\pi\)
−0.999244 + 0.0388779i \(0.987622\pi\)
\(180\) 0 0
\(181\) 15.3218 1.13886 0.569429 0.822041i \(-0.307164\pi\)
0.569429 + 0.822041i \(0.307164\pi\)
\(182\) 0 0
\(183\) 4.05228i 0.299553i
\(184\) 0 0
\(185\) −14.7922 8.54031i −1.08755 0.627896i
\(186\) 0 0
\(187\) −5.58353 + 3.22365i −0.408308 + 0.235737i
\(188\) 0 0
\(189\) −7.08269 1.92571i −0.515190 0.140075i
\(190\) 0 0
\(191\) 2.16564 1.25033i 0.156700 0.0904709i −0.419599 0.907709i \(-0.637829\pi\)
0.576300 + 0.817238i \(0.304496\pi\)
\(192\) 0 0
\(193\) 1.55026 2.68512i 0.111590 0.193279i −0.804822 0.593517i \(-0.797739\pi\)
0.916411 + 0.400237i \(0.131072\pi\)
\(194\) 0 0
\(195\) 2.13261i 0.152720i
\(196\) 0 0
\(197\) 15.6891i 1.11780i 0.829233 + 0.558902i \(0.188777\pi\)
−0.829233 + 0.558902i \(0.811223\pi\)
\(198\) 0 0
\(199\) −5.91290 + 10.2414i −0.419154 + 0.725997i −0.995855 0.0909591i \(-0.971007\pi\)
0.576700 + 0.816956i \(0.304340\pi\)
\(200\) 0 0
\(201\) −4.17984 + 2.41323i −0.294823 + 0.170216i
\(202\) 0 0
\(203\) 13.0363 + 3.54444i 0.914969 + 0.248771i
\(204\) 0 0
\(205\) −11.6653 + 6.73495i −0.814738 + 0.470389i
\(206\) 0 0
\(207\) 10.6055 + 6.12307i 0.737131 + 0.425583i
\(208\) 0 0
\(209\) 8.45124i 0.584585i
\(210\) 0 0
\(211\) −10.0726 −0.693427 −0.346713 0.937971i \(-0.612702\pi\)
−0.346713 + 0.937971i \(0.612702\pi\)
\(212\) 0 0
\(213\) −1.27234 + 2.20376i −0.0871796 + 0.150999i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 0.216146 + 0.217740i 0.0146730 + 0.0147812i
\(218\) 0 0
\(219\) 2.58353 + 4.47480i 0.174579 + 0.302379i
\(220\) 0 0
\(221\) 4.83970 + 2.79420i 0.325553 + 0.187958i
\(222\) 0 0
\(223\) −24.3086 −1.62783 −0.813913 0.580987i \(-0.802667\pi\)
−0.813913 + 0.580987i \(0.802667\pi\)
\(224\) 0 0
\(225\) 14.4067 0.960448
\(226\) 0 0
\(227\) 12.4048 + 7.16194i 0.823339 + 0.475355i 0.851566 0.524247i \(-0.175653\pi\)
−0.0282277 + 0.999602i \(0.508986\pi\)
\(228\) 0 0
\(229\) 5.32502 + 9.22321i 0.351887 + 0.609487i 0.986580 0.163278i \(-0.0522066\pi\)
−0.634693 + 0.772765i \(0.718873\pi\)
\(230\) 0 0
\(231\) 0.520210 + 1.97037i 0.0342273 + 0.129641i
\(232\) 0 0
\(233\) 0.318991 + 0.552509i 0.0208978 + 0.0361961i 0.876285 0.481793i \(-0.160014\pi\)
−0.855387 + 0.517989i \(0.826681\pi\)
\(234\) 0 0
\(235\) 16.1573 27.9853i 1.05399 1.82556i
\(236\) 0 0
\(237\) 5.73896 0.372785
\(238\) 0 0
\(239\) 4.73540i 0.306307i 0.988202 + 0.153154i \(0.0489430\pi\)
−0.988202 + 0.153154i \(0.951057\pi\)
\(240\) 0 0
\(241\) −10.1380 5.85317i −0.653045 0.377036i 0.136577 0.990629i \(-0.456390\pi\)
−0.789622 + 0.613594i \(0.789723\pi\)
\(242\) 0 0
\(243\) −10.1112 + 5.83773i −0.648636 + 0.374490i
\(244\) 0 0
\(245\) −0.164257 + 22.3593i −0.0104940 + 1.42848i
\(246\) 0 0
\(247\) 6.34397 3.66269i 0.403657 0.233051i
\(248\) 0 0
\(249\) 3.60168 6.23829i 0.228247 0.395336i
\(250\) 0 0
\(251\) 11.5631i 0.729858i 0.931035 + 0.364929i \(0.118907\pi\)
−0.931035 + 0.364929i \(0.881093\pi\)
\(252\) 0 0
\(253\) 7.08425i 0.445383i
\(254\) 0 0
\(255\) 3.09172 5.35501i 0.193611 0.335344i
\(256\) 0 0
\(257\) −20.4302 + 11.7954i −1.27440 + 0.735777i −0.975813 0.218605i \(-0.929849\pi\)
−0.298589 + 0.954382i \(0.596516\pi\)
\(258\) 0 0
\(259\) −3.61144 13.6788i −0.224404 0.849961i
\(260\) 0 0
\(261\) 12.2435 7.06876i 0.757851 0.437546i
\(262\) 0 0
\(263\) −9.24833 5.33953i −0.570277 0.329249i 0.186983 0.982363i \(-0.440129\pi\)
−0.757260 + 0.653114i \(0.773462\pi\)
\(264\) 0 0
\(265\) 22.6290i 1.39009i
\(266\) 0 0
\(267\) 0.832945 0.0509754
\(268\) 0 0
\(269\) 11.6690 20.2113i 0.711471 1.23230i −0.252834 0.967510i \(-0.581363\pi\)
0.964305 0.264794i \(-0.0853040\pi\)
\(270\) 0 0
\(271\) 6.81961 + 11.8119i 0.414262 + 0.717522i 0.995351 0.0963179i \(-0.0307066\pi\)
−0.581089 + 0.813840i \(0.697373\pi\)
\(272\) 0 0
\(273\) 1.25362 1.24444i 0.0758722 0.0753169i
\(274\) 0 0
\(275\) −4.16706 7.21755i −0.251283 0.435235i
\(276\) 0 0
\(277\) 0.396180 + 0.228735i 0.0238042 + 0.0137433i 0.511855 0.859072i \(-0.328959\pi\)
−0.488051 + 0.872815i \(0.662292\pi\)
\(278\) 0 0
\(279\) 0.321068 0.0192218
\(280\) 0 0
\(281\) 1.43695 0.0857215 0.0428608 0.999081i \(-0.486353\pi\)
0.0428608 + 0.999081i \(0.486353\pi\)
\(282\) 0 0
\(283\) −27.0428 15.6132i −1.60753 0.928108i −0.989921 0.141622i \(-0.954768\pi\)
−0.617609 0.786486i \(-0.711898\pi\)
\(284\) 0 0
\(285\) −4.05268 7.01945i −0.240060 0.415796i
\(286\) 0 0
\(287\) −10.7660 2.92717i −0.635497 0.172785i
\(288\) 0 0
\(289\) −0.398321 0.689912i −0.0234306 0.0405831i
\(290\) 0 0
\(291\) 0.690570 1.19610i 0.0404819 0.0701168i
\(292\) 0 0
\(293\) −31.3006 −1.82860 −0.914299 0.405040i \(-0.867258\pi\)
−0.914299 + 0.405040i \(0.867258\pi\)
\(294\) 0 0
\(295\) 16.1869i 0.942437i
\(296\) 0 0
\(297\) 3.84806 + 2.22168i 0.223287 + 0.128915i
\(298\) 0 0
\(299\) −5.31783 + 3.07025i −0.307538 + 0.177557i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 2.83459 1.63655i 0.162843 0.0940175i
\(304\) 0 0
\(305\) 13.4581 23.3102i 0.770611 1.33474i
\(306\) 0 0
\(307\) 14.7215i 0.840202i 0.907477 + 0.420101i \(0.138005\pi\)
−0.907477 + 0.420101i \(0.861995\pi\)
\(308\) 0 0
\(309\) 6.75638i 0.384357i
\(310\) 0 0
\(311\) 7.79025 13.4931i 0.441745 0.765124i −0.556074 0.831133i \(-0.687693\pi\)
0.997819 + 0.0660082i \(0.0210263\pi\)
\(312\) 0 0
\(313\) 11.3329 6.54308i 0.640576 0.369837i −0.144260 0.989540i \(-0.546080\pi\)
0.784836 + 0.619703i \(0.212747\pi\)
\(314\) 0 0
\(315\) 16.4849 + 16.6064i 0.928818 + 0.935666i
\(316\) 0 0
\(317\) 20.3971 11.7763i 1.14562 0.661422i 0.197801 0.980242i \(-0.436620\pi\)
0.947815 + 0.318821i \(0.103287\pi\)
\(318\) 0 0
\(319\) −7.08269 4.08919i −0.396555 0.228951i
\(320\) 0 0
\(321\) 2.47142i 0.137941i
\(322\) 0 0
\(323\) 21.2397 1.18181
\(324\) 0 0
\(325\) −3.61193 + 6.25604i −0.200354 + 0.347023i
\(326\) 0 0
\(327\) 0.680744 + 1.17908i 0.0376452 + 0.0652035i
\(328\) 0 0
\(329\) 25.8788 6.83243i 1.42674 0.376684i
\(330\) 0 0
\(331\) 16.5277 + 28.6268i 0.908445 + 1.57347i 0.816225 + 0.577735i \(0.196063\pi\)
0.0922207 + 0.995739i \(0.470603\pi\)
\(332\) 0 0
\(333\) −12.8217 7.40258i −0.702622 0.405659i
\(334\) 0 0
\(335\) 32.0587 1.75155
\(336\) 0 0
\(337\) −15.5096 −0.844860 −0.422430 0.906396i \(-0.638823\pi\)
−0.422430 + 0.906396i \(0.638823\pi\)
\(338\) 0 0
\(339\) −0.598452 0.345516i −0.0325035 0.0187659i
\(340\) 0 0
\(341\) −0.0928668 0.160850i −0.00502902 0.00871052i
\(342\) 0 0
\(343\) −13.2393 + 12.9507i −0.714855 + 0.699272i
\(344\) 0 0
\(345\) 3.39716 + 5.88405i 0.182897 + 0.316786i
\(346\) 0 0
\(347\) 11.2494 19.4846i 0.603900 1.04599i −0.388324 0.921523i \(-0.626946\pi\)
0.992224 0.124463i \(-0.0397209\pi\)
\(348\) 0 0
\(349\) −28.4735 −1.52415 −0.762077 0.647486i \(-0.775820\pi\)
−0.762077 + 0.647486i \(0.775820\pi\)
\(350\) 0 0
\(351\) 3.85142i 0.205574i
\(352\) 0 0
\(353\) −8.29108 4.78686i −0.441290 0.254779i 0.262855 0.964835i \(-0.415336\pi\)
−0.704145 + 0.710057i \(0.748669\pi\)
\(354\) 0 0
\(355\) 14.6380 8.45124i 0.776903 0.448545i
\(356\) 0 0
\(357\) 4.95194 1.30739i 0.262084 0.0691945i
\(358\) 0 0
\(359\) 3.25225 1.87769i 0.171647 0.0991006i −0.411715 0.911313i \(-0.635070\pi\)
0.583362 + 0.812212i \(0.301737\pi\)
\(360\) 0 0
\(361\) 4.42067 7.65683i 0.232667 0.402991i
\(362\) 0 0
\(363\) 4.05622i 0.212896i
\(364\) 0 0
\(365\) 34.3209i 1.79644i
\(366\) 0 0
\(367\) 8.41302 14.5718i 0.439156 0.760640i −0.558469 0.829526i \(-0.688611\pi\)
0.997625 + 0.0688852i \(0.0219442\pi\)
\(368\) 0 0
\(369\) −10.1112 + 5.83773i −0.526370 + 0.303900i
\(370\) 0 0
\(371\) −13.3020 + 13.2046i −0.690606 + 0.685551i
\(372\) 0 0
\(373\) −11.1354 + 6.42901i −0.576568 + 0.332882i −0.759768 0.650194i \(-0.774688\pi\)
0.183200 + 0.983076i \(0.441354\pi\)
\(374\) 0 0
\(375\) 0.270533 + 0.156192i 0.0139702 + 0.00806572i
\(376\) 0 0
\(377\) 7.08888i 0.365096i
\(378\) 0 0
\(379\) −25.5822 −1.31407 −0.657034 0.753861i \(-0.728189\pi\)
−0.657034 + 0.753861i \(0.728189\pi\)
\(380\) 0 0
\(381\) 1.18320 2.04936i 0.0606172 0.104992i
\(382\) 0 0
\(383\) −13.4846 23.3561i −0.689033 1.19344i −0.972151 0.234355i \(-0.924702\pi\)
0.283118 0.959085i \(-0.408631\pi\)
\(384\) 0 0
\(385\) 3.55142 13.0620i 0.180997 0.665701i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 27.7043 + 15.9951i 1.40466 + 0.810983i 0.994867 0.101195i \(-0.0322665\pi\)
0.409796 + 0.912177i \(0.365600\pi\)
\(390\) 0 0
\(391\) −17.8041 −0.900394
\(392\) 0 0
\(393\) 1.89716 0.0956988
\(394\) 0 0
\(395\) −33.0126 19.0598i −1.66104 0.959004i
\(396\) 0 0
\(397\) −8.51929 14.7558i −0.427571 0.740575i 0.569086 0.822278i \(-0.307297\pi\)
−0.996657 + 0.0817035i \(0.973964\pi\)
\(398\) 0 0
\(399\) 1.76139 6.47833i 0.0881799 0.324322i
\(400\) 0 0
\(401\) 2.94858 + 5.10709i 0.147245 + 0.255036i 0.930208 0.367032i \(-0.119626\pi\)
−0.782963 + 0.622068i \(0.786293\pi\)
\(402\) 0 0
\(403\) −0.0804953 + 0.139422i −0.00400976 + 0.00694510i
\(404\) 0 0
\(405\) 22.2707 1.10664
\(406\) 0 0
\(407\) 8.56461i 0.424532i
\(408\) 0 0
\(409\) −0.207751 0.119945i −0.0102726 0.00593090i 0.494855 0.868976i \(-0.335221\pi\)
−0.505128 + 0.863045i \(0.668555\pi\)
\(410\) 0 0
\(411\) 0.0428320 0.0247290i 0.00211274 0.00121979i
\(412\) 0 0
\(413\) 9.51514 9.44550i 0.468210 0.464783i
\(414\) 0 0
\(415\) −41.4364 + 23.9233i −2.03403 + 1.17435i
\(416\) 0 0
\(417\) −3.60168 + 6.23829i −0.176375 + 0.305490i
\(418\) 0 0
\(419\) 29.4140i 1.43697i −0.695544 0.718484i \(-0.744837\pi\)
0.695544 0.718484i \(-0.255163\pi\)
\(420\) 0 0
\(421\) 32.1265i 1.56575i 0.622180 + 0.782874i \(0.286247\pi\)
−0.622180 + 0.782874i \(0.713753\pi\)
\(422\) 0 0
\(423\) 14.0049 24.2571i 0.680939 1.17942i
\(424\) 0 0
\(425\) −18.1391 + 10.4726i −0.879878 + 0.507998i
\(426\) 0 0
\(427\) 21.5556 5.69103i 1.04315 0.275408i
\(428\) 0 0
\(429\) −0.926077 + 0.534671i −0.0447114 + 0.0258141i
\(430\) 0 0
\(431\) 32.7662 + 18.9176i 1.57829 + 0.911228i 0.995098 + 0.0988962i \(0.0315312\pi\)
0.583196 + 0.812332i \(0.301802\pi\)
\(432\) 0 0
\(433\) 25.4835i 1.22466i 0.790602 + 0.612330i \(0.209768\pi\)
−0.790602 + 0.612330i \(0.790232\pi\)
\(434\) 0 0
\(435\) 7.84367 0.376075
\(436\) 0 0
\(437\) −11.6690 + 20.2113i −0.558204 + 0.966837i
\(438\) 0 0
\(439\) 11.9804 + 20.7506i 0.571792 + 0.990373i 0.996382 + 0.0849871i \(0.0270849\pi\)
−0.424590 + 0.905386i \(0.639582\pi\)
\(440\) 0 0
\(441\) −0.142375 + 19.3806i −0.00677975 + 0.922887i
\(442\) 0 0
\(443\) 5.13495 + 8.89399i 0.243969 + 0.422566i 0.961841 0.273608i \(-0.0882172\pi\)
−0.717872 + 0.696175i \(0.754884\pi\)
\(444\) 0 0
\(445\) −4.79140 2.76632i −0.227134 0.131136i
\(446\) 0 0
\(447\) −5.43726 −0.257174
\(448\) 0 0
\(449\) 11.5096 0.543170 0.271585 0.962414i \(-0.412452\pi\)
0.271585 + 0.962414i \(0.412452\pi\)
\(450\) 0 0
\(451\) 5.84923 + 3.37705i 0.275429 + 0.159019i
\(452\) 0 0
\(453\) 3.56363 + 6.17239i 0.167434 + 0.290004i
\(454\) 0 0
\(455\) −11.3442 + 2.99505i −0.531824 + 0.140410i
\(456\) 0 0
\(457\) −15.3050 26.5091i −0.715939 1.24004i −0.962596 0.270941i \(-0.912665\pi\)
0.246657 0.969103i \(-0.420668\pi\)
\(458\) 0 0
\(459\) 5.58353 9.67095i 0.260617 0.451401i
\(460\) 0 0
\(461\) 17.3671 0.808866 0.404433 0.914568i \(-0.367469\pi\)
0.404433 + 0.914568i \(0.367469\pi\)
\(462\) 0 0
\(463\) 21.7288i 1.00983i 0.863171 + 0.504913i \(0.168475\pi\)
−0.863171 + 0.504913i \(0.831525\pi\)
\(464\) 0 0
\(465\) 0.154267 + 0.0890661i 0.00715396 + 0.00413034i
\(466\) 0 0
\(467\) 0.585859 0.338246i 0.0271103 0.0156521i −0.486384 0.873745i \(-0.661684\pi\)
0.513494 + 0.858093i \(0.328351\pi\)
\(468\) 0 0
\(469\) 18.7071 + 18.8450i 0.863814 + 0.870183i
\(470\) 0 0
\(471\) 0.307659 0.177627i 0.0141762 0.00818461i
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 27.4555i 1.25974i
\(476\) 0 0
\(477\) 19.6144i 0.898082i
\(478\) 0 0
\(479\) −14.3839 + 24.9136i −0.657217 + 1.13833i 0.324116 + 0.946017i \(0.394933\pi\)
−0.981333 + 0.192316i \(0.938400\pi\)
\(480\) 0 0
\(481\) 6.42907 3.71182i 0.293140 0.169245i
\(482\) 0 0
\(483\) −1.47649 + 5.43045i −0.0671824 + 0.247094i
\(484\) 0 0
\(485\) −7.94483 + 4.58695i −0.360756 + 0.208283i
\(486\) 0 0
\(487\) 1.58745 + 0.916514i 0.0719342 + 0.0415312i 0.535536 0.844513i \(-0.320110\pi\)
−0.463602 + 0.886044i \(0.653443\pi\)
\(488\) 0 0
\(489\) 4.18601i 0.189298i
\(490\) 0 0
\(491\) −13.4370 −0.606401 −0.303201 0.952927i \(-0.598055\pi\)
−0.303201 + 0.952927i \(0.598055\pi\)
\(492\) 0 0
\(493\) −10.2770 + 17.8002i −0.462851 + 0.801682i
\(494\) 0 0
\(495\) −7.08269 12.2676i −0.318343 0.551387i
\(496\) 0 0
\(497\) 13.5096 + 3.67311i 0.605987 + 0.164762i
\(498\) 0 0
\(499\) −5.68404 9.84505i −0.254453 0.440725i 0.710294 0.703905i \(-0.248562\pi\)
−0.964747 + 0.263180i \(0.915229\pi\)
\(500\) 0 0
\(501\) −0.578191 0.333819i −0.0258317 0.0149139i
\(502\) 0 0
\(503\) 13.2022 0.588656 0.294328 0.955704i \(-0.404904\pi\)
0.294328 + 0.955704i \(0.404904\pi\)
\(504\) 0 0
\(505\) −21.7408 −0.967454
\(506\) 0 0
\(507\) −4.61144 2.66241i −0.204801 0.118242i
\(508\) 0 0
\(509\) −13.2178 22.8940i −0.585870 1.01476i −0.994766 0.102176i \(-0.967420\pi\)
0.408896 0.912581i \(-0.365914\pi\)
\(510\) 0 0
\(511\) 20.1749 20.0272i 0.892484 0.885952i
\(512\) 0 0
\(513\) −7.31899 12.6769i −0.323141 0.559697i
\(514\) 0 0
\(515\) −22.4388 + 38.8652i −0.988773 + 1.71260i
\(516\) 0 0
\(517\) −16.2033 −0.712619
\(518\) 0 0
\(519\) 0.466786i 0.0204896i
\(520\) 0 0
\(521\) −10.4163 6.01384i −0.456345 0.263471i 0.254161 0.967162i \(-0.418201\pi\)
−0.710506 + 0.703691i \(0.751534\pi\)
\(522\) 0 0
\(523\) −2.43276 + 1.40455i −0.106377 + 0.0614168i −0.552245 0.833682i \(-0.686229\pi\)
0.445868 + 0.895099i \(0.352895\pi\)
\(524\) 0 0
\(525\) 1.69000 + 6.40113i 0.0737577 + 0.279368i
\(526\) 0 0
\(527\) −0.404248 + 0.233393i −0.0176093 + 0.0101668i
\(528\) 0 0
\(529\) −1.71848 + 2.97649i −0.0747164 + 0.129413i
\(530\) 0 0
\(531\) 14.0305i 0.608872i
\(532\) 0 0
\(533\) 5.85434i 0.253580i
\(534\) 0 0
\(535\) −8.20791 + 14.2165i −0.354859 + 0.614634i
\(536\) 0 0
\(537\) −5.94302 + 3.43120i −0.256460 + 0.148067i
\(538\) 0 0
\(539\) 9.75058 5.53440i 0.419987 0.238383i
\(540\) 0 0
\(541\) 1.68628 0.973573i 0.0724988 0.0418572i −0.463312 0.886195i \(-0.653339\pi\)
0.535811 + 0.844338i \(0.320006\pi\)
\(542\) 0 0
\(543\) 6.38109 + 3.68413i 0.273839 + 0.158101i
\(544\) 0 0
\(545\) 9.04336i 0.387375i
\(546\) 0 0
\(547\) −28.4561 −1.21669 −0.608347 0.793671i \(-0.708167\pi\)
−0.608347 + 0.793671i \(0.708167\pi\)
\(548\) 0 0
\(549\) 11.6653 20.2048i 0.497862 0.862321i
\(550\) 0 0
\(551\) 13.4712 + 23.3329i 0.573894 + 0.994013i
\(552\) 0 0
\(553\) −8.05982 30.5277i −0.342738 1.29817i
\(554\) 0 0
\(555\) −4.10704 7.11361i −0.174334 0.301956i
\(556\) 0 0
\(557\) 7.96630 + 4.59935i 0.337543 + 0.194881i 0.659185 0.751981i \(-0.270901\pi\)
−0.321642 + 0.946861i \(0.604235\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) −3.10051 −0.130904
\(562\) 0 0
\(563\) 23.5533 + 13.5985i 0.992653 + 0.573108i 0.906066 0.423136i \(-0.139071\pi\)
0.0865866 + 0.996244i \(0.472404\pi\)
\(564\) 0 0
\(565\) 2.29501 + 3.97508i 0.0965518 + 0.167233i
\(566\) 0 0
\(567\) 12.9956 + 13.0914i 0.545764 + 0.549788i
\(568\) 0 0
\(569\) 11.7699 + 20.3861i 0.493420 + 0.854628i 0.999971 0.00758149i \(-0.00241329\pi\)
−0.506551 + 0.862210i \(0.669080\pi\)
\(570\) 0 0
\(571\) 15.1713 26.2774i 0.634897 1.09967i −0.351640 0.936135i \(-0.614376\pi\)
0.986537 0.163539i \(-0.0522909\pi\)
\(572\) 0 0
\(573\) 1.20257 0.0502382
\(574\) 0 0
\(575\) 23.0145i 0.959772i
\(576\) 0 0
\(577\) 24.7760 + 14.3044i 1.03144 + 0.595500i 0.917396 0.397976i \(-0.130287\pi\)
0.114041 + 0.993476i \(0.463620\pi\)
\(578\) 0 0
\(579\) 1.29128 0.745520i 0.0536637 0.0309828i
\(580\) 0 0
\(581\) −38.2421 10.3976i −1.58655 0.431367i
\(582\) 0 0
\(583\) 9.82652 5.67335i 0.406973 0.234966i
\(584\) 0 0
\(585\) −6.13915 + 10.6333i −0.253823 + 0.439634i
\(586\) 0 0
\(587\) 15.2362i 0.628867i 0.949280 + 0.314433i \(0.101814\pi\)
−0.949280 + 0.314433i \(0.898186\pi\)
\(588\) 0 0
\(589\) 0.611872i 0.0252117i
\(590\) 0 0
\(591\) −3.77246 + 6.53409i −0.155178 + 0.268777i
\(592\) 0 0
\(593\) 18.2934 10.5617i 0.751221 0.433717i −0.0749142 0.997190i \(-0.523868\pi\)
0.826135 + 0.563473i \(0.190535\pi\)
\(594\) 0 0
\(595\) −32.8274 8.92543i −1.34579 0.365907i
\(596\) 0 0
\(597\) −4.92512 + 2.84352i −0.201572 + 0.116378i
\(598\) 0 0
\(599\) −29.1795 16.8468i −1.19224 0.688341i −0.233427 0.972374i \(-0.574994\pi\)
−0.958814 + 0.284033i \(0.908327\pi\)
\(600\) 0 0
\(601\) 24.3960i 0.995132i −0.867426 0.497566i \(-0.834227\pi\)
0.867426 0.497566i \(-0.165773\pi\)
\(602\) 0 0
\(603\) 27.7879 1.13161
\(604\) 0 0
\(605\) 13.4712 23.3329i 0.547683 0.948616i
\(606\) 0 0
\(607\) −4.08757 7.07987i −0.165909 0.287363i 0.771069 0.636752i \(-0.219723\pi\)
−0.936978 + 0.349389i \(0.886389\pi\)
\(608\) 0 0
\(609\) 4.57700 + 4.61075i 0.185469 + 0.186837i
\(610\) 0 0
\(611\) 7.02235 + 12.1631i 0.284094 + 0.492065i
\(612\) 0 0
\(613\) −14.7221 8.49981i −0.594620 0.343304i 0.172302 0.985044i \(-0.444879\pi\)
−0.766922 + 0.641740i \(0.778213\pi\)
\(614\) 0 0
\(615\) −6.47768 −0.261205
\(616\) 0 0
\(617\) 39.6548 1.59644 0.798221 0.602365i \(-0.205775\pi\)
0.798221 + 0.602365i \(0.205775\pi\)
\(618\) 0 0
\(619\) 12.4719 + 7.20065i 0.501288 + 0.289419i 0.729245 0.684252i \(-0.239871\pi\)
−0.227957 + 0.973671i \(0.573205\pi\)
\(620\) 0 0
\(621\) 6.13514 + 10.6264i 0.246195 + 0.426422i
\(622\) 0 0
\(623\) −1.16979 4.43075i −0.0468667 0.177514i
\(624\) 0 0
\(625\) 11.9709 + 20.7343i 0.478837 + 0.829370i
\(626\) 0 0
\(627\) −2.03211 + 3.51971i −0.0811545 + 0.140564i
\(628\) 0 0
\(629\) 21.5246 0.858241
\(630\) 0 0
\(631\) 36.6698i 1.45980i −0.683553 0.729900i \(-0.739566\pi\)
0.683553 0.729900i \(-0.260434\pi\)
\(632\) 0 0
\(633\) −4.19496 2.42196i −0.166735 0.0962644i
\(634\) 0 0
\(635\) −13.6124 + 7.85913i −0.540192 + 0.311880i
\(636\) 0 0
\(637\) −8.38024 4.92077i −0.332037 0.194968i
\(638\) 0 0
\(639\) 12.6879 7.32538i 0.501927 0.289788i
\(640\) 0 0
\(641\) −9.13798 + 15.8274i −0.360929 + 0.625147i −0.988114 0.153723i \(-0.950874\pi\)
0.627185 + 0.778870i \(0.284207\pi\)
\(642\) 0 0
\(643\) 13.6340i 0.537671i −0.963186 0.268836i \(-0.913361\pi\)
0.963186 0.268836i \(-0.0866389\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −8.74153 + 15.1408i −0.343665 + 0.595245i −0.985110 0.171923i \(-0.945002\pi\)
0.641445 + 0.767169i \(0.278335\pi\)
\(648\) 0 0
\(649\) −7.02907 + 4.05824i −0.275915 + 0.159300i
\(650\) 0 0
\(651\) 0.0376633 + 0.142655i 0.00147614 + 0.00559110i
\(652\) 0 0
\(653\) 8.40495 4.85260i 0.328911 0.189897i −0.326446 0.945216i \(-0.605851\pi\)
0.655358 + 0.755319i \(0.272518\pi\)
\(654\) 0 0
\(655\) −10.9131 6.30070i −0.426411 0.246189i
\(656\) 0 0
\(657\) 29.7488i 1.16061i
\(658\) 0 0
\(659\) 28.9465 1.12760 0.563798 0.825913i \(-0.309340\pi\)
0.563798 + 0.825913i \(0.309340\pi\)
\(660\) 0 0
\(661\) 6.43683 11.1489i 0.250364 0.433643i −0.713262 0.700897i \(-0.752783\pi\)
0.963626 + 0.267254i \(0.0861164\pi\)
\(662\) 0 0
\(663\) 1.34373 + 2.32742i 0.0521863 + 0.0903893i
\(664\) 0 0
\(665\) −31.6475 + 31.4159i −1.22724 + 1.21826i
\(666\) 0 0
\(667\) −11.2922 19.5587i −0.437238 0.757318i
\(668\) 0 0
\(669\) −10.1239 5.84502i −0.391412 0.225982i
\(670\) 0 0
\(671\) −13.4964 −0.521024
\(672\) 0 0
\(673\) −23.6548 −0.911825 −0.455912 0.890025i \(-0.650687\pi\)
−0.455912 + 0.890025i \(0.650687\pi\)
\(674\) 0 0
\(675\) 12.5012 + 7.21755i 0.481170 + 0.277804i
\(676\) 0 0
\(677\) 1.80224 + 3.12157i 0.0692657 + 0.119972i 0.898578 0.438813i \(-0.144601\pi\)
−0.829313 + 0.558785i \(0.811268\pi\)
\(678\) 0 0
\(679\) −7.33237 1.99360i −0.281391 0.0765072i
\(680\) 0 0
\(681\) 3.44419 + 5.96550i 0.131981 + 0.228599i
\(682\) 0 0
\(683\) −3.80924 + 6.59779i −0.145756 + 0.252457i −0.929655 0.368432i \(-0.879895\pi\)
0.783899 + 0.620889i \(0.213228\pi\)
\(684\) 0 0
\(685\) −0.328514 −0.0125519
\(686\) 0 0
\(687\) 5.12162i 0.195402i
\(688\) 0 0
\(689\) −8.51745 4.91755i −0.324489 0.187344i
\(690\) 0 0
\(691\) 44.9707 25.9639i 1.71077 0.987712i 0.777241 0.629203i \(-0.216619\pi\)
0.933526 0.358509i \(-0.116715\pi\)
\(692\) 0 0
\(693\) 3.07831 11.3219i 0.116935 0.430083i
\(694\) 0 0
\(695\) 41.4364 23.9233i 1.57177 0.907462i
\(696\) 0 0
\(697\) 8.48721 14.7003i 0.321476 0.556813i
\(698\) 0 0
\(699\) 0.306806i 0.0116045i
\(700\) 0 0
\(701\) 0.741474i 0.0280051i −0.999902 0.0140025i \(-0.995543\pi\)
0.999902 0.0140025i \(-0.00445729\pi\)
\(702\) 0 0
\(703\) 14.1074 24.4347i 0.532071 0.921574i
\(704\) 0 0
\(705\) 13.4581 7.77006i 0.506863 0.292637i
\(706\) 0 0
\(707\) −12.6864 12.7799i −0.477120 0.480638i
\(708\) 0 0
\(709\) 35.6491 20.5820i 1.33883 0.772974i 0.352196 0.935926i \(-0.385435\pi\)
0.986634 + 0.162952i \(0.0521016\pi\)
\(710\) 0 0
\(711\) −28.6147 16.5207i −1.07314 0.619575i
\(712\) 0 0
\(713\) 0.512901i 0.0192083i
\(714\) 0 0
\(715\) 7.10284 0.265631
\(716\) 0 0
\(717\) −1.13863 + 1.97216i −0.0425229 + 0.0736518i
\(718\) 0 0
\(719\) −7.02471 12.1672i −0.261978 0.453758i 0.704790 0.709416i \(-0.251041\pi\)
−0.966767 + 0.255658i \(0.917708\pi\)
\(720\) 0 0
\(721\) −35.9398 + 9.48869i −1.33847 + 0.353377i
\(722\) 0 0
\(723\) −2.81479 4.87536i −0.104683 0.181317i
\(724\) 0 0
\(725\) −23.0095 13.2845i −0.854550 0.493375i
\(726\) 0 0
\(727\) −13.2022 −0.489642 −0.244821 0.969568i \(-0.578729\pi\)
−0.244821 + 0.969568i \(0.578729\pi\)
\(728\) 0 0
\(729\) 15.3015 0.566724
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 24.9797 + 43.2661i 0.922646 + 1.59807i 0.795304 + 0.606211i \(0.207311\pi\)
0.127342 + 0.991859i \(0.459356\pi\)
\(734\) 0 0
\(735\) −5.44471 + 9.27253i −0.200831 + 0.342022i
\(736\) 0 0
\(737\) −8.03747 13.9213i −0.296064 0.512798i
\(738\) 0 0
\(739\) −18.2718 + 31.6476i −0.672138 + 1.16418i 0.305159 + 0.952301i \(0.401290\pi\)
−0.977297 + 0.211875i \(0.932043\pi\)
\(740\) 0 0
\(741\) 3.52278 0.129413
\(742\) 0 0
\(743\) 15.1330i 0.555177i 0.960700 + 0.277589i \(0.0895352\pi\)
−0.960700 + 0.277589i \(0.910465\pi\)
\(744\) 0 0
\(745\) 31.2771 + 18.0579i 1.14591 + 0.661589i
\(746\) 0 0
\(747\) −35.9163 + 20.7363i −1.31411 + 0.758701i
\(748\) 0 0
\(749\) −13.1464 + 3.47087i −0.480360 + 0.126823i
\(750\) 0 0
\(751\) −11.9997 + 6.92806i −0.437877 + 0.252808i −0.702697 0.711490i \(-0.748021\pi\)
0.264820 + 0.964298i \(0.414688\pi\)
\(752\) 0 0
\(753\) −2.78036 + 4.81572i −0.101322 + 0.175495i
\(754\) 0 0
\(755\) 47.3412i 1.72292i
\(756\) 0 0
\(757\) 46.6967i 1.69722i −0.529019 0.848610i \(-0.677440\pi\)
0.529019 0.848610i \(-0.322560\pi\)
\(758\) 0 0
\(759\) 1.70341 2.95039i 0.0618299 0.107093i
\(760\) 0 0
\(761\) 40.7899 23.5501i 1.47863 0.853689i 0.478925 0.877856i \(-0.341026\pi\)
0.999708 + 0.0241662i \(0.00769309\pi\)
\(762\) 0 0
\(763\) 5.31596 5.27705i 0.192451 0.191042i
\(764\) 0 0
\(765\) −30.8309 + 17.8002i −1.11469 + 0.643568i
\(766\) 0 0
\(767\) 6.09267 + 3.51761i 0.219994 + 0.127013i
\(768\) 0 0
\(769\) 17.3071i 0.624110i 0.950064 + 0.312055i \(0.101017\pi\)
−0.950064 + 0.312055i \(0.898983\pi\)
\(770\) 0 0
\(771\) −11.3448 −0.408574
\(772\) 0 0
\(773\) −13.5389 + 23.4501i −0.486960 + 0.843440i −0.999888 0.0149920i \(-0.995228\pi\)
0.512927 + 0.858432i \(0.328561\pi\)
\(774\) 0 0
\(775\) −0.301696 0.522552i −0.0108372 0.0187706i
\(776\) 0 0
\(777\) 1.78502 6.56523i 0.0640372 0.235526i
\(778\) 0 0
\(779\) −11.1252 19.2694i −0.398601 0.690398i
\(780\) 0 0
\(781\) −7.33982 4.23764i −0.262639 0.151635i
\(782\) 0 0
\(783\) 14.1654 0.506230
\(784\) 0 0
\(785\) −2.35969 −0.0842208
\(786\) 0 0
\(787\) 46.9684 + 27.1172i 1.67424 + 0.966624i 0.965220 + 0.261439i \(0.0841969\pi\)
0.709023 + 0.705186i \(0.249136\pi\)
\(788\) 0 0
\(789\) −2.56778 4.44753i −0.0914155 0.158336i
\(790\) 0 0
\(791\) −0.997467 + 3.66864i −0.0354658 + 0.130442i
\(792\) 0 0
\(793\) 5.84923 + 10.1312i 0.207712 + 0.359768i
\(794\) 0 0
\(795\) −5.44115 + 9.42435i −0.192978 + 0.334247i
\(796\) 0 0
\(797\) 20.1437 0.713527 0.356763 0.934195i \(-0.383880\pi\)
0.356763 + 0.934195i \(0.383880\pi\)
\(798\) 0 0
\(799\) 40.7221i 1.44064i
\(800\) 0 0
\(801\) −4.15310 2.39779i −0.146743 0.0847219i
\(802\) 0 0
\(803\) −14.9037 + 8.60465i −0.525940 + 0.303651i
\(804\) 0 0
\(805\) 26.5285 26.3344i 0.935008 0.928164i
\(806\) 0 0
\(807\) 9.71963 5.61163i 0.342147 0.197539i
\(808\) 0 0
\(809\) −17.2771 + 29.9249i −0.607432 + 1.05210i 0.384231 + 0.923237i \(0.374467\pi\)
−0.991662 + 0.128865i \(0.958867\pi\)
\(810\) 0 0
\(811\) 13.6340i 0.478754i 0.970927 + 0.239377i \(0.0769431\pi\)
−0.970927 + 0.239377i \(0.923057\pi\)
\(812\) 0 0
\(813\) 6.55911i 0.230038i
\(814\) 0 0
\(815\) −13.9023 + 24.0795i −0.486976 + 0.843468i
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) −9.83294 + 2.59606i −0.343591 + 0.0907136i
\(820\) 0 0
\(821\) −27.7311 + 16.0106i −0.967822 + 0.558772i −0.898572 0.438827i \(-0.855394\pi\)
−0.0692505 + 0.997599i \(0.522061\pi\)
\(822\) 0 0
\(823\) 26.8399 + 15.4960i 0.935580 + 0.540158i 0.888572 0.458737i \(-0.151698\pi\)
0.0470083 + 0.998894i \(0.485031\pi\)
\(824\) 0 0
\(825\) 4.00788i 0.139537i
\(826\) 0 0
\(827\) 11.0191 0.383172 0.191586 0.981476i \(-0.438637\pi\)
0.191586 + 0.981476i \(0.438637\pi\)
\(828\) 0 0
\(829\) −18.9836 + 32.8806i −0.659328 + 1.14199i 0.321462 + 0.946922i \(0.395826\pi\)
−0.980790 + 0.195067i \(0.937508\pi\)
\(830\) 0 0
\(831\) 0.109999 + 0.190524i 0.00381582 + 0.00660919i
\(832\) 0 0
\(833\) −13.9090 24.5052i −0.481920 0.849054i
\(834\) 0 0
\(835\) 2.21731 + 3.84050i 0.0767332 + 0.132906i
\(836\) 0 0
\(837\) 0.278601 + 0.160850i 0.00962984 + 0.00555979i
\(838\) 0 0
\(839\) 8.32984 0.287578 0.143789 0.989608i \(-0.454071\pi\)
0.143789 + 0.989608i \(0.454071\pi\)
\(840\) 0 0
\(841\) 2.92739 0.100945
\(842\) 0 0
\(843\) 0.598452 + 0.345516i 0.0206118 + 0.0119002i
\(844\) 0 0
\(845\) 17.6844 + 30.6304i 0.608363 + 1.05372i
\(846\) 0 0
\(847\) 21.5766 5.69657i 0.741380 0.195736i
\(848\) 0 0
\(849\) −7.50840 13.0049i −0.257687 0.446328i
\(850\) 0 0
\(851\) −11.8255 + 20.4824i −0.405374 + 0.702128i
\(852\) 0 0
\(853\) −6.94153 −0.237673 −0.118837 0.992914i \(-0.537917\pi\)
−0.118837 + 0.992914i \(0.537917\pi\)
\(854\) 0 0
\(855\) 46.6657i 1.59593i
\(856\) 0 0
\(857\) 1.91744 + 1.10704i 0.0654986 + 0.0378156i 0.532392 0.846498i \(-0.321293\pi\)
−0.466893 + 0.884314i \(0.654627\pi\)
\(858\) 0 0
\(859\) −5.26337 + 3.03881i −0.179584 + 0.103683i −0.587097 0.809516i \(-0.699729\pi\)
0.407513 + 0.913199i \(0.366396\pi\)
\(860\) 0 0
\(861\) −3.77991 3.80778i −0.128819 0.129769i
\(862\) 0 0
\(863\) 7.64747 4.41527i 0.260323 0.150298i −0.364159 0.931337i \(-0.618643\pi\)
0.624482 + 0.781039i \(0.285310\pi\)
\(864\) 0 0
\(865\) −1.55026 + 2.68512i −0.0527103 + 0.0912969i
\(866\) 0 0
\(867\) 0.383106i 0.0130110i
\(868\) 0 0
\(869\) 19.1141i 0.648400i
\(870\) 0 0
\(871\) −6.96673 + 12.0667i −0.236059 + 0.408866i
\(872\) 0 0
\(873\) −6.88643 + 3.97588i −0.233070 + 0.134563i
\(874\) 0 0
\(875\) 0.450909 1.65842i 0.0152435 0.0560650i
\(876\) 0 0
\(877\) −10.3059 + 5.95011i −0.348005 + 0.200921i −0.663806 0.747905i \(-0.731060\pi\)
0.315801 + 0.948825i \(0.397727\pi\)
\(878\) 0 0
\(879\) −13.0358 7.52623i −0.439687 0.253854i
\(880\) 0 0
\(881\) 53.9142i 1.81642i −0.418519 0.908208i \(-0.637451\pi\)
0.418519 0.908208i \(-0.362549\pi\)
\(882\) 0 0
\(883\) −11.1987 −0.376866 −0.188433 0.982086i \(-0.560341\pi\)
−0.188433 + 0.982086i \(0.560341\pi\)
\(884\) 0 0
\(885\) 3.89215 6.74139i 0.130833 0.226609i
\(886\) 0 0
\(887\) −18.1832 31.4942i −0.610531 1.05747i −0.991151 0.132740i \(-0.957623\pi\)
0.380620 0.924732i \(-0.375711\pi\)
\(888\) 0 0
\(889\) −12.5630 3.41576i −0.421351 0.114561i
\(890\) 0 0
\(891\) −5.58353 9.67095i −0.187055 0.323989i
\(892\) 0 0
\(893\) 46.2278 + 26.6896i 1.54695 + 0.893134i
\(894\) 0 0
\(895\) 45.5819 1.52364
\(896\) 0 0
\(897\) −2.95297 −0.0985968
\(898\) 0 0
\(899\) −0.512788 0.296058i −0.0171024 0.00987410i
\(900\) 0 0
\(901\) −14.2583 24.6960i −0.475011 0.822744i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −24.4709 42.3849i −0.813441 1.40892i
\(906\) 0 0
\(907\) −8.92370 + 15.4563i −0.296307 + 0.513218i −0.975288 0.220937i \(-0.929088\pi\)
0.678981 + 0.734156i \(0.262422\pi\)
\(908\) 0 0
\(909\) −18.8446 −0.625034
\(910\) 0 0
\(911\) 11.1458i 0.369278i −0.982806 0.184639i \(-0.940888\pi\)
0.982806 0.184639i \(-0.0591116\pi\)
\(912\) 0 0
\(913\) 20.7771 + 11.9957i 0.687623 + 0.396999i
\(914\) 0 0
\(915\) 11.2099 6.47203i 0.370587 0.213959i
\(916\) 0 0
\(917\) −2.66437 10.0917i −0.0879854 0.333257i
\(918\) 0 0
\(919\) −28.2802 + 16.3276i −0.932879 + 0.538598i −0.887721 0.460382i \(-0.847712\pi\)
−0.0451579 + 0.998980i \(0.514379\pi\)
\(920\) 0 0
\(921\) −3.53980 + 6.13111i −0.116640 + 0.202027i
\(922\) 0 0
\(923\) 7.34623i 0.241804i
\(924\) 0 0
\(925\) 27.8238i 0.914839i
\(926\) 0 0
\(927\) −19.4496 + 33.6876i −0.638807 + 1.10645i
\(928\) 0 0
\(929\) −23.3027 + 13.4538i −0.764537 + 0.441406i −0.830922 0.556388i \(-0.812187\pi\)
0.0663853 + 0.997794i \(0.478853\pi\)
\(930\) 0 0
\(931\) −36.9344 0.271329i −1.21048 0.00889246i
\(932\) 0 0
\(933\) 6.48885 3.74634i 0.212435 0.122650i
\(934\) 0 0
\(935\) 17.8353 + 10.2972i 0.583276 + 0.336755i
\(936\) 0 0
\(937\) 32.6476i 1.06655i 0.845942 + 0.533275i \(0.179039\pi\)
−0.845942 + 0.533275i \(0.820961\pi\)
\(938\) 0 0
\(939\) 6.29315 0.205369
\(940\) 0 0
\(941\) −6.32087 + 10.9481i −0.206055 + 0.356897i −0.950468 0.310822i \(-0.899396\pi\)
0.744414 + 0.667719i \(0.232729\pi\)
\(942\) 0 0
\(943\) 9.32569 + 16.1526i 0.303686 + 0.526000i
\(944\) 0 0
\(945\) 5.98488 + 22.6686i 0.194688 + 0.737410i
\(946\) 0 0
\(947\) −21.1271 36.5931i −0.686537 1.18912i −0.972951 0.231011i \(-0.925797\pi\)
0.286414 0.958106i \(-0.407537\pi\)
\(948\) 0 0
\(949\) 12.9182 + 7.45835i 0.419344 + 0.242108i
\(950\) 0 0
\(951\) 11.3264 0.367285
\(952\) 0 0
\(953\) −44.4561 −1.44007 −0.720037 0.693936i \(-0.755875\pi\)
−0.720037 + 0.693936i \(0.755875\pi\)
\(954\) 0 0
\(955\) −6.91764 3.99390i −0.223850 0.129240i
\(956\) 0 0
\(957\) −1.96650 3.40607i −0.0635678 0.110103i
\(958\) 0 0
\(959\) −0.191697 0.193110i −0.00619021 0.00623585i
\(960\) 0 0
\(961\) 15.4933 + 26.8351i 0.499783 + 0.865650i
\(962\) 0 0
\(963\) −7.11447 + 12.3226i −0.229261 + 0.397091i
\(964\) 0 0
\(965\) −9.90388 −0.318817
\(966\) 0 0
\(967\) 25.7160i 0.826972i −0.910510 0.413486i \(-0.864311\pi\)
0.910510 0.413486i \(-0.135689\pi\)
\(968\) 0 0
\(969\) 8.84573 + 5.10709i 0.284166 + 0.164063i
\(970\) 0 0
\(971\) 40.2746 23.2526i 1.29247 0.746210i 0.313381 0.949627i \(-0.398538\pi\)
0.979092 + 0.203417i \(0.0652048\pi\)
\(972\) 0 0
\(973\) 38.2421 + 10.3976i 1.22599 + 0.333333i
\(974\) 0 0
\(975\) −3.00854 + 1.73698i −0.0963503 + 0.0556278i
\(976\) 0 0
\(977\) −17.1348 + 29.6783i −0.548189 + 0.949492i 0.450209 + 0.892923i \(0.351349\pi\)
−0.998399 + 0.0565688i \(0.981984\pi\)
\(978\) 0 0
\(979\) 2.77419i 0.0886635i
\(980\) 0 0
\(981\) 7.83862i 0.250268i
\(982\) 0 0
\(983\) 0.777334 1.34638i 0.0247931 0.0429429i −0.853363 0.521318i \(-0.825441\pi\)
0.878156 + 0.478375i \(0.158774\pi\)
\(984\) 0 0
\(985\) 43.4012 25.0577i 1.38288 0.798404i
\(986\) 0 0
\(987\) 12.4207 + 3.37705i 0.395354 + 0.107493i
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) −22.6482 13.0759i −0.719443 0.415371i 0.0951047 0.995467i \(-0.469681\pi\)
−0.814548 + 0.580097i \(0.803015\pi\)
\(992\) 0 0
\(993\) 15.8964i 0.504457i
\(994\) 0 0
\(995\) 37.7748 1.19754
\(996\) 0 0
\(997\) 18.1467 31.4310i 0.574711 0.995429i −0.421362 0.906893i \(-0.638448\pi\)
0.996073 0.0885360i \(-0.0282188\pi\)
\(998\) 0 0
\(999\) −7.41717 12.8469i −0.234669 0.406458i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 224.2.q.a.143.3 12
3.2 odd 2 2016.2.bs.a.1711.6 12
4.3 odd 2 56.2.m.a.3.6 yes 12
7.2 even 3 1568.2.q.g.1391.3 12
7.3 odd 6 1568.2.e.e.783.7 12
7.4 even 3 1568.2.e.e.783.6 12
7.5 odd 6 inner 224.2.q.a.47.4 12
7.6 odd 2 1568.2.q.g.815.4 12
8.3 odd 2 inner 224.2.q.a.143.4 12
8.5 even 2 56.2.m.a.3.4 12
12.11 even 2 504.2.bk.a.451.1 12
21.5 even 6 2016.2.bs.a.271.1 12
24.5 odd 2 504.2.bk.a.451.3 12
24.11 even 2 2016.2.bs.a.1711.1 12
28.3 even 6 392.2.e.e.195.3 12
28.11 odd 6 392.2.e.e.195.4 12
28.19 even 6 56.2.m.a.19.3 yes 12
28.23 odd 6 392.2.m.g.19.3 12
28.27 even 2 392.2.m.g.227.6 12
56.3 even 6 1568.2.e.e.783.8 12
56.5 odd 6 56.2.m.a.19.5 yes 12
56.11 odd 6 1568.2.e.e.783.5 12
56.13 odd 2 392.2.m.g.227.4 12
56.19 even 6 inner 224.2.q.a.47.3 12
56.27 even 2 1568.2.q.g.815.3 12
56.37 even 6 392.2.m.g.19.5 12
56.45 odd 6 392.2.e.e.195.1 12
56.51 odd 6 1568.2.q.g.1391.4 12
56.53 even 6 392.2.e.e.195.2 12
84.47 odd 6 504.2.bk.a.19.4 12
168.5 even 6 504.2.bk.a.19.2 12
168.131 odd 6 2016.2.bs.a.271.6 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
56.2.m.a.3.4 12 8.5 even 2
56.2.m.a.3.6 yes 12 4.3 odd 2
56.2.m.a.19.3 yes 12 28.19 even 6
56.2.m.a.19.5 yes 12 56.5 odd 6
224.2.q.a.47.3 12 56.19 even 6 inner
224.2.q.a.47.4 12 7.5 odd 6 inner
224.2.q.a.143.3 12 1.1 even 1 trivial
224.2.q.a.143.4 12 8.3 odd 2 inner
392.2.e.e.195.1 12 56.45 odd 6
392.2.e.e.195.2 12 56.53 even 6
392.2.e.e.195.3 12 28.3 even 6
392.2.e.e.195.4 12 28.11 odd 6
392.2.m.g.19.3 12 28.23 odd 6
392.2.m.g.19.5 12 56.37 even 6
392.2.m.g.227.4 12 56.13 odd 2
392.2.m.g.227.6 12 28.27 even 2
504.2.bk.a.19.2 12 168.5 even 6
504.2.bk.a.19.4 12 84.47 odd 6
504.2.bk.a.451.1 12 12.11 even 2
504.2.bk.a.451.3 12 24.5 odd 2
1568.2.e.e.783.5 12 56.11 odd 6
1568.2.e.e.783.6 12 7.4 even 3
1568.2.e.e.783.7 12 7.3 odd 6
1568.2.e.e.783.8 12 56.3 even 6
1568.2.q.g.815.3 12 56.27 even 2
1568.2.q.g.815.4 12 7.6 odd 2
1568.2.q.g.1391.3 12 7.2 even 3
1568.2.q.g.1391.4 12 56.51 odd 6
2016.2.bs.a.271.1 12 21.5 even 6
2016.2.bs.a.271.6 12 168.131 odd 6
2016.2.bs.a.1711.1 12 24.11 even 2
2016.2.bs.a.1711.6 12 3.2 odd 2