L(s) = 1 | + (−1.02 + 1.77i)2-s + (0.5 − 0.866i)3-s + (−1.09 − 1.90i)4-s − 3.35·5-s + (1.02 + 1.77i)6-s + (1.12 + 1.94i)7-s + 0.405·8-s + (−0.499 − 0.866i)9-s + (3.43 − 5.95i)10-s + (2.46 − 4.27i)11-s − 2.19·12-s − 4.60·14-s + (−1.67 + 2.90i)15-s + (1.78 − 3.08i)16-s + (−0.455 − 0.789i)17-s + 2.04·18-s + ⋯ |
L(s) = 1 | + (−0.724 + 1.25i)2-s + (0.288 − 0.499i)3-s + (−0.549 − 0.951i)4-s − 1.50·5-s + (0.418 + 0.724i)6-s + (0.424 + 0.735i)7-s + 0.143·8-s + (−0.166 − 0.288i)9-s + (1.08 − 1.88i)10-s + (0.744 − 1.28i)11-s − 0.634·12-s − 1.23·14-s + (−0.433 + 0.750i)15-s + (0.445 − 0.771i)16-s + (−0.110 − 0.191i)17-s + 0.482·18-s + ⋯ |
Λ(s)=(=(507s/2ΓC(s)L(s)(0.990+0.134i)Λ(2−s)
Λ(s)=(=(507s/2ΓC(s+1/2)L(s)(0.990+0.134i)Λ(1−s)
Degree: |
2 |
Conductor: |
507
= 3⋅132
|
Sign: |
0.990+0.134i
|
Analytic conductor: |
4.04841 |
Root analytic conductor: |
2.01206 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ507(22,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 507, ( :1/2), 0.990+0.134i)
|
Particular Values
L(1) |
≈ |
0.671220−0.0452133i |
L(21) |
≈ |
0.671220−0.0452133i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−0.5+0.866i)T |
| 13 | 1 |
good | 2 | 1+(1.02−1.77i)T+(−1−1.73i)T2 |
| 5 | 1+3.35T+5T2 |
| 7 | 1+(−1.12−1.94i)T+(−3.5+6.06i)T2 |
| 11 | 1+(−2.46+4.27i)T+(−5.5−9.52i)T2 |
| 17 | 1+(0.455+0.789i)T+(−8.5+14.7i)T2 |
| 19 | 1+(1.90+3.29i)T+(−9.5+16.4i)T2 |
| 23 | 1+(1.01−1.75i)T+(−11.5−19.9i)T2 |
| 29 | 1+(−1.96+3.41i)T+(−14.5−25.1i)T2 |
| 31 | 1−8.82T+31T2 |
| 37 | 1+(−4.40+7.62i)T+(−18.5−32.0i)T2 |
| 41 | 1+(−3.46+6.00i)T+(−20.5−35.5i)T2 |
| 43 | 1+(−1.14−1.97i)T+(−21.5+37.2i)T2 |
| 47 | 1+3.80T+47T2 |
| 53 | 1−0.542T+53T2 |
| 59 | 1+(2.35+4.08i)T+(−29.5+51.0i)T2 |
| 61 | 1+(1.83+3.18i)T+(−30.5+52.8i)T2 |
| 67 | 1+(0.760−1.31i)T+(−33.5−58.0i)T2 |
| 71 | 1+(−1.18−2.05i)T+(−35.5+61.4i)T2 |
| 73 | 1+7.41T+73T2 |
| 79 | 1+3.74T+79T2 |
| 83 | 1+2.30T+83T2 |
| 89 | 1+(5.02−8.71i)T+(−44.5−77.0i)T2 |
| 97 | 1+(8.06+13.9i)T+(−48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.11067515884928089367705741191, −9.453010777598746035722693181521, −8.555180631326469423040534602925, −8.289714381814471901917375906605, −7.43673493436967250653317489491, −6.56305332323564014638949561189, −5.68755344814861957342415173623, −4.24004163345415151061307309970, −2.91388535327318393574000253626, −0.56154658524569404100272218791,
1.32037328581597356234840187406, 2.91006810726655084707858498355, 4.12798171446516750194767231604, 4.43359241058474516446512670875, 6.60840691433536356160434783265, 7.81768680488412609086659710634, 8.322793297264157429834991597208, 9.376616877668326657782812872209, 10.23547113594437738078261786039, 10.77959086477612137515564685839