L(s) = 1 | + (1.17 − 2.04i)2-s + (0.5 − 0.866i)3-s + (−1.77 − 3.07i)4-s − 3.69·5-s + (−1.17 − 2.04i)6-s + (−0.400 − 0.694i)7-s − 3.66·8-s + (−0.499 − 0.866i)9-s + (−4.35 + 7.53i)10-s + (−1.42 + 2.46i)11-s − 3.55·12-s − 1.89·14-s + (−1.84 + 3.19i)15-s + (−0.763 + 1.32i)16-s + (−1.46 − 2.54i)17-s − 2.35·18-s + ⋯ |
L(s) = 1 | + (0.833 − 1.44i)2-s + (0.288 − 0.499i)3-s + (−0.888 − 1.53i)4-s − 1.65·5-s + (−0.481 − 0.833i)6-s + (−0.151 − 0.262i)7-s − 1.29·8-s + (−0.166 − 0.288i)9-s + (−1.37 + 2.38i)10-s + (−0.429 + 0.744i)11-s − 1.02·12-s − 0.505·14-s + (−0.476 + 0.825i)15-s + (−0.190 + 0.330i)16-s + (−0.356 − 0.617i)17-s − 0.555·18-s + ⋯ |
Λ(s)=(=(507s/2ΓC(s)L(s)(−0.668−0.743i)Λ(2−s)
Λ(s)=(=(507s/2ΓC(s+1/2)L(s)(−0.668−0.743i)Λ(1−s)
Degree: |
2 |
Conductor: |
507
= 3⋅132
|
Sign: |
−0.668−0.743i
|
Analytic conductor: |
4.04841 |
Root analytic conductor: |
2.01206 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ507(22,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 507, ( :1/2), −0.668−0.743i)
|
Particular Values
L(1) |
≈ |
0.503792+1.13071i |
L(21) |
≈ |
0.503792+1.13071i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−0.5+0.866i)T |
| 13 | 1 |
good | 2 | 1+(−1.17+2.04i)T+(−1−1.73i)T2 |
| 5 | 1+3.69T+5T2 |
| 7 | 1+(0.400+0.694i)T+(−3.5+6.06i)T2 |
| 11 | 1+(1.42−2.46i)T+(−5.5−9.52i)T2 |
| 17 | 1+(1.46+2.54i)T+(−8.5+14.7i)T2 |
| 19 | 1+(1.22+2.11i)T+(−9.5+16.4i)T2 |
| 23 | 1+(−3.89+6.74i)T+(−11.5−19.9i)T2 |
| 29 | 1+(1.92−3.33i)T+(−14.5−25.1i)T2 |
| 31 | 1+2.34T+31T2 |
| 37 | 1+(−3.72+6.44i)T+(−18.5−32.0i)T2 |
| 41 | 1+(0.425−0.736i)T+(−20.5−35.5i)T2 |
| 43 | 1+(−0.807−1.39i)T+(−21.5+37.2i)T2 |
| 47 | 1+2.44T+47T2 |
| 53 | 1+9.96T+53T2 |
| 59 | 1+(2.69+4.66i)T+(−29.5+51.0i)T2 |
| 61 | 1+(−6.62−11.4i)T+(−30.5+52.8i)T2 |
| 67 | 1+(−7.19+12.4i)T+(−33.5−58.0i)T2 |
| 71 | 1+(−4.06−7.03i)T+(−35.5+61.4i)T2 |
| 73 | 1−11.8T+73T2 |
| 79 | 1−5.40T+79T2 |
| 83 | 1+7.04T+83T2 |
| 89 | 1+(−0.565+0.980i)T+(−44.5−77.0i)T2 |
| 97 | 1+(2.97+5.14i)T+(−48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.01276402585211145902374166582, −9.706653370816498158113458103884, −8.646179140128976044275847462033, −7.57424861666838984228204096376, −6.82610553447482418659035332052, −5.00866379070956067825693471656, −4.28106571445404714140991828176, −3.33581714242086416098020702785, −2.34177057312061585192384103210, −0.54441248363324078977583531786,
3.28599081964485661315101016379, 3.93102796248669076083918032391, 4.88694565411790682803627033180, 5.85849630009398230571091395445, 6.94576455431698888455867938057, 7.983601551873093520705236610763, 8.191020834943332763886369205665, 9.311984255914000322317106038959, 10.81894683437230336068562494375, 11.51633713862091048501235344911