Properties

Label 5040.2.f.f
Level 50405040
Weight 22
Character orbit 5040.f
Analytic conductor 40.24540.245
Analytic rank 00
Dimension 88
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [5040,2,Mod(881,5040)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5040, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("5040.881");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 5040=243257 5040 = 2^{4} \cdot 3^{2} \cdot 5 \cdot 7
Weight: k k == 2 2
Character orbit: [χ][\chi] == 5040.f (of order 22, degree 11, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 40.244602618740.2446026187
Analytic rank: 00
Dimension: 88
Coefficient field: 8.0.7442857984.4
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x8+26x6+205x4+540x2+324 x^{8} + 26x^{6} + 205x^{4} + 540x^{2} + 324 Copy content Toggle raw display
Coefficient ring: Z[a1,,a17]\Z[a_1, \ldots, a_{17}]
Coefficient ring index: 2334 2^{3}\cdot 3^{4}
Twist minimal: no (minimal twist has level 630)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β71,\beta_1,\ldots,\beta_{7} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == qq5+(β6+1)q7+(β6β5)q11β1q13+β2q17+(β4+β1)q19+(β6β5+β1)q23+q25+(β6+β5β1)q29++(β6β5+3β1)q97+O(q100) q - q^{5} + (\beta_{6} + 1) q^{7} + ( - \beta_{6} - \beta_{5}) q^{11} - \beta_1 q^{13} + \beta_{2} q^{17} + ( - \beta_{4} + \beta_1) q^{19} + ( - \beta_{6} - \beta_{5} + \beta_1) q^{23} + q^{25} + (\beta_{6} + \beta_{5} - \beta_1) q^{29}+ \cdots + ( - \beta_{6} - \beta_{5} + 3 \beta_1) q^{97}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 8q8q5+4q7+8q254q358q378q41+16q43+40q47+4q4932q67+52q778q7916q838q89+4q91+O(q100) 8 q - 8 q^{5} + 4 q^{7} + 8 q^{25} - 4 q^{35} - 8 q^{37} - 8 q^{41} + 16 q^{43} + 40 q^{47} + 4 q^{49} - 32 q^{67} + 52 q^{77} - 8 q^{79} - 16 q^{83} - 8 q^{89} + 4 q^{91}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x8+26x6+205x4+540x2+324 x^{8} + 26x^{6} + 205x^{4} + 540x^{2} + 324 : Copy content Toggle raw display

β1\beta_{1}== (ν7+20ν5+73ν3198ν)/72 ( \nu^{7} + 20\nu^{5} + 73\nu^{3} - 198\nu ) / 72 Copy content Toggle raw display
β2\beta_{2}== (ν616ν421ν2+126)/24 ( -\nu^{6} - 16\nu^{4} - 21\nu^{2} + 126 ) / 24 Copy content Toggle raw display
β3\beta_{3}== (ν76ν6+20ν5132ν4+73ν3594ν2198ν+108)/144 ( \nu^{7} - 6\nu^{6} + 20\nu^{5} - 132\nu^{4} + 73\nu^{3} - 594\nu^{2} - 198\nu + 108 ) / 144 Copy content Toggle raw display
β4\beta_{4}== (ν7+26ν5+187ν3+306ν)/36 ( \nu^{7} + 26\nu^{5} + 187\nu^{3} + 306\nu ) / 36 Copy content Toggle raw display
β5\beta_{5}== (ν76ν6+20ν5132ν4+73ν3738ν254ν756)/144 ( \nu^{7} - 6\nu^{6} + 20\nu^{5} - 132\nu^{4} + 73\nu^{3} - 738\nu^{2} - 54\nu - 756 ) / 144 Copy content Toggle raw display
β6\beta_{6}== (ν7+6ν6+20ν5+132ν4+73ν3+738ν254ν+756)/144 ( \nu^{7} + 6\nu^{6} + 20\nu^{5} + 132\nu^{4} + 73\nu^{3} + 738\nu^{2} - 54\nu + 756 ) / 144 Copy content Toggle raw display
β7\beta_{7}== (5ν7+112ν5+665ν3+954ν)/72 ( 5\nu^{7} + 112\nu^{5} + 665\nu^{3} + 954\nu ) / 72 Copy content Toggle raw display
ν\nu== (β6+β5β1)/2 ( \beta_{6} + \beta_{5} - \beta_1 ) / 2 Copy content Toggle raw display
ν2\nu^{2}== (β6β5+2β3β112)/2 ( \beta_{6} - \beta_{5} + 2\beta_{3} - \beta _1 - 12 ) / 2 Copy content Toggle raw display
ν3\nu^{3}== (2β713β613β52β4+7β1)/2 ( 2\beta_{7} - 13\beta_{6} - 13\beta_{5} - 2\beta_{4} + 7\beta_1 ) / 2 Copy content Toggle raw display
ν4\nu^{4}== (13β6+13β534β3+8β2+17β1+120)/2 ( -13\beta_{6} + 13\beta_{5} - 34\beta_{3} + 8\beta_{2} + 17\beta _1 + 120 ) / 2 Copy content Toggle raw display
ν5\nu^{5}== (38β7+163β6+163β5+50β473β1)/2 ( -38\beta_{7} + 163\beta_{6} + 163\beta_{5} + 50\beta_{4} - 73\beta_1 ) / 2 Copy content Toggle raw display
ν6\nu^{6}== (187β6187β5+502β3176β2251β11416)/2 ( 187\beta_{6} - 187\beta_{5} + 502\beta_{3} - 176\beta_{2} - 251\beta _1 - 1416 ) / 2 Copy content Toggle raw display
ν7\nu^{7}== (614β72113β62113β5854β4+895β1)/2 ( 614\beta_{7} - 2113\beta_{6} - 2113\beta_{5} - 854\beta_{4} + 895\beta_1 ) / 2 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/5040Z)×\left(\mathbb{Z}/5040\mathbb{Z}\right)^\times.

nn 20172017 28012801 31513151 36013601 37813781
χ(n)\chi(n) 11 1-1 11 1-1 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
881.1
1.91681i
1.91681i
3.73923i
3.73923i
2.73923i
2.73923i
0.916813i
0.916813i
0 0 0 −1.00000 0 −2.27220 1.35539i 0 0 0
881.2 0 0 0 −1.00000 0 −2.27220 + 1.35539i 0 0 0
881.3 0 0 0 −1.00000 0 −0.0951965 2.64404i 0 0 0
881.4 0 0 0 −1.00000 0 −0.0951965 + 2.64404i 0 0 0
881.5 0 0 0 −1.00000 0 1.80230 1.93693i 0 0 0
881.6 0 0 0 −1.00000 0 1.80230 + 1.93693i 0 0 0
881.7 0 0 0 −1.00000 0 2.56510 0.648285i 0 0 0
881.8 0 0 0 −1.00000 0 2.56510 + 0.648285i 0 0 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 881.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
21.c even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 5040.2.f.f 8
3.b odd 2 1 5040.2.f.i 8
4.b odd 2 1 630.2.b.a 8
7.b odd 2 1 5040.2.f.i 8
12.b even 2 1 630.2.b.b yes 8
20.d odd 2 1 3150.2.b.e 8
20.e even 4 1 3150.2.d.c 8
20.e even 4 1 3150.2.d.d 8
21.c even 2 1 inner 5040.2.f.f 8
28.d even 2 1 630.2.b.b yes 8
60.h even 2 1 3150.2.b.f 8
60.l odd 4 1 3150.2.d.a 8
60.l odd 4 1 3150.2.d.f 8
84.h odd 2 1 630.2.b.a 8
140.c even 2 1 3150.2.b.f 8
140.j odd 4 1 3150.2.d.a 8
140.j odd 4 1 3150.2.d.f 8
420.o odd 2 1 3150.2.b.e 8
420.w even 4 1 3150.2.d.c 8
420.w even 4 1 3150.2.d.d 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
630.2.b.a 8 4.b odd 2 1
630.2.b.a 8 84.h odd 2 1
630.2.b.b yes 8 12.b even 2 1
630.2.b.b yes 8 28.d even 2 1
3150.2.b.e 8 20.d odd 2 1
3150.2.b.e 8 420.o odd 2 1
3150.2.b.f 8 60.h even 2 1
3150.2.b.f 8 140.c even 2 1
3150.2.d.a 8 60.l odd 4 1
3150.2.d.a 8 140.j odd 4 1
3150.2.d.c 8 20.e even 4 1
3150.2.d.c 8 420.w even 4 1
3150.2.d.d 8 20.e even 4 1
3150.2.d.d 8 420.w even 4 1
3150.2.d.f 8 60.l odd 4 1
3150.2.d.f 8 140.j odd 4 1
5040.2.f.f 8 1.a even 1 1 trivial
5040.2.f.f 8 21.c even 2 1 inner
5040.2.f.i 8 3.b odd 2 1
5040.2.f.i 8 7.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(5040,[χ])S_{2}^{\mathrm{new}}(5040, [\chi]):

T118+52T116+820T114+4320T112+5184 T_{11}^{8} + 52T_{11}^{6} + 820T_{11}^{4} + 4320T_{11}^{2} + 5184 Copy content Toggle raw display
T17450T172+120T1772 T_{17}^{4} - 50T_{17}^{2} + 120T_{17} - 72 Copy content Toggle raw display
T414+4T41322T41224T41+72 T_{41}^{4} + 4T_{41}^{3} - 22T_{41}^{2} - 24T_{41} + 72 Copy content Toggle raw display
T47420T47322T472+2424T4712024 T_{47}^{4} - 20T_{47}^{3} - 22T_{47}^{2} + 2424T_{47} - 12024 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T8 T^{8} Copy content Toggle raw display
33 T8 T^{8} Copy content Toggle raw display
55 (T+1)8 (T + 1)^{8} Copy content Toggle raw display
77 T84T7++2401 T^{8} - 4 T^{7} + \cdots + 2401 Copy content Toggle raw display
1111 T8+52T6++5184 T^{8} + 52 T^{6} + \cdots + 5184 Copy content Toggle raw display
1313 T8+60T6++5184 T^{8} + 60 T^{6} + \cdots + 5184 Copy content Toggle raw display
1717 (T450T2+72)2 (T^{4} - 50 T^{2} + \cdots - 72)^{2} Copy content Toggle raw display
1919 T8+108T6++82944 T^{8} + 108 T^{6} + \cdots + 82944 Copy content Toggle raw display
2323 T8+104T6++82944 T^{8} + 104 T^{6} + \cdots + 82944 Copy content Toggle raw display
2929 T8+104T6++82944 T^{8} + 104 T^{6} + \cdots + 82944 Copy content Toggle raw display
3131 T8+216T6++1327104 T^{8} + 216 T^{6} + \cdots + 1327104 Copy content Toggle raw display
3737 (T4+4T3++124)2 (T^{4} + 4 T^{3} + \cdots + 124)^{2} Copy content Toggle raw display
4141 (T4+4T322T2++72)2 (T^{4} + 4 T^{3} - 22 T^{2} + \cdots + 72)^{2} Copy content Toggle raw display
4343 (T48T326T2+16)2 (T^{4} - 8 T^{3} - 26 T^{2} + \cdots - 16)^{2} Copy content Toggle raw display
4747 (T420T3+12024)2 (T^{4} - 20 T^{3} + \cdots - 12024)^{2} Copy content Toggle raw display
5353 T8+120T6++82944 T^{8} + 120 T^{6} + \cdots + 82944 Copy content Toggle raw display
5959 (T4194T2++5112)2 (T^{4} - 194 T^{2} + \cdots + 5112)^{2} Copy content Toggle raw display
6161 T8+252T6++4981824 T^{8} + 252 T^{6} + \cdots + 4981824 Copy content Toggle raw display
6767 (T4+16T3+4896)2 (T^{4} + 16 T^{3} + \cdots - 4896)^{2} Copy content Toggle raw display
7171 T8+108T6++82944 T^{8} + 108 T^{6} + \cdots + 82944 Copy content Toggle raw display
7373 T8+352T6++5992704 T^{8} + 352 T^{6} + \cdots + 5992704 Copy content Toggle raw display
7979 (T4+4T3++14368)2 (T^{4} + 4 T^{3} + \cdots + 14368)^{2} Copy content Toggle raw display
8383 (T4+8T3++1152)2 (T^{4} + 8 T^{3} + \cdots + 1152)^{2} Copy content Toggle raw display
8989 (T4+4T3+5832)2 (T^{4} + 4 T^{3} + \cdots - 5832)^{2} Copy content Toggle raw display
9797 T8+568T6++199148544 T^{8} + 568 T^{6} + \cdots + 199148544 Copy content Toggle raw display
show more
show less