L(s) = 1 | + (−45.7 + 79.1i)5-s + (103. − 78.4i)7-s + (361. + 626. i)11-s − 0.466·13-s + (778. + 1.34e3i)17-s + (−1.20e3 + 2.08e3i)19-s + (1.81e3 − 3.14e3i)23-s + (−2.61e3 − 4.53e3i)25-s + 2.49e3·29-s + (157. + 272. i)31-s + (1.48e3 + 1.17e4i)35-s + (2.53e3 − 4.38e3i)37-s + 1.04e4·41-s + 2.40e4·43-s + (−8.98e3 + 1.55e4i)47-s + ⋯ |
L(s) = 1 | + (−0.817 + 1.41i)5-s + (0.796 − 0.604i)7-s + (0.901 + 1.56i)11-s − 0.000765·13-s + (0.653 + 1.13i)17-s + (−0.766 + 1.32i)19-s + (0.715 − 1.24i)23-s + (−0.837 − 1.45i)25-s + 0.551·29-s + (0.0294 + 0.0509i)31-s + (0.205 + 1.62i)35-s + (0.303 − 0.526i)37-s + 0.968·41-s + 1.98·43-s + (−0.593 + 1.02i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 504 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.654 - 0.756i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 504 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (-0.654 - 0.756i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(3)\) |
\(\approx\) |
\(1.962594323\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.962594323\) |
\(L(\frac{7}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (-103. + 78.4i)T \) |
good | 5 | \( 1 + (45.7 - 79.1i)T + (-1.56e3 - 2.70e3i)T^{2} \) |
| 11 | \( 1 + (-361. - 626. i)T + (-8.05e4 + 1.39e5i)T^{2} \) |
| 13 | \( 1 + 0.466T + 3.71e5T^{2} \) |
| 17 | \( 1 + (-778. - 1.34e3i)T + (-7.09e5 + 1.22e6i)T^{2} \) |
| 19 | \( 1 + (1.20e3 - 2.08e3i)T + (-1.23e6 - 2.14e6i)T^{2} \) |
| 23 | \( 1 + (-1.81e3 + 3.14e3i)T + (-3.21e6 - 5.57e6i)T^{2} \) |
| 29 | \( 1 - 2.49e3T + 2.05e7T^{2} \) |
| 31 | \( 1 + (-157. - 272. i)T + (-1.43e7 + 2.47e7i)T^{2} \) |
| 37 | \( 1 + (-2.53e3 + 4.38e3i)T + (-3.46e7 - 6.00e7i)T^{2} \) |
| 41 | \( 1 - 1.04e4T + 1.15e8T^{2} \) |
| 43 | \( 1 - 2.40e4T + 1.47e8T^{2} \) |
| 47 | \( 1 + (8.98e3 - 1.55e4i)T + (-1.14e8 - 1.98e8i)T^{2} \) |
| 53 | \( 1 + (1.28e3 + 2.23e3i)T + (-2.09e8 + 3.62e8i)T^{2} \) |
| 59 | \( 1 + (-1.48e4 - 2.57e4i)T + (-3.57e8 + 6.19e8i)T^{2} \) |
| 61 | \( 1 + (-7.92e3 + 1.37e4i)T + (-4.22e8 - 7.31e8i)T^{2} \) |
| 67 | \( 1 + (-4.05e3 - 7.02e3i)T + (-6.75e8 + 1.16e9i)T^{2} \) |
| 71 | \( 1 + 5.99e4T + 1.80e9T^{2} \) |
| 73 | \( 1 + (-9.34e3 - 1.61e4i)T + (-1.03e9 + 1.79e9i)T^{2} \) |
| 79 | \( 1 + (1.88e4 - 3.27e4i)T + (-1.53e9 - 2.66e9i)T^{2} \) |
| 83 | \( 1 + 9.09e4T + 3.93e9T^{2} \) |
| 89 | \( 1 + (3.60e4 - 6.24e4i)T + (-2.79e9 - 4.83e9i)T^{2} \) |
| 97 | \( 1 + 4.90e4T + 8.58e9T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.59110003053987081002800754827, −9.847788034817457534120971769949, −8.418777462717578887257738018289, −7.60044771762959519557839827951, −6.97623064637320571945120826831, −6.07401325722936139027063305482, −4.30973316481969430461384937676, −3.98226226789362651152503055098, −2.51650682311416130497233847604, −1.30485781671765514169824585581,
0.53259619081293397636040758668, 1.21765727511211785011781422320, 2.93047659330992302404590667167, 4.18200085900362318870006248189, 5.02883976481582975085994214609, 5.83242768306020584605322056897, 7.26117770154094484020180103868, 8.248668740855010852581510412175, 8.851880409554465911848366855366, 9.369803140638382919366939456394