L(s) = 1 | + (−0.780 + 1.35i)2-s + (−0.5 + 0.866i)3-s + (−0.219 − 0.379i)4-s + 3.56·5-s + (−0.780 − 1.35i)6-s + (0.280 + 0.486i)7-s − 2.43·8-s + (−0.499 − 0.866i)9-s + (−2.78 + 4.81i)10-s + (−1 + 1.73i)11-s + 0.438·12-s − 0.876·14-s + (−1.78 + 3.08i)15-s + (2.34 − 4.05i)16-s + (0.780 + 1.35i)17-s + 1.56·18-s + ⋯ |
L(s) = 1 | + (−0.552 + 0.956i)2-s + (−0.288 + 0.499i)3-s + (−0.109 − 0.189i)4-s + 1.59·5-s + (−0.318 − 0.552i)6-s + (0.106 + 0.183i)7-s − 0.862·8-s + (−0.166 − 0.288i)9-s + (−0.879 + 1.52i)10-s + (−0.301 + 0.522i)11-s + 0.126·12-s − 0.234·14-s + (−0.459 + 0.796i)15-s + (0.585 − 1.01i)16-s + (0.189 + 0.327i)17-s + 0.368·18-s + ⋯ |
Λ(s)=(=(507s/2ΓC(s)L(s)(−0.872−0.488i)Λ(2−s)
Λ(s)=(=(507s/2ΓC(s+1/2)L(s)(−0.872−0.488i)Λ(1−s)
Degree: |
2 |
Conductor: |
507
= 3⋅132
|
Sign: |
−0.872−0.488i
|
Analytic conductor: |
4.04841 |
Root analytic conductor: |
2.01206 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ507(22,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 507, ( :1/2), −0.872−0.488i)
|
Particular Values
L(1) |
≈ |
0.303864+1.16383i |
L(21) |
≈ |
0.303864+1.16383i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(0.5−0.866i)T |
| 13 | 1 |
good | 2 | 1+(0.780−1.35i)T+(−1−1.73i)T2 |
| 5 | 1−3.56T+5T2 |
| 7 | 1+(−0.280−0.486i)T+(−3.5+6.06i)T2 |
| 11 | 1+(1−1.73i)T+(−5.5−9.52i)T2 |
| 17 | 1+(−0.780−1.35i)T+(−8.5+14.7i)T2 |
| 19 | 1+(−3.56−6.16i)T+(−9.5+16.4i)T2 |
| 23 | 1+(1−1.73i)T+(−11.5−19.9i)T2 |
| 29 | 1+(3.34−5.78i)T+(−14.5−25.1i)T2 |
| 31 | 1+2.56T+31T2 |
| 37 | 1+(−3.78+6.54i)T+(−18.5−32.0i)T2 |
| 41 | 1+(0.780−1.35i)T+(−20.5−35.5i)T2 |
| 43 | 1+(2.28+3.95i)T+(−21.5+37.2i)T2 |
| 47 | 1+8.24T+47T2 |
| 53 | 1+0.684T+53T2 |
| 59 | 1+(1.43+2.49i)T+(−29.5+51.0i)T2 |
| 61 | 1+(1.93+3.35i)T+(−30.5+52.8i)T2 |
| 67 | 1+(−2.28+3.95i)T+(−33.5−58.0i)T2 |
| 71 | 1+(−7−12.1i)T+(−35.5+61.4i)T2 |
| 73 | 1−10.1T+73T2 |
| 79 | 1−5.43T+79T2 |
| 83 | 1−0.876T+83T2 |
| 89 | 1+(−2.43+4.22i)T+(−44.5−77.0i)T2 |
| 97 | 1+(4.28+7.41i)T+(−48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.02714778780201579775249673847, −9.910217737095316981207919228059, −9.630125900394697373951662510743, −8.665724483267901869657165252036, −7.64651741656644496436944365778, −6.63576926055383295530009825877, −5.70555074024199559945781498270, −5.28989216872990357745754169094, −3.45110746090661217016964648624, −1.90846095971533647900261052386,
0.908229563814700896464000294106, 2.11054503878639634575854936905, 2.98623095044222681985502288703, 5.04955947583767624716138085244, 5.93630573018603626252572068759, 6.68061807172844379866689607232, 8.024859747302351842951245503901, 9.246886646932221049148530385469, 9.649124351971963655876216382090, 10.59166399526128512603339041308