Properties

Label 2-504-1.1-c5-0-15
Degree $2$
Conductor $504$
Sign $1$
Analytic cond. $80.8334$
Root an. cond. $8.99074$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 64·5-s + 49·7-s + 54·11-s + 738·13-s + 848·17-s − 1.60e3·19-s + 3.67e3·23-s + 971·25-s + 4.33e3·29-s − 4.76e3·31-s + 3.13e3·35-s − 2.09e3·37-s + 6.11e3·41-s + 7.91e3·43-s − 6.57e3·47-s + 2.40e3·49-s + 7.89e3·53-s + 3.45e3·55-s + 4.16e4·59-s − 2.65e4·61-s + 4.72e4·65-s − 4.17e4·67-s − 8.35e4·71-s − 4.23e4·73-s + 2.64e3·77-s + 508·79-s + 8.36e3·83-s + ⋯
L(s)  = 1  + 1.14·5-s + 0.377·7-s + 0.134·11-s + 1.21·13-s + 0.711·17-s − 1.01·19-s + 1.44·23-s + 0.310·25-s + 0.956·29-s − 0.889·31-s + 0.432·35-s − 0.251·37-s + 0.568·41-s + 0.652·43-s − 0.433·47-s + 1/7·49-s + 0.386·53-s + 0.154·55-s + 1.55·59-s − 0.914·61-s + 1.38·65-s − 1.13·67-s − 1.96·71-s − 0.929·73-s + 0.0508·77-s + 0.00915·79-s + 0.133·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 504 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 504 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(504\)    =    \(2^{3} \cdot 3^{2} \cdot 7\)
Sign: $1$
Analytic conductor: \(80.8334\)
Root analytic conductor: \(8.99074\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 504,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(3.312999965\)
\(L(\frac12)\) \(\approx\) \(3.312999965\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 - p^{2} T \)
good5 \( 1 - 64 T + p^{5} T^{2} \)
11 \( 1 - 54 T + p^{5} T^{2} \)
13 \( 1 - 738 T + p^{5} T^{2} \)
17 \( 1 - 848 T + p^{5} T^{2} \)
19 \( 1 + 1604 T + p^{5} T^{2} \)
23 \( 1 - 3670 T + p^{5} T^{2} \)
29 \( 1 - 4330 T + p^{5} T^{2} \)
31 \( 1 + 4760 T + p^{5} T^{2} \)
37 \( 1 + 2094 T + p^{5} T^{2} \)
41 \( 1 - 6116 T + p^{5} T^{2} \)
43 \( 1 - 7916 T + p^{5} T^{2} \)
47 \( 1 + 6572 T + p^{5} T^{2} \)
53 \( 1 - 7894 T + p^{5} T^{2} \)
59 \( 1 - 41664 T + p^{5} T^{2} \)
61 \( 1 + 26570 T + p^{5} T^{2} \)
67 \( 1 + 41736 T + p^{5} T^{2} \)
71 \( 1 + 83574 T + p^{5} T^{2} \)
73 \( 1 + 42314 T + p^{5} T^{2} \)
79 \( 1 - 508 T + p^{5} T^{2} \)
83 \( 1 - 8364 T + p^{5} T^{2} \)
89 \( 1 - 49220 T + p^{5} T^{2} \)
97 \( 1 - 159670 T + p^{5} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.24755236305674278114788987020, −9.121108480003522196397689721717, −8.582201559138271856077053649963, −7.34470859964643354675025009506, −6.26497883438430669857089961687, −5.61961693622016325626816009064, −4.48699761885991409843363556175, −3.18800116347132288058836707451, −1.93021999561154536816148043662, −0.983854113433832782894183770802, 0.983854113433832782894183770802, 1.93021999561154536816148043662, 3.18800116347132288058836707451, 4.48699761885991409843363556175, 5.61961693622016325626816009064, 6.26497883438430669857089961687, 7.34470859964643354675025009506, 8.582201559138271856077053649963, 9.121108480003522196397689721717, 10.24755236305674278114788987020

Graph of the $Z$-function along the critical line