Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [504,2,Mod(269,504)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(504, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([0, 3, 3, 1]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("504.269");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 504.ch (of order , degree , minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Relative dimension: | over |
Coefficient field: | 8.0.4857532416.2 |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | yes |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of a root of
:
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
269.1 |
|
−1.22474 | + | 0.707107i | 0 | 1.00000 | − | 1.73205i | −2.87228 | + | 1.65831i | 0 | 2.50000 | − | 0.866025i | 2.82843i | 0 | 2.34521 | − | 4.06202i | ||||||||||||||||||||||||||||||||
269.2 | −1.22474 | + | 0.707107i | 0 | 1.00000 | − | 1.73205i | 2.87228 | − | 1.65831i | 0 | 2.50000 | − | 0.866025i | 2.82843i | 0 | −2.34521 | + | 4.06202i | |||||||||||||||||||||||||||||||||
269.3 | 1.22474 | − | 0.707107i | 0 | 1.00000 | − | 1.73205i | −2.87228 | + | 1.65831i | 0 | 2.50000 | − | 0.866025i | − | 2.82843i | 0 | −2.34521 | + | 4.06202i | ||||||||||||||||||||||||||||||||
269.4 | 1.22474 | − | 0.707107i | 0 | 1.00000 | − | 1.73205i | 2.87228 | − | 1.65831i | 0 | 2.50000 | − | 0.866025i | − | 2.82843i | 0 | 2.34521 | − | 4.06202i | ||||||||||||||||||||||||||||||||
341.1 | −1.22474 | − | 0.707107i | 0 | 1.00000 | + | 1.73205i | −2.87228 | − | 1.65831i | 0 | 2.50000 | + | 0.866025i | − | 2.82843i | 0 | 2.34521 | + | 4.06202i | ||||||||||||||||||||||||||||||||
341.2 | −1.22474 | − | 0.707107i | 0 | 1.00000 | + | 1.73205i | 2.87228 | + | 1.65831i | 0 | 2.50000 | + | 0.866025i | − | 2.82843i | 0 | −2.34521 | − | 4.06202i | ||||||||||||||||||||||||||||||||
341.3 | 1.22474 | + | 0.707107i | 0 | 1.00000 | + | 1.73205i | −2.87228 | − | 1.65831i | 0 | 2.50000 | + | 0.866025i | 2.82843i | 0 | −2.34521 | − | 4.06202i | |||||||||||||||||||||||||||||||||
341.4 | 1.22474 | + | 0.707107i | 0 | 1.00000 | + | 1.73205i | 2.87228 | + | 1.65831i | 0 | 2.50000 | + | 0.866025i | 2.82843i | 0 | 2.34521 | + | 4.06202i | |||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
7.d | odd | 6 | 1 | inner |
8.b | even | 2 | 1 | inner |
21.g | even | 6 | 1 | inner |
24.h | odd | 2 | 1 | inner |
56.j | odd | 6 | 1 | inner |
168.ba | even | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 504.2.ch.a | ✓ | 8 |
3.b | odd | 2 | 1 | inner | 504.2.ch.a | ✓ | 8 |
4.b | odd | 2 | 1 | 2016.2.cp.a | 8 | ||
7.d | odd | 6 | 1 | inner | 504.2.ch.a | ✓ | 8 |
8.b | even | 2 | 1 | inner | 504.2.ch.a | ✓ | 8 |
8.d | odd | 2 | 1 | 2016.2.cp.a | 8 | ||
12.b | even | 2 | 1 | 2016.2.cp.a | 8 | ||
21.g | even | 6 | 1 | inner | 504.2.ch.a | ✓ | 8 |
24.f | even | 2 | 1 | 2016.2.cp.a | 8 | ||
24.h | odd | 2 | 1 | inner | 504.2.ch.a | ✓ | 8 |
28.f | even | 6 | 1 | 2016.2.cp.a | 8 | ||
56.j | odd | 6 | 1 | inner | 504.2.ch.a | ✓ | 8 |
56.m | even | 6 | 1 | 2016.2.cp.a | 8 | ||
84.j | odd | 6 | 1 | 2016.2.cp.a | 8 | ||
168.ba | even | 6 | 1 | inner | 504.2.ch.a | ✓ | 8 |
168.be | odd | 6 | 1 | 2016.2.cp.a | 8 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
504.2.ch.a | ✓ | 8 | 1.a | even | 1 | 1 | trivial |
504.2.ch.a | ✓ | 8 | 3.b | odd | 2 | 1 | inner |
504.2.ch.a | ✓ | 8 | 7.d | odd | 6 | 1 | inner |
504.2.ch.a | ✓ | 8 | 8.b | even | 2 | 1 | inner |
504.2.ch.a | ✓ | 8 | 21.g | even | 6 | 1 | inner |
504.2.ch.a | ✓ | 8 | 24.h | odd | 2 | 1 | inner |
504.2.ch.a | ✓ | 8 | 56.j | odd | 6 | 1 | inner |
504.2.ch.a | ✓ | 8 | 168.ba | even | 6 | 1 | inner |
2016.2.cp.a | 8 | 4.b | odd | 2 | 1 | ||
2016.2.cp.a | 8 | 8.d | odd | 2 | 1 | ||
2016.2.cp.a | 8 | 12.b | even | 2 | 1 | ||
2016.2.cp.a | 8 | 24.f | even | 2 | 1 | ||
2016.2.cp.a | 8 | 28.f | even | 6 | 1 | ||
2016.2.cp.a | 8 | 56.m | even | 6 | 1 | ||
2016.2.cp.a | 8 | 84.j | odd | 6 | 1 | ||
2016.2.cp.a | 8 | 168.be | odd | 6 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
acting on .