Properties

Label 504.2.ch.a
Level 504504
Weight 22
Character orbit 504.ch
Analytic conductor 4.0244.024
Analytic rank 00
Dimension 88
Inner twists 88

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [504,2,Mod(269,504)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(504, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 3, 3, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("504.269");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 504=23327 504 = 2^{3} \cdot 3^{2} \cdot 7
Weight: k k == 2 2
Character orbit: [χ][\chi] == 504.ch (of order 66, degree 22, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 4.024460261874.02446026187
Analytic rank: 00
Dimension: 88
Relative dimension: 44 over Q(ζ6)\Q(\zeta_{6})
Coefficient field: 8.0.4857532416.2
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x82x77x62x5+98x498x3+67x230x+9 x^{8} - 2x^{7} - 7x^{6} - 2x^{5} + 98x^{4} - 98x^{3} + 67x^{2} - 30x + 9 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 24 2^{4}
Twist minimal: yes
Sato-Tate group: SU(2)[C6]\mathrm{SU}(2)[C_{6}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β71,\beta_1,\ldots,\beta_{7} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+β2q2+(2β3+2)q4β5q5+(β3+3)q7+2β4q8+(β7β1)q10+(β6+β5)q11+β1q13+(β4+2β2)q14++(5β4+3β2)q98+O(q100) q + \beta_{2} q^{2} + ( - 2 \beta_{3} + 2) q^{4} - \beta_{5} q^{5} + ( - \beta_{3} + 3) q^{7} + 2 \beta_{4} q^{8} + (\beta_{7} - \beta_1) q^{10} + ( - \beta_{6} + \beta_{5}) q^{11} + \beta_1 q^{13} + (\beta_{4} + 2 \beta_{2}) q^{14}+ \cdots + (5 \beta_{4} + 3 \beta_{2}) q^{98}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 8q+8q4+20q716q16+24q25+8q28+36q318q46+44q4964q6424q73+28q7996q82+72q94+O(q100) 8 q + 8 q^{4} + 20 q^{7} - 16 q^{16} + 24 q^{25} + 8 q^{28} + 36 q^{31} - 8 q^{46} + 44 q^{49} - 64 q^{64} - 24 q^{73} + 28 q^{79} - 96 q^{82} + 72 q^{94}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x82x77x62x5+98x498x3+67x230x+9 x^{8} - 2x^{7} - 7x^{6} - 2x^{5} + 98x^{4} - 98x^{3} + 67x^{2} - 30x + 9 : Copy content Toggle raw display

β1\beta_{1}== (33ν7+61ν6282ν5294ν4+388ν3312ν2+153ν+44177)/9430 ( 33\nu^{7} + 61\nu^{6} - 282\nu^{5} - 294\nu^{4} + 388\nu^{3} - 312\nu^{2} + 153\nu + 44177 ) / 9430 Copy content Toggle raw display
β2\beta_{2}== (3823ν7+12079ν6+22382ν530236ν4414148ν3+781972ν2++135243)/84870 ( - 3823 \nu^{7} + 12079 \nu^{6} + 22382 \nu^{5} - 30236 \nu^{4} - 414148 \nu^{3} + 781972 \nu^{2} + \cdots + 135243 ) / 84870 Copy content Toggle raw display
β3\beta_{3}== (1508ν7+2499ν6+11172ν5+7434ν4143178ν3+100842ν2++42843)/28290 ( - 1508 \nu^{7} + 2499 \nu^{6} + 11172 \nu^{5} + 7434 \nu^{4} - 143178 \nu^{3} + 100842 \nu^{2} + \cdots + 42843 ) / 28290 Copy content Toggle raw display
β4\beta_{4}== (209ν7227ν61786ν51862ν4+19784ν31976ν2+969ν+261)/2070 ( 209\nu^{7} - 227\nu^{6} - 1786\nu^{5} - 1862\nu^{4} + 19784\nu^{3} - 1976\nu^{2} + 969\nu + 261 ) / 2070 Copy content Toggle raw display
β5\beta_{5}== (9068ν7+27959ν6+51772ν565806ν4976178ν3+1837142ν2++317583)/84870 ( - 9068 \nu^{7} + 27959 \nu^{6} + 51772 \nu^{5} - 65806 \nu^{4} - 976178 \nu^{3} + 1837142 \nu^{2} + \cdots + 317583 ) / 84870 Copy content Toggle raw display
β6\beta_{6}== (88ν7+97ν6+752ν5+784ν48278ν3+832ν2408ν108)/369 ( -88\nu^{7} + 97\nu^{6} + 752\nu^{5} + 784\nu^{4} - 8278\nu^{3} + 832\nu^{2} - 408\nu - 108 ) / 369 Copy content Toggle raw display
β7\beta_{7}== (7023ν7+11879ν6+51442ν5+32564ν4668948ν3+471032ν2++200643)/28290 ( - 7023 \nu^{7} + 11879 \nu^{6} + 51442 \nu^{5} + 32564 \nu^{4} - 668948 \nu^{3} + 471032 \nu^{2} + \cdots + 200643 ) / 28290 Copy content Toggle raw display
ν\nu== (β6+β5+2β4β32β2+1)/2 ( \beta_{6} + \beta_{5} + 2\beta_{4} - \beta_{3} - 2\beta_{2} + 1 ) / 2 Copy content Toggle raw display
ν2\nu^{2}== (2β7+β5+9β32β2)/2 ( -2\beta_{7} + \beta_{5} + 9\beta_{3} - 2\beta_{2} ) / 2 Copy content Toggle raw display
ν3\nu^{3}== (8β6+19β43β1+14)/2 ( 8\beta_{6} + 19\beta_{4} - 3\beta _1 + 14 ) / 2 Copy content Toggle raw display
ν4\nu^{4}== (16β7+17β6+17β5+40β4+75β340β2+16β175)/2 ( -16\beta_{7} + 17\beta_{6} + 17\beta_{5} + 40\beta_{4} + 75\beta_{3} - 40\beta_{2} + 16\beta _1 - 75 ) / 2 Copy content Toggle raw display
ν5\nu^{5}== (45β761β5+211β3+143β2)/2 ( -45\beta_{7} - 61\beta_{5} + 211\beta_{3} + 143\beta_{2} ) / 2 Copy content Toggle raw display
ν6\nu^{6}== 113β6+265β4+55β1258 113\beta_{6} + 265\beta_{4} + 55\beta _1 - 258 Copy content Toggle raw display
ν7\nu^{7}== (546β7365β6365β5856β4+2561β3+856β2+546β12561)/2 ( -546\beta_{7} - 365\beta_{6} - 365\beta_{5} - 856\beta_{4} + 2561\beta_{3} + 856\beta_{2} + 546\beta _1 - 2561 ) / 2 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/504Z)×\left(\mathbb{Z}/504\mathbb{Z}\right)^\times.

nn 7373 127127 253253 281281
χ(n)\chi(n) β3\beta_{3} 11 1-1 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
269.1
2.91089 + 1.10325i
0.0386042 0.555062i
0.461396 0.310963i
−2.41089 1.96928i
2.91089 1.10325i
0.0386042 + 0.555062i
0.461396 + 0.310963i
−2.41089 + 1.96928i
−1.22474 + 0.707107i 0 1.00000 1.73205i −2.87228 + 1.65831i 0 2.50000 0.866025i 2.82843i 0 2.34521 4.06202i
269.2 −1.22474 + 0.707107i 0 1.00000 1.73205i 2.87228 1.65831i 0 2.50000 0.866025i 2.82843i 0 −2.34521 + 4.06202i
269.3 1.22474 0.707107i 0 1.00000 1.73205i −2.87228 + 1.65831i 0 2.50000 0.866025i 2.82843i 0 −2.34521 + 4.06202i
269.4 1.22474 0.707107i 0 1.00000 1.73205i 2.87228 1.65831i 0 2.50000 0.866025i 2.82843i 0 2.34521 4.06202i
341.1 −1.22474 0.707107i 0 1.00000 + 1.73205i −2.87228 1.65831i 0 2.50000 + 0.866025i 2.82843i 0 2.34521 + 4.06202i
341.2 −1.22474 0.707107i 0 1.00000 + 1.73205i 2.87228 + 1.65831i 0 2.50000 + 0.866025i 2.82843i 0 −2.34521 4.06202i
341.3 1.22474 + 0.707107i 0 1.00000 + 1.73205i −2.87228 1.65831i 0 2.50000 + 0.866025i 2.82843i 0 −2.34521 4.06202i
341.4 1.22474 + 0.707107i 0 1.00000 + 1.73205i 2.87228 + 1.65831i 0 2.50000 + 0.866025i 2.82843i 0 2.34521 + 4.06202i
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 269.4
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
7.d odd 6 1 inner
8.b even 2 1 inner
21.g even 6 1 inner
24.h odd 2 1 inner
56.j odd 6 1 inner
168.ba even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 504.2.ch.a 8
3.b odd 2 1 inner 504.2.ch.a 8
4.b odd 2 1 2016.2.cp.a 8
7.d odd 6 1 inner 504.2.ch.a 8
8.b even 2 1 inner 504.2.ch.a 8
8.d odd 2 1 2016.2.cp.a 8
12.b even 2 1 2016.2.cp.a 8
21.g even 6 1 inner 504.2.ch.a 8
24.f even 2 1 2016.2.cp.a 8
24.h odd 2 1 inner 504.2.ch.a 8
28.f even 6 1 2016.2.cp.a 8
56.j odd 6 1 inner 504.2.ch.a 8
56.m even 6 1 2016.2.cp.a 8
84.j odd 6 1 2016.2.cp.a 8
168.ba even 6 1 inner 504.2.ch.a 8
168.be odd 6 1 2016.2.cp.a 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
504.2.ch.a 8 1.a even 1 1 trivial
504.2.ch.a 8 3.b odd 2 1 inner
504.2.ch.a 8 7.d odd 6 1 inner
504.2.ch.a 8 8.b even 2 1 inner
504.2.ch.a 8 21.g even 6 1 inner
504.2.ch.a 8 24.h odd 2 1 inner
504.2.ch.a 8 56.j odd 6 1 inner
504.2.ch.a 8 168.ba even 6 1 inner
2016.2.cp.a 8 4.b odd 2 1
2016.2.cp.a 8 8.d odd 2 1
2016.2.cp.a 8 12.b even 2 1
2016.2.cp.a 8 24.f even 2 1
2016.2.cp.a 8 28.f even 6 1
2016.2.cp.a 8 56.m even 6 1
2016.2.cp.a 8 84.j odd 6 1
2016.2.cp.a 8 168.be odd 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T5411T52+121 T_{5}^{4} - 11T_{5}^{2} + 121 acting on S2new(504,[χ])S_{2}^{\mathrm{new}}(504, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 (T42T2+4)2 (T^{4} - 2 T^{2} + 4)^{2} Copy content Toggle raw display
33 T8 T^{8} Copy content Toggle raw display
55 (T411T2+121)2 (T^{4} - 11 T^{2} + 121)^{2} Copy content Toggle raw display
77 (T25T+7)4 (T^{2} - 5 T + 7)^{4} Copy content Toggle raw display
1111 (T4+33T2+1089)2 (T^{4} + 33 T^{2} + 1089)^{2} Copy content Toggle raw display
1313 (T222)4 (T^{2} - 22)^{4} Copy content Toggle raw display
1717 (T4+6T2+36)2 (T^{4} + 6 T^{2} + 36)^{2} Copy content Toggle raw display
1919 (T4+22T2+484)2 (T^{4} + 22 T^{2} + 484)^{2} Copy content Toggle raw display
2323 (T42T2+4)2 (T^{4} - 2 T^{2} + 4)^{2} Copy content Toggle raw display
2929 (T233)4 (T^{2} - 33)^{4} Copy content Toggle raw display
3131 (T29T+27)4 (T^{2} - 9 T + 27)^{4} Copy content Toggle raw display
3737 (T466T2+4356)2 (T^{4} - 66 T^{2} + 4356)^{2} Copy content Toggle raw display
4141 (T296)4 (T^{2} - 96)^{4} Copy content Toggle raw display
4343 (T2+66)4 (T^{2} + 66)^{4} Copy content Toggle raw display
4747 (T4+54T2+2916)2 (T^{4} + 54 T^{2} + 2916)^{2} Copy content Toggle raw display
5353 (T4+33T2+1089)2 (T^{4} + 33 T^{2} + 1089)^{2} Copy content Toggle raw display
5959 (T411T2+121)2 (T^{4} - 11 T^{2} + 121)^{2} Copy content Toggle raw display
6161 (T4+22T2+484)2 (T^{4} + 22 T^{2} + 484)^{2} Copy content Toggle raw display
6767 T8 T^{8} Copy content Toggle raw display
7171 (T2+2)4 (T^{2} + 2)^{4} Copy content Toggle raw display
7373 (T2+6T+12)4 (T^{2} + 6 T + 12)^{4} Copy content Toggle raw display
7979 (T27T+49)4 (T^{2} - 7 T + 49)^{4} Copy content Toggle raw display
8383 (T2+11)4 (T^{2} + 11)^{4} Copy content Toggle raw display
8989 (T4+96T2+9216)2 (T^{4} + 96 T^{2} + 9216)^{2} Copy content Toggle raw display
9797 (T2+3)4 (T^{2} + 3)^{4} Copy content Toggle raw display
show more
show less