Defining parameters
Level: | \( N \) | \(=\) | \( 504 = 2^{3} \cdot 3^{2} \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 504.ch (of order \(6\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 168 \) |
Character field: | \(\Q(\zeta_{6})\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(192\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(504, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 208 | 64 | 144 |
Cusp forms | 176 | 64 | 112 |
Eisenstein series | 32 | 0 | 32 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(504, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
504.2.ch.a | $8$ | $4.024$ | 8.0.4857532416.2 | None | \(0\) | \(0\) | \(0\) | \(20\) | \(q+\beta _{2}q^{2}+(2-2\beta _{3})q^{4}-\beta _{5}q^{5}+(3+\cdots)q^{7}+\cdots\) |
504.2.ch.b | $56$ | $4.024$ | None | \(0\) | \(0\) | \(0\) | \(-20\) |
Decomposition of \(S_{2}^{\mathrm{old}}(504, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(504, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(168, [\chi])\)\(^{\oplus 2}\)