L(s) = 1 | − 5-s + (−0.0951 + 2.64i)7-s − 5.28i·11-s + 2.19i·13-s + 1.04·17-s − 6.43i·19-s − 7.47i·23-s + 25-s + 7.47i·29-s + 9.09i·31-s + (0.0951 − 2.64i)35-s − 0.855·37-s − 2.19·41-s + 0.954·43-s − 11.0·47-s + ⋯ |
L(s) = 1 | − 0.447·5-s + (−0.0359 + 0.999i)7-s − 1.59i·11-s + 0.607i·13-s + 0.253·17-s − 1.47i·19-s − 1.55i·23-s + 0.200·25-s + 1.38i·29-s + 1.63i·31-s + (0.0160 − 0.446i)35-s − 0.140·37-s − 0.342·41-s + 0.145·43-s − 1.60·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 5040 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.836 + 0.547i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5040 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.836 + 0.547i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.4413896154\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.4413896154\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 + T \) |
| 7 | \( 1 + (0.0951 - 2.64i)T \) |
good | 11 | \( 1 + 5.28iT - 11T^{2} \) |
| 13 | \( 1 - 2.19iT - 13T^{2} \) |
| 17 | \( 1 - 1.04T + 17T^{2} \) |
| 19 | \( 1 + 6.43iT - 19T^{2} \) |
| 23 | \( 1 + 7.47iT - 23T^{2} \) |
| 29 | \( 1 - 7.47iT - 29T^{2} \) |
| 31 | \( 1 - 9.09iT - 31T^{2} \) |
| 37 | \( 1 + 0.855T + 37T^{2} \) |
| 41 | \( 1 + 2.19T + 41T^{2} \) |
| 43 | \( 1 - 0.954T + 43T^{2} \) |
| 47 | \( 1 + 11.0T + 47T^{2} \) |
| 53 | \( 1 + 3.09iT - 53T^{2} \) |
| 59 | \( 1 - 13.7T + 59T^{2} \) |
| 61 | \( 1 - 8.05iT - 61T^{2} \) |
| 67 | \( 1 + 5.33T + 67T^{2} \) |
| 71 | \( 1 - 6.43iT - 71T^{2} \) |
| 73 | \( 1 - 4.57iT - 73T^{2} \) |
| 79 | \( 1 + 15.6T + 79T^{2} \) |
| 83 | \( 1 + 4.38T + 83T^{2} \) |
| 89 | \( 1 + 4.28T + 89T^{2} \) |
| 97 | \( 1 + 11.8iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.321488228754995380761214920814, −6.91296433261602343972345568310, −6.73587007114032601103835795234, −5.67010615748649237727142520222, −5.10080844863234680826946994031, −4.25685383281580170905843231439, −3.11524479789980278047727264052, −2.78419743312902339519311792915, −1.40504303783983409760650919522, −0.12319444385561396371680421981,
1.26720492413828452035832569673, 2.19266821540687892750539315141, 3.49324481666117236229477623632, 3.98370186592904489465328207127, 4.74018045702458173166755507005, 5.61928165390656916164256966551, 6.43480578340247466277690654954, 7.35803816104168685381480749773, 7.71996349946965925555746278875, 8.182217301881173607146699625663