L(s) = 1 | − 5-s + (−0.0951 + 2.64i)7-s − 5.28i·11-s + 2.19i·13-s + 1.04·17-s − 6.43i·19-s − 7.47i·23-s + 25-s + 7.47i·29-s + 9.09i·31-s + (0.0951 − 2.64i)35-s − 0.855·37-s − 2.19·41-s + 0.954·43-s − 11.0·47-s + ⋯ |
L(s) = 1 | − 0.447·5-s + (−0.0359 + 0.999i)7-s − 1.59i·11-s + 0.607i·13-s + 0.253·17-s − 1.47i·19-s − 1.55i·23-s + 0.200·25-s + 1.38i·29-s + 1.63i·31-s + (0.0160 − 0.446i)35-s − 0.140·37-s − 0.342·41-s + 0.145·43-s − 1.60·47-s + ⋯ |
Λ(s)=(=(5040s/2ΓC(s)L(s)(−0.836+0.547i)Λ(2−s)
Λ(s)=(=(5040s/2ΓC(s+1/2)L(s)(−0.836+0.547i)Λ(1−s)
Degree: |
2 |
Conductor: |
5040
= 24⋅32⋅5⋅7
|
Sign: |
−0.836+0.547i
|
Analytic conductor: |
40.2446 |
Root analytic conductor: |
6.34386 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ5040(881,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 5040, ( :1/2), −0.836+0.547i)
|
Particular Values
L(1) |
≈ |
0.4413896154 |
L(21) |
≈ |
0.4413896154 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 5 | 1+T |
| 7 | 1+(0.0951−2.64i)T |
good | 11 | 1+5.28iT−11T2 |
| 13 | 1−2.19iT−13T2 |
| 17 | 1−1.04T+17T2 |
| 19 | 1+6.43iT−19T2 |
| 23 | 1+7.47iT−23T2 |
| 29 | 1−7.47iT−29T2 |
| 31 | 1−9.09iT−31T2 |
| 37 | 1+0.855T+37T2 |
| 41 | 1+2.19T+41T2 |
| 43 | 1−0.954T+43T2 |
| 47 | 1+11.0T+47T2 |
| 53 | 1+3.09iT−53T2 |
| 59 | 1−13.7T+59T2 |
| 61 | 1−8.05iT−61T2 |
| 67 | 1+5.33T+67T2 |
| 71 | 1−6.43iT−71T2 |
| 73 | 1−4.57iT−73T2 |
| 79 | 1+15.6T+79T2 |
| 83 | 1+4.38T+83T2 |
| 89 | 1+4.28T+89T2 |
| 97 | 1+11.8iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.321488228754995380761214920814, −6.91296433261602343972345568310, −6.73587007114032601103835795234, −5.67010615748649237727142520222, −5.10080844863234680826946994031, −4.25685383281580170905843231439, −3.11524479789980278047727264052, −2.78419743312902339519311792915, −1.40504303783983409760650919522, −0.12319444385561396371680421981,
1.26720492413828452035832569673, 2.19266821540687892750539315141, 3.49324481666117236229477623632, 3.98370186592904489465328207127, 4.74018045702458173166755507005, 5.61928165390656916164256966551, 6.43480578340247466277690654954, 7.35803816104168685381480749773, 7.71996349946965925555746278875, 8.182217301881173607146699625663