Properties

Label 504.6.a.h
Level 504504
Weight 66
Character orbit 504.a
Self dual yes
Analytic conductor 80.83380.833
Analytic rank 00
Dimension 11
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [504,6,Mod(1,504)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(504, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("504.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: N N == 504=23327 504 = 2^{3} \cdot 3^{2} \cdot 7
Weight: k k == 6 6
Character orbit: [χ][\chi] == 504.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 80.833445185780.8334451857
Analytic rank: 00
Dimension: 11
Coefficient field: Q\mathbb{Q}
Coefficient ring: Z\mathbb{Z}
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 168)
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+64q5+49q7+54q11+738q13+848q171604q19+3670q23+971q25+4330q294760q31+3136q352094q37+6116q41+7916q436572q47++159670q97+O(q100) q + 64 q^{5} + 49 q^{7} + 54 q^{11} + 738 q^{13} + 848 q^{17} - 1604 q^{19} + 3670 q^{23} + 971 q^{25} + 4330 q^{29} - 4760 q^{31} + 3136 q^{35} - 2094 q^{37} + 6116 q^{41} + 7916 q^{43} - 6572 q^{47}+ \cdots + 159670 q^{97}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
0
0 0 0 64.0000 0 49.0000 0 0 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 1 -1
33 1 -1
77 1 -1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 504.6.a.h 1
3.b odd 2 1 168.6.a.d 1
4.b odd 2 1 1008.6.a.z 1
12.b even 2 1 336.6.a.c 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
168.6.a.d 1 3.b odd 2 1
336.6.a.c 1 12.b even 2 1
504.6.a.h 1 1.a even 1 1 trivial
1008.6.a.z 1 4.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S6new(Γ0(504))S_{6}^{\mathrm{new}}(\Gamma_0(504)):

T564 T_{5} - 64 Copy content Toggle raw display
T1154 T_{11} - 54 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T T Copy content Toggle raw display
33 T T Copy content Toggle raw display
55 T64 T - 64 Copy content Toggle raw display
77 T49 T - 49 Copy content Toggle raw display
1111 T54 T - 54 Copy content Toggle raw display
1313 T738 T - 738 Copy content Toggle raw display
1717 T848 T - 848 Copy content Toggle raw display
1919 T+1604 T + 1604 Copy content Toggle raw display
2323 T3670 T - 3670 Copy content Toggle raw display
2929 T4330 T - 4330 Copy content Toggle raw display
3131 T+4760 T + 4760 Copy content Toggle raw display
3737 T+2094 T + 2094 Copy content Toggle raw display
4141 T6116 T - 6116 Copy content Toggle raw display
4343 T7916 T - 7916 Copy content Toggle raw display
4747 T+6572 T + 6572 Copy content Toggle raw display
5353 T7894 T - 7894 Copy content Toggle raw display
5959 T41664 T - 41664 Copy content Toggle raw display
6161 T+26570 T + 26570 Copy content Toggle raw display
6767 T+41736 T + 41736 Copy content Toggle raw display
7171 T+83574 T + 83574 Copy content Toggle raw display
7373 T+42314 T + 42314 Copy content Toggle raw display
7979 T508 T - 508 Copy content Toggle raw display
8383 T8364 T - 8364 Copy content Toggle raw display
8989 T49220 T - 49220 Copy content Toggle raw display
9797 T159670 T - 159670 Copy content Toggle raw display
show more
show less