L(s) = 1 | + 5-s + 7-s − 5·11-s + 13-s − 3·17-s + 6·19-s − 6·23-s + 25-s + 9·29-s + 35-s + 6·37-s − 8·41-s − 6·43-s + 3·47-s + 49-s + 12·53-s − 5·55-s + 8·59-s − 4·61-s + 65-s + 4·67-s + 8·71-s + 10·73-s − 5·77-s + 3·79-s − 12·83-s − 3·85-s + ⋯ |
L(s) = 1 | + 0.447·5-s + 0.377·7-s − 1.50·11-s + 0.277·13-s − 0.727·17-s + 1.37·19-s − 1.25·23-s + 1/5·25-s + 1.67·29-s + 0.169·35-s + 0.986·37-s − 1.24·41-s − 0.914·43-s + 0.437·47-s + 1/7·49-s + 1.64·53-s − 0.674·55-s + 1.04·59-s − 0.512·61-s + 0.124·65-s + 0.488·67-s + 0.949·71-s + 1.17·73-s − 0.569·77-s + 0.337·79-s − 1.31·83-s − 0.325·85-s + ⋯ |
Λ(s)=(=(5040s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(5040s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
1.979681115 |
L(21) |
≈ |
1.979681115 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 5 | 1−T |
| 7 | 1−T |
good | 11 | 1+5T+pT2 |
| 13 | 1−T+pT2 |
| 17 | 1+3T+pT2 |
| 19 | 1−6T+pT2 |
| 23 | 1+6T+pT2 |
| 29 | 1−9T+pT2 |
| 31 | 1+pT2 |
| 37 | 1−6T+pT2 |
| 41 | 1+8T+pT2 |
| 43 | 1+6T+pT2 |
| 47 | 1−3T+pT2 |
| 53 | 1−12T+pT2 |
| 59 | 1−8T+pT2 |
| 61 | 1+4T+pT2 |
| 67 | 1−4T+pT2 |
| 71 | 1−8T+pT2 |
| 73 | 1−10T+pT2 |
| 79 | 1−3T+pT2 |
| 83 | 1+12T+pT2 |
| 89 | 1−16T+pT2 |
| 97 | 1−7T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.221402281878789465089589313507, −7.62954374641588235718006492065, −6.79230502198732864314633745798, −6.01444826736210837468924519845, −5.24154681791164573770536092994, −4.76706705720314731476536835342, −3.68523744465265841556690270503, −2.71239320609283552284776322612, −2.03744261910962500613971262945, −0.76044480432284251382048398807,
0.76044480432284251382048398807, 2.03744261910962500613971262945, 2.71239320609283552284776322612, 3.68523744465265841556690270503, 4.76706705720314731476536835342, 5.24154681791164573770536092994, 6.01444826736210837468924519845, 6.79230502198732864314633745798, 7.62954374641588235718006492065, 8.221402281878789465089589313507