L(s) = 1 | + (0.928 + 0.928i)2-s + (−1.37 + 1.05i)3-s − 0.276i·4-s + (2.12 + 2.12i)5-s + (−2.25 − 0.293i)6-s + (2.06 + 2.06i)7-s + (2.11 − 2.11i)8-s + (0.767 − 2.90i)9-s + 3.94i·10-s + (1.88 − 1.88i)11-s + (0.291 + 0.379i)12-s + 3.83i·14-s + (−5.16 − 0.671i)15-s + 3.37·16-s + 0.198·17-s + (3.40 − 1.98i)18-s + ⋯ |
L(s) = 1 | + (0.656 + 0.656i)2-s + (−0.792 + 0.610i)3-s − 0.138i·4-s + (0.950 + 0.950i)5-s + (−0.920 − 0.119i)6-s + (0.780 + 0.780i)7-s + (0.747 − 0.747i)8-s + (0.255 − 0.966i)9-s + 1.24i·10-s + (0.568 − 0.568i)11-s + (0.0842 + 0.109i)12-s + 1.02i·14-s + (−1.33 − 0.173i)15-s + 0.842·16-s + 0.0482·17-s + (0.802 − 0.466i)18-s + ⋯ |
Λ(s)=(=(507s/2ΓC(s)L(s)(−0.0125−0.999i)Λ(2−s)
Λ(s)=(=(507s/2ΓC(s+1/2)L(s)(−0.0125−0.999i)Λ(1−s)
Degree: |
2 |
Conductor: |
507
= 3⋅132
|
Sign: |
−0.0125−0.999i
|
Analytic conductor: |
4.04841 |
Root analytic conductor: |
2.01206 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ507(239,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 507, ( :1/2), −0.0125−0.999i)
|
Particular Values
L(1) |
≈ |
1.43186+1.44994i |
L(21) |
≈ |
1.43186+1.44994i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(1.37−1.05i)T |
| 13 | 1 |
good | 2 | 1+(−0.928−0.928i)T+2iT2 |
| 5 | 1+(−2.12−2.12i)T+5iT2 |
| 7 | 1+(−2.06−2.06i)T+7iT2 |
| 11 | 1+(−1.88+1.88i)T−11iT2 |
| 17 | 1−0.198T+17T2 |
| 19 | 1+(3.75−3.75i)T−19iT2 |
| 23 | 1+3.30T+23T2 |
| 29 | 1−3.73iT−29T2 |
| 31 | 1+(−0.550+0.550i)T−31iT2 |
| 37 | 1+(3.60+3.60i)T+37iT2 |
| 41 | 1+(2.69+2.69i)T+41iT2 |
| 43 | 1−11.6iT−43T2 |
| 47 | 1+(−4.29+4.29i)T−47iT2 |
| 53 | 1+13.6iT−53T2 |
| 59 | 1+(2.36−2.36i)T−59iT2 |
| 61 | 1+2.70T+61T2 |
| 67 | 1+(−5.33+5.33i)T−67iT2 |
| 71 | 1+(3.78+3.78i)T+71iT2 |
| 73 | 1+(−3.46−3.46i)T+73iT2 |
| 79 | 1+11.1T+79T2 |
| 83 | 1+(1.84+1.84i)T+83iT2 |
| 89 | 1+(0.776−0.776i)T−89iT2 |
| 97 | 1+(−8.60+8.60i)T−97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.00036140137645342390140100966, −10.34662819234942939477266290546, −9.619545733537231157799732012086, −8.470319233434678909781224306203, −6.98088903781774988601365790201, −6.13399640481942184408801124178, −5.76202590096403062691811913157, −4.80536607738604064787716223104, −3.62109483445524268991347905491, −1.81407869116434658819789541082,
1.32767855862334024971008426756, 2.20940547336661745047875790972, 4.25730382377750002943264211063, 4.78052172749322086259042023364, 5.77319312371933257610586110926, 6.96220784112052689657845979392, 7.902231804409031009363809678894, 8.885690847205571661293027743411, 10.18018039723633150654700129585, 10.88261854811920375819331984979