L(s) = 1 | + (−1.22 − 0.707i)2-s + (0.999 + 1.73i)4-s + (−2.87 − 1.65i)5-s + (2.5 + 0.866i)7-s − 2.82i·8-s + (2.34 + 4.06i)10-s + (2.87 + 4.97i)11-s − 4.69·13-s + (−2.44 − 2.82i)14-s + (−2.00 + 3.46i)16-s + (1.22 + 2.12i)17-s + (2.34 − 4.06i)19-s − 6.63i·20-s − 8.12i·22-s + (1.22 + 0.707i)23-s + ⋯ |
L(s) = 1 | + (−0.866 − 0.499i)2-s + (0.499 + 0.866i)4-s + (−1.28 − 0.741i)5-s + (0.944 + 0.327i)7-s − 0.999i·8-s + (0.741 + 1.28i)10-s + (0.866 + 1.50i)11-s − 1.30·13-s + (−0.654 − 0.755i)14-s + (−0.500 + 0.866i)16-s + (0.297 + 0.514i)17-s + (0.538 − 0.931i)19-s − 1.48i·20-s − 1.73i·22-s + (0.255 + 0.147i)23-s + ⋯ |
Λ(s)=(=(504s/2ΓC(s)L(s)(0.999+0.0285i)Λ(2−s)
Λ(s)=(=(504s/2ΓC(s+1/2)L(s)(0.999+0.0285i)Λ(1−s)
Degree: |
2 |
Conductor: |
504
= 23⋅32⋅7
|
Sign: |
0.999+0.0285i
|
Analytic conductor: |
4.02446 |
Root analytic conductor: |
2.00610 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ504(341,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 504, ( :1/2), 0.999+0.0285i)
|
Particular Values
L(1) |
≈ |
0.822876−0.0117291i |
L(21) |
≈ |
0.822876−0.0117291i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(1.22+0.707i)T |
| 3 | 1 |
| 7 | 1+(−2.5−0.866i)T |
good | 5 | 1+(2.87+1.65i)T+(2.5+4.33i)T2 |
| 11 | 1+(−2.87−4.97i)T+(−5.5+9.52i)T2 |
| 13 | 1+4.69T+13T2 |
| 17 | 1+(−1.22−2.12i)T+(−8.5+14.7i)T2 |
| 19 | 1+(−2.34+4.06i)T+(−9.5−16.4i)T2 |
| 23 | 1+(−1.22−0.707i)T+(11.5+19.9i)T2 |
| 29 | 1−5.74T+29T2 |
| 31 | 1+(−4.5+2.59i)T+(15.5−26.8i)T2 |
| 37 | 1+(−7.03−4.06i)T+(18.5+32.0i)T2 |
| 41 | 1−9.79T+41T2 |
| 43 | 1−8.12iT−43T2 |
| 47 | 1+(3.67−6.36i)T+(−23.5−40.7i)T2 |
| 53 | 1+(2.87+4.97i)T+(−26.5+45.8i)T2 |
| 59 | 1+(−2.87+1.65i)T+(29.5−51.0i)T2 |
| 61 | 1+(−2.34+4.06i)T+(−30.5−52.8i)T2 |
| 67 | 1+(33.5−58.0i)T2 |
| 71 | 1+1.41iT−71T2 |
| 73 | 1+(3−1.73i)T+(36.5−63.2i)T2 |
| 79 | 1+(−3.5+6.06i)T+(−39.5−68.4i)T2 |
| 83 | 1−3.31iT−83T2 |
| 89 | 1+(4.89−8.48i)T+(−44.5−77.0i)T2 |
| 97 | 1−1.73iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.12904325984422283425212641841, −9.782390367338062443730789481077, −9.264987279654103152555301292183, −8.081018069702570658364956901354, −7.73993356308687919649677580398, −6.75728123597318013600533391308, −4.73341736071739413864982616358, −4.31682890311997059742172817592, −2.62782326270394987387772824794, −1.15987594951749495044191543573,
0.836239326669811585426799495341, 2.83576822472231661314703626669, 4.18738986204643616292712871544, 5.45846220430211546809866322046, 6.67205706674191253499150518809, 7.52348295859090884703434695187, 8.037138237342509920427442830652, 8.922076360355870096559829613115, 10.10283060153389360272528899839, 10.90477669685708528667316231044