L(s) = 1 | + (1.17 − 2.04i)2-s + (0.5 − 0.866i)3-s + (−1.77 − 3.07i)4-s − 3.69·5-s + (−1.17 − 2.04i)6-s + (−0.400 − 0.694i)7-s − 3.66·8-s + (−0.499 − 0.866i)9-s + (−4.35 + 7.53i)10-s + (−1.42 + 2.46i)11-s − 3.55·12-s − 1.89·14-s + (−1.84 + 3.19i)15-s + (−0.763 + 1.32i)16-s + (−1.46 − 2.54i)17-s − 2.35·18-s + ⋯ |
L(s) = 1 | + (0.833 − 1.44i)2-s + (0.288 − 0.499i)3-s + (−0.888 − 1.53i)4-s − 1.65·5-s + (−0.481 − 0.833i)6-s + (−0.151 − 0.262i)7-s − 1.29·8-s + (−0.166 − 0.288i)9-s + (−1.37 + 2.38i)10-s + (−0.429 + 0.744i)11-s − 1.02·12-s − 0.505·14-s + (−0.476 + 0.825i)15-s + (−0.190 + 0.330i)16-s + (−0.356 − 0.617i)17-s − 0.555·18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 507 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.668 - 0.743i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 507 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.668 - 0.743i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.503792 + 1.13071i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.503792 + 1.13071i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-0.5 + 0.866i)T \) |
| 13 | \( 1 \) |
good | 2 | \( 1 + (-1.17 + 2.04i)T + (-1 - 1.73i)T^{2} \) |
| 5 | \( 1 + 3.69T + 5T^{2} \) |
| 7 | \( 1 + (0.400 + 0.694i)T + (-3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (1.42 - 2.46i)T + (-5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 + (1.46 + 2.54i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (1.22 + 2.11i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-3.89 + 6.74i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (1.92 - 3.33i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + 2.34T + 31T^{2} \) |
| 37 | \( 1 + (-3.72 + 6.44i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (0.425 - 0.736i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-0.807 - 1.39i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + 2.44T + 47T^{2} \) |
| 53 | \( 1 + 9.96T + 53T^{2} \) |
| 59 | \( 1 + (2.69 + 4.66i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-6.62 - 11.4i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-7.19 + 12.4i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (-4.06 - 7.03i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 - 11.8T + 73T^{2} \) |
| 79 | \( 1 - 5.40T + 79T^{2} \) |
| 83 | \( 1 + 7.04T + 83T^{2} \) |
| 89 | \( 1 + (-0.565 + 0.980i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (2.97 + 5.14i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.01276402585211145902374166582, −9.706653370816498158113458103884, −8.646179140128976044275847462033, −7.57424861666838984228204096376, −6.82610553447482418659035332052, −5.00866379070956067825693471656, −4.28106571445404714140991828176, −3.33581714242086416098020702785, −2.34177057312061585192384103210, −0.54441248363324078977583531786,
3.28599081964485661315101016379, 3.93102796248669076083918032391, 4.88694565411790682803627033180, 5.85849630009398230571091395445, 6.94576455431698888455867938057, 7.983601551873093520705236610763, 8.191020834943332763886369205665, 9.311984255914000322317106038959, 10.81894683437230336068562494375, 11.51633713862091048501235344911